Types

Consider the following datatype and function declarations in Standard ML:

```ml
datatype tree = Leaf | Node of tree * tree;
fun iter x f Leaf = x
  | iter x f (Node(y,z)) = f(iter x f y)(iter x f z);
```

You are required to encode the datatype `tree` as a closed type \(\tau \) in the second-order lambda calculus, \(\lambda_2 \). Find a suitable type \(\tau \) and closed \(\lambda_2 \) terms in \(\beta \)-normal form, \(L, N, \) and \(I \) say, corresponding to \(\text{Leaf}, \text{Node} \) and \(\text{iter} \) respectively. You should demonstrate for your choices that

\[
\vdash L : \tau \\
\vdash N : \tau \rightarrow \tau \rightarrow \tau \\
\vdash I : \forall \alpha. \alpha \rightarrow (\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \tau \rightarrow \alpha
\]

are derivable typing assertions, and that \(I_\alpha x f L \) and \(I_\alpha x f (Nyz) \) are \(\beta \)-convertible to the \(\lambda_2 \) terms corresponding respectively to the right-hand sides of the clauses in the declaration of \(\text{iter} \). [14 marks]

Now add to the above Standard ML declarations the function declarations

```ml
fun rev Leaf = Leaf
  | rev (Node(y,z)) = Node(rev z, rev y);
fun div Leaf = Leaf
  | div (Node(y,z)) = div(Node(z,y));
```

Using \(I \), or otherwise, show that there is a closed \(\lambda_2 \) term of type \(\tau \rightarrow \tau \), \(R \) say, for which \(RL \) and \(R(Nyz) \) are \(\beta \)-convertible to the \(\lambda_2 \) terms corresponding respectively to the right-hand sides of the clauses in the declaration of \(\text{rev} \). Is there a closed \(\lambda_2 \) term \(D \) with similar properties for the declaration of \(\text{div} \)? [6 marks]