Computation Theory

The Halting Problem for register machines is unsolvable. State, without proof, a precise form of this result. [3 marks]

Let the computation by program p on data d be represented by the natural number k that codes the pair (p,d). By considering the set $H(k)$ of the HALTing computations represented by codes $k' \leq k$, show that there is an increasing total function $h(k)$ which grows too fast to be computable. [6 marks]

Given $h : \mathbb{N} \rightarrow \mathbb{N}$ with the above property

\[f(k) = h(k) + k \]

and $g(x) = \sup\{k : f(k) \leq x\}$.

Then $f : \mathbb{N} \rightarrow \mathbb{N}$ is strictly increasing, and $g : \mathbb{N} \rightarrow \mathbb{N}$ satisfies

\[g(f(k)) = k, \quad g(x) < k \quad \text{for all } x < f(k). \]

Show that g grows too slowly to be computable in the following sense...

Given $G : \mathbb{N} \rightarrow \mathbb{N}$ such that

(a) $\{G(n) : n \in \mathbb{N}\}$ is unbounded

(b) $G(n) \leq g(n)$ for all $n \in \mathbb{N}$

then $G(n)$ is not computable. [11 marks]