Data Structures and Algorithms

A directed graph of \(n \) nodes numbered 1, 2, \ldots, \(n \) can be represented by an \(n \times n \) adjacency matrix \(G_1 \), where \(G_1[i, j] \) is true if there is an edge connecting node \(i \) to node \(j \), and \(G_1[i, j] \) is false otherwise.

By extension, define \(G_k \) to be that matrix such that \(G_k[i, j] \) is true if there is a path of length \(\leq k \) connecting node \(i \) to node \(j \), and \(G_k[i, j] \) is false otherwise.

Describe an algorithm to generate \(G_2 \) from \(G_1 \). \[12 \text{ marks}\]

How could this algorithm be used to generate the transitive closure of a graph given its adjacency matrix? \[5 \text{ marks}\]

What is the cost of this transitive closure algorithm in terms of \(n \) and \(m \), where \(m \) is the maximum path length in the transitive closure? \[3 \text{ marks}\]