
Semantics of Programming Languages
Computer Science Tripos, Part 1B

2025–26

Peter Sewell

Computer Laboratory

University of Cambridge

February 7, 2026

©Peter Sewell 2024–2026,
Peter Sewell 2014–2018,
Sam Staton 2009–2013,
Peter Sewell 2003–2009

1

Contents
Syllabus 3

Changes 4

Learning Guide 4

Summary of Notation 5

1 Introduction 8

2 A First Imperative Language 13
2.1 Operational Semantics . 13
2.2 Typing . 24
2.3 L1: Collected definition . 29
2.4 Exercises . 31

3 Proof about semantics – really, proof about inductive definitions 33
3.1 Abstract Syntax and Structural Induction . 35
3.2 Inductive Definitions and Rule Induction . 41
3.3 Example proofs . 47
3.4 Exercises . 48

4 Functions 49
4.1 Abstract syntax up to alpha conversion, and substitution . 50
4.2 Function Behaviour . 54
4.3 Function Typing . 57
4.4 Local Definitions and Recursive Functions . 59
4.5 Implementation . 62
4.6 L2: Collected Definition . 64
4.7 Exercises . 67

5 Data 68
5.1 Products and sums . 68
5.2 Datatypes and Records . 71
5.3 Mutable Store . 72
5.4 Evaluation Contexts . 76
5.5 L3: Collected definition . 77
5.6 Exercises . 81

6 Subtyping and Objects 82
6.1 Exercises . 86

7 Concurrency 88
7.1 Exercises . 96

8 Semantic Equivalence 97
8.1 Contextual equivalence . 101
8.2 Exercises . 101

9 Semantics in practice 101

10 Epilogue 102

A Interpreter and type checker for L1 (OCaml) 104

B Interpreter and type checker for L1 (SML) 109

C Interpreter and type checker for L1 (Java) 115

D How to do Proofs 126
D.1 How to go about it . 127
D.2 And in More Detail... 128

D.2.1 Meet the Connectives . 128
D.2.2 Equivalences . 129
D.2.3 How to Prove a Formula . 129
D.2.4 How to Use a Formula . 131

D.3 An Example . 132
D.3.1 Proving the PL . 132
D.3.2 Using the PL . 132

D.4 Sequent Calculus Rules . 133

2

Syllabus

This course is a prerequisite for Category Theory, Hoare Logic and Model Checking, Types, and Multicore
Semantics and Programming

Aims

The aim of this course is to introduce the structural, operational approach to programming language
semantics. It will show how to specify the meaning of typical programming language constructs, in the
context of language design, and how to reason formally about semantic properties of programs.

Lectures

• Introduction. Transition systems. The idea of structural operational semantics. Transition seman-
tics of a simple imperative language. Language design options.

• Types. Introduction to formal type systems. Typing for the simple imperative language. Statements
of desirable properties.

• Induction. Review of mathematical induction. Abstract syntax trees and structural induction.
Rule-based inductive definitions and proofs. Proofs of type safety properties.

• Functions. Call-by-name and call-by-value function application, semantics and typing. Local re-
cursive definitions.

• Data. Semantics and typing for products, sums, records, references.

• Subtyping. Record subtyping and simple object encoding.

• Semantic equivalence. Semantic equivalence of phrases in a simple imperative language, including
the congruence property. Examples of equivalence and non-equivalence.

• Concurrency. Shared variable interleaving. Semantics for simple mutexes; a serializability property.

Objectives

At the end of the course students should

• be familiar with rule-based presentations of the operational semantics and type systems for some
simple imperative, functional and interactive program constructs

• be able to prove properties of an operational semantics using various forms of induction (mathe-
matical, structural, and rule-based)

• be familiar with some operationally-based notions of semantic equivalence of program phrases and
their basic properties

Recommended reading

* Pierce, B.C. (2002). Types and programming languages. MIT Press.

Practical Foundations for Programming Languages (Second Edition) by Robert Harper. Cambridge
University Press, 2016. https://www.cs.cmu.edu/~rwh/pfpl.html

Hennessy, M. (1990). The semantics of programming languages. Wiley.
Out of print, but available on the web at
https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/resources/sembookWiley.pdf.

Winskel, G. (1993). The formal semantics of programming languages. MIT Press.

3

Changes

2025–2026:

• The slides and notes are typeset with different latex machinery, which removes some infelicities at
the cost of making the slides less explicit in the notes.

• The L1 implementation snippets in the slides have been moved to OCaml from Standard ML.

• The concrete syntax has been made more like OCaml rather than Standard ML (fun x → not
fn x ⇒, a done at the end of while loops, no end at the end of lets, no val , pair projections fst
and snd instead of #1 and #2, match e with instead of case e of , record projections with dot
notation instead of #lab).

• The explanation of inductive relations has been elaborated, with the equivalent views of derivation
trees, least fixed points, and symbolic search.

Learning Guide

Books:

• Pierce, B. C. (2002) Types and Programming Languages. MIT Press.

This is a graduate-level text, covering a great deal of material on programming language semantics. The

first half (through to Chapter 15) is relevant to this course, and some of the later material relevant to the

Part II Types course. ebook available at

http://search.lib.cam.ac.uk/?itemid=|eresources|1472

• Harper, R. W (2012). Practical Foundations for Programming Languages. MIT Press. Second
edition 2016. Also available from http://www.cs.cmu.edu/~rwh/pfpl.html.

• Hennessy, M. (1990). The Semantics of Programming Languages. Wiley. Out of print.

Introduces many of the key topics of the course. There’s a copy on the web at

https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/resources/sembookWiley.pdf

• Winskel, G. (1993). The Formal Semantics of Programming Languages. MIT Press.

An introduction to both operational and denotational semantics.

Further reading:

• Plotkin, G. D.(1981). A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus University.

These notes first popularized the ‘structural’ approach to operational semantics. Although somewhat dated,

they are still a mine of interesting examples. It is available at

http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf.

• Two essays in: Wand, I. and R. Milner (Eds) (1996), Computing Tomorrow, CUP:
– Hoare, C. A. R.. Algebra and Models.
– Milner, R. Semantic Ideas in Computing.
Two accessible essays giving somewhat different perspectives on the semantics of computation and pro-

gramming languages.

• Andrew Pitts lectured this course until 2002. The syllabus has changed, but you might enjoy his
notes, still available at http://www.cl.cam.ac.uk/teaching/2001/Semantics/.

• Pierce, B. C. (ed) (2005) Advanced Topics in Types and Programming Languages. MIT Press.

This is a collection of articles by experts on a range of programming-language semantics topics. Most of

the details are beyond the scope of this course, but it gives a good overview of the state of the art. The

contents are listed at http://www.cis.upenn.edu/~bcpierce/attapl/.

Implementations: Implementations of some of the languages are available on the course web page.

4

For L1, they are available in OCaml and in Standard ML (in the Moscow ML implementation); for L2,
just in Standard ML. If you want to work with them on your own machine, there are Linux, Windows,
and Mac versions of Moscow ML available at http://www.itu.dk/~sestoft/mosml.html.

Exercises: The notes contain various exercises, some related to the implementations. Those marked ⋆
should be straightforward checks that you are grasping the material; I suggest you attempt all of these.
Exercises marked ⋆⋆ may need a little more thought – both proofs and some implementation-related;
you should do most of them. Exercises marked ⋆⋆⋆ may need material beyond the notes, and/or be
quite time-consuming. Below is a possible selection of exercises for supervisions. For 2025–2026, beware
that in the initial versions of the notes, before Feb 7, these numbers were not all correct.

These tripos questions are useful but quite old; you should also do a selection of recent questions.

1. §2.4 (Page 31): 1, 3, 4, 8, 9, 10, 11 (all these should be pretty quick); §3.4 (Page 48): 13, 13.5, 16.

2. §4.7 (Page 67): 19, 20, 21, 22, 23, 24 §5.6 (Page 81): 29, 2003.5.11.

3. §7.1 (Page 96): 38, 40, 41 §6.1 (Page 86): 32, 33, 36, 2003.6.12, further tripos questions

Tripos questions: This version of the course was first given in 2002–2003. All the questions since then
should be in scope. The previous version of the course (by Andrew Pitts) used a slightly different form of
operational semantics, ‘big-step’ instead of ‘small-step’ (see Page 63 of these notes), and different example
languages, so the notation in most earlier questions may seem unfamiliar at first sight.

These questions use only small-step and should be accessible: 1998 Paper 6 Question 12, 1997 Paper 5
Question 12, and 1996 Paper 5 Question 12.

These questions use big-step, but apart from that should be ok: 2002 Paper 5 Question 9, 2002 Paper
6 Question 9, 2001 Paper 5 Question 9, 2000 Paper 5 Question 9, 1999 Paper 6 Question 9 (first two
parts only), 1999 Paper 5 Question 9, 1998 Paper 5 Question 12, 1995 Paper 6 Question 12, 1994 Paper
7 Question 13, 1993 Paper 7 Question 10.

These questions depend on material which is no longer in this course (complete partial orders, continu-
ations, or bisimulation): 2001 Paper 6 Question 9, 2000 Paper 6 Question 9, 1997 Paper 6 Question 12,
1996 Paper 6 Question 12, 1995 Paper 5 Question 12, 1994 Paper 8 Question 12, 1994 Paper 9 Question
12, 1993 Paper 8 Question 10, 1993 Paper 9 Question 10.

Feedback: Please do complete the on-line feedback form, and let me know during it if you discover errors
in the notes or if the pace is too fast or slow.

Acknowledgements (P. Sewell): These notes are a modification of the notes that Sam Staton used for
the course, 2010–2013. Thanks also to Jean Pichon for comments. Thanks to Neel Krishnaswami, who
taught the course from 2019–2020 through to the first half of the 2024–2025 lectures.

Acknowledgements (S. Staton): These notes are a modification of the notes that Peter Sewell used for
the course, 2003–2009.

Acknowledgements (P. Sewell): These notes draw, with thanks, on earlier courses by Andrew Pitts, on
Benjamin Pierce’s book, and many other sources. Any errors are, of course, introduced by me.

Summary of Notation

Each section is roughly in the order that notation is introduced. The grammars of the languages are not
included here, but are in the Collected Definitions of L1, L2 and L3 later in this document.

5

Logic and Set Theory
Φ ∧ Φ′ and
Φ ∨ Φ′ or
Φ⇒ Φ′ implies
¬ Φ not
∀ x .Φ(x) for all
∃ x .Φ(x) exists
a ∈ A element of
{a1, ..., an} the set with elements a1, ..., an
A1 ∪ A2 union
A1 ∩ A2 intersection
A1 ⊆ A2 subset or equal
A1 ∗A2 cartesian product (set of pairs)

Finite partial functions
{a1 7→ b1, ..., an 7→ bn} finite partial function mapping each ai to bi
dom(s) set of elements in the domain of s
f + {a 7→ b} the finite partial function f extended or overridden with

a maps to b
Γ, x :T the finite partial function Γ extended with {x 7→ T}

– only used where x not in dom(Γ)
Γ,Γ′ the finite partial function which is the union of Γ and Γ

– only used where they have disjoint domains
{l1 7→ n1, ..., lk 7→ nk} an L1 or L2 store – the finite partial function mapping

each li to ni
{l1 7→ v1, ..., lk 7→ vk} an L3 store – the finite partial function mapping each li to vi
l1:intref, ..., lk:intref an L1 type environment – the finite partial function

mapping each li to intref
ℓ:intref, ..., x :T , ... an L2 type environment
ℓ:Tloc , ..., x :T , ... an L3 type environment
{e1/x1, .., ek/xk} a substitution – the finite partial function

{x1 7→ e1, ..., xk 7→ ek} mapping x1 to e1 etc.

Relations and auxiliary functions
⟨e, s⟩ −→ ⟨e ′, s ′⟩ reduction (or transition) step
⟨e, s⟩ −→∗ ⟨e ′, s ′⟩ reflexive transitive closure of −→
⟨e, s⟩ −→k ⟨e ′, s ′⟩ the k -fold composition of −→
⟨e, s⟩ −→ω has an infinite reduction sequence (a unary predicate)
⟨e, s⟩ ̸−→ cannot reduce (a unary predicate)
Γ ⊢ e:T in type environment Γ, expression e has type T
value(e) e is a value
fv(e) the set of free variables of e
{e/x}e ′ the expression resulting from substituting e for x in e ′

σ e the expression resulting from applying the substituting σ to e
⟨e, s⟩ ⇓ ⟨v , s ′⟩ big-step evaluation
Γ ⊢ s store s is well-typed with respect to type environment Γ
T <: T ′ type T is a subtype of type T ′

e ≃ e ′ semantic equivalence (informal)
e ≃T

Γ e ′ semantic equivalence at type T with respect to type
environment Γ

e
a−→ e ′ single thread transition step, labelled with action a

6

Particular sets
B = {true, false} the set of booleans
L = {l , l1, l2, ...} the set of locations
Z = {..,−1, 0, 1, ...} the set of integers
N = {0, 1, ...} the set of natural numbers
X = {x, y, ...} the set of L2 and L3 variables
LAB = {p, q, ...} the set of record labels
M = {m,m0,m1, ...} the set of mutex names
T the set of all types (in whichever language)
Tloc the set of all location types (in whichever language)
L1 the set of all L1 expressions
TypeEnv the set of all L1 type environments, finite partial functions

from L to Tloc

TypeEnv2 the set of all L2 type environments, the pairs of a finite partial function
from L to Tloc and a finite partial function from X to T

Metavariables
b ∈ B boolean
n ∈ Z integer
ℓ ∈ L location
op binary operation
e, f expression (of whichever language)
v value (of whichever language)
s store (of whichever language)
T ∈ T type (of whichever language)
Tloc ∈ Tloc location type (of whichever language)
Γ type environment (also, set of propositional assumptions)
i , k , y natural numbers
c configuration (or state), typically ⟨e, s⟩ with expression e and store s
Φ formula
c tree constructor
R set of rules
(H , c) a rule with hypotheses H ⊆ A and conclusion c ∈ A for some set A
SR a subset inductively defined by the set of rules R
x ∈ X variable
σ substitution
lab ∈ LAB record label
E evaluation context
C arbitrary context
π permutation of natural numbers
m ∈ M mutex name
M state of all mutexes (a function M :M −→ B)
a thread action

Other
hole in a context

C [e] context C with e replacing the hole

7

1 Introduction

Semantics of Programming Languages
Peter Sewell

1B, 12 lectures
2025–26
February 7, 2026

1

• Science

• Engineering

• Craft

• Art

• Bodgery

2

3

4

8

5

6

1. Basic shape: ISO 68–1 ISO general purpose screw threads – Basic profile – Metric
screw threads

2. Tolerances: ISO 965–1 ISO general purpose metric screw threads – Tolerances
3. Materials and strength: ISO 898 Mechanical properties of fasteners made of carbon

steel and alloy steel

7

Programming languages: basic engineering tools of our time 8

In this course we will take a close look at programming languages. We will focus on how to define precisely
what a programming language is – i.e., how the programs of the language behave, or, more generally,
what their meaning, or semantics, is.

9

Semantics — What is it?
How to describe a programming language? Need to give:

• the syntax of programs; and
• their semantics (the meaning of programs, or how they behave).

9

Semantics — What is it?
How to describe a programming language? Need to give:

• the syntax of programs; and
• their semantics (the meaning of programs, or how they behave).

Styles of description:
• the language is defined by whatever some particular compiler does
• natural language ‘definitions’
• mathematically

Mathematical descriptions of syntax use formal grammars (eg BNF) – precise, concise,
clear. In this course we’ll see how to work with mathematical definitions of semantics/be-
haviour.

10

Many programming languages that you meet are described only in natural language, e.g. the English
standards documents for C, Java, XML, etc. These are reasonably accessible (though often written in
‘standardsese’), but there are some major problems. It is very hard, if not impossible, to write really
precise definitions in informal prose. The standards often end up being ambiguous or incomplete, or
just too large and hard to understand. That leads to differing implementations and flaky systems, as the
language implementors and users do not have a common understanding of what it is. More fundamentally,
natural language standards obscure the real structure of languages – it’s all too easy to add a feature and
a quick paragraph of text without thinking about how it interacts with the rest of the language.

Instead, as we shall see in this course, one can develop mathematical definitions of how programs behave,
using logic and set theory (e.g. the definition of Standard ML, the .NET CLR, recent work on XQuery,
etc.). These require a little more background to understand and use, but for many purposes they are a
much better tool than informal standards.

What do we use semantics for?
1. to understand a particular language — what you can depend on as a programmer;

what you must provide as a compiler writer
2. as a tool for language design:

(a) for clean design
(b) for expressing design choices, understanding language features and how they

interact.
(c) for proving properties of a language, eg type safety, decidability of type infer-

ence.
3. as a foundation for proving properties of particular programs

11

Design choices, from Micro to Macro
• basic values
• evaluation order
• what can be stored
• what can be abstracted over
• what is guaranteed at compile-time and run-time
• how effects are controlled
• how concurrency is supported
• how information hiding is enforceable
• how large-scale development and re-use are supported
• ...

12

Semantics complements the study of language implementation (cf. Compiler Construction and Optimising
Compilers). We need languages to be both clearly understandable, with precise definitions, and have good
implementations.

This is true not just for the major programming languages, but also for intermediate languages (JVM,
LLVM IR, CLR), and the many, many scripting and command languages, that have often been invented
on-the-fly without sufficient thought.

10

More broadly, while in this course we will look mostly at semantics for conventional programming lan-
guages, similar techniques can be used for hardware description languages, verification of distributed
algorithms, security protocols, and so on – all manner of subtle systems for which relying on informal
intuition alone leads to error.

Warmup
In C, if initially x has value 3, what’s the value of the following?

x++ + x++ + x++ + x++

13

JavaScript
function bar(x) {

return function() {

var x = x;

return x;

};

}

var f = bar(200);

f()

14

Various different approaches have been used for expressing semantics.

Styles of Semantic Definitions
• Operational semantics
• Denotational semantics
• Axiomatic, or Logical, semantics

15

Operational: define the meaning of a program in terms of the computation steps it takes in an idealized
execution. Some definitions use structural operational semantics, in which the intermediate states are
described using the language itself; others use abstract machines, which use more ad-hoc mathematical
constructions.

Denotational: define the meaning of a program as elements of some abstract mathematical structure,
e.g. regarding programming-language functions as certain mathematical functions. cf. the Denotational
Semantics course.

Axiomatic or Logical: define the meaning of a program indirectly, by giving the axioms of a logic of
program properties. cf. Specification and Verification.

‘Toy’ languages
Real programming languages are large, with many features and, often, with redundant
constructs – things that can be expressed in the rest of the language.
When trying to understand some particular combination of features it’s usual to define a
small ‘toy’ language with just what you’re interested in, then scale up later. Even small
languages can involve delicate design choices.

16

What’s this course?
Core

• operational semantics and typing for a tiny language
• technical tools (abstract syntax, inductive definitions, proof)
• design for functions, data and references

More advanced topics
• Subtyping and Objects
• Semantic Equivalence
• Concurrency

17

11

(assignment and while) L11,2,3,4

(functions and recursive definitions) L25,6

Operational semantics
Type systems
Implementations
Language design choices
Inductive definitions
Inductive proof – structural; rule
Abstract syntax up to alpha

(products, sums, records, references) L38

Subtyping

and Objects9
Semantic

Equivalence10

Concurrency12

18

In the core we will develop enough techniques to deal with the semantics of a non-trivial small language,
showing some language-design pitfalls and alternatives along the way. It will end up with the semantics
of a decent fragment of ML. The second part will cover a selection of more advanced topics.

The Big Picture

Discrete
Maths

''

FoCS

��

Logic
& Proof

��

ML

��

Java and
C&DS

ww

Computation
Theory

ssCompiler
Construction Semantics

vv ~~
�� ((

Optimising
Compilers

Types Category Theory
Multicore

Semantics and
Programming

Hoare Logic and
Model-Checking

Advanced Topics
in Prog
Lang

19

Admin
• Please let me know of typos, and if it is too fast/too slow/too interesting/too dull
(please complete the on-line feedback at the end)

• Exercises in the notes.
• Implementations on web.
• Books (Pierce, Harper, Hennessy, Winskel)

20

12

2 A First Imperative Language

L1 21

L1 – Example
L1 is an imperative language with store locations (holding integers), conditionals, and
while loops. For example, consider the program

l2 := 0;
while !l1 ≥ 1 do

l2 :=!l2+!l1;
l1 :=!l1 +−1

done

in the initial store {l1 7→ 3, l2 7→ 0}.

22

L1 – Syntax
Booleans b ∈ B = {true, false}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ℓ ∈ L = {l , l0, l1, l2, ...}
Operations op ::=+ |≥
Expressions

e ::= n | b | e1 op e2 | if e1 then e2 else e3 |
ℓ := e |!ℓ |
skip | e1; e2 |
while e1 do e2 done

Write L1 for the set of all expressions.

23

Points to note:

• we’ll return later to exactly what the set L1 is when we talk about abstract syntax

• unbounded integers

• abstract locations – can’t do pointer arithmetic on them

• untyped, so have nonsensical expressions like 3 + true

• what kind of grammar is that (c.f. RLFA)?

• don’t have expression/command distinction

• doesn’t much matter what basic operators we have

• carefully distinguish metavariables b,n, ℓ, op , e etc. from program locations l etc..

2.1 Operational Semantics

In order to describe the behaviour of L1 programs we will use structural operational semantics to define
various forms of automata:

13

Transition systems
A transition system consists of

• a set Config, and
• a binary relation −→⊆ Config ∗ Config.

The elements of Config are often called configurations or states. The relation −→ is
called the transition or reduction relation. We write −→ infix, so c −→ c′ should be read
as ‘state c can make a transition to state c′’.

24

To compare with the automata you saw in Regular Languages and Finite Automata: a transition system
is like an NFAε with an empty alphabet (so only ε transitions) except (a) it can have infinitely many
states, and (b) we don’t specify a start state or accepting states. Sometimes one adds labels (e.g. to
represent IO) but mostly we’ll just look at the values of terminated states, those that cannot do any
transitions.

Notation.

• −→∗ is the reflexive transitive closure of −→, so c −→∗ c′ iff there exist k ≥ 0 and c0, .., ck such
that c = c0 −→ c1... −→ ck = c′.

• ̸−→ is a unary predicate (a subset of Config) defined by c ̸−→ iff ¬ ∃ c′.c −→ c′.

The particular transition systems we use for L1 are as follows.

L1 Semantics (1 of 4) – Configurations
Say stores s are finite partial functions from L to Z. For example:

{l1 7→ 7, l3 7→ 23}

Take configurations to be pairs ⟨e, s⟩ of an expression e and a store s, so our transition
relation will have the form

⟨e, s⟩ −→ ⟨e ′, s ′⟩

25

Definition. A finite partial function f from a set A to a set B is a set containing a finite number n ≥ 0
of pairs {(a1, b1), ..., (an , bn)}, often written {a1 7→ b1, ..., an 7→ bn}, for which

• ∀ i ∈ {1, ..,n}.ai ∈ A (the domain is a subset ofA)

• ∀ i ∈ {1, ..,n}.bi ∈ B (the range is a subset of B)

• ∀ i ∈ {1, ..,n}, j ∈ {1, ..,n}.i ̸= j ⇒ ai ̸= aj (f is functional, i.e. each element of A is mapped to
at most one element of B)

For a partial function f , we write dom(f) for the set of elements in the domain of f (things that f maps
to something) and ran(f) for the set of elements in the range of f (things that something is mapped to
by f). For example, for the store s above we have dom(s) = {l1, l3} and ran(s) = {7, 23}. Note that a
finite partial function can be empty, just {}.

We write store for the set of all stores.

Transitions are single computation steps. For example we will have:

⟨l := 2+!l , {l 7→ 3}⟩
−→ ⟨l := 2 + 3, {l 7→ 3}⟩
−→ ⟨l := 5, {l 7→ 3}⟩
−→ ⟨skip, {l 7→ 5}⟩
̸−→

want to keep on until we get to a value v , an expression in

V = B ∪ Z ∪ {skip}.

Say ⟨e, s⟩ is stuck if e is not a value and ⟨e, s⟩ ̸−→. For example 2 + true will be stuck.

26

14

We could define the values in a different, but equivalent, style: Say values v are expressions from the
grammar v ::= b | n | skip.

Now define the behaviour for each construct of L1 by giving some rules that (together) define a transition
relation −→.

L1 Semantics (2 of 4) – Rules (basic operations)

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

(op ≥) ⟨n1 ≥ n2, s⟩ −→ ⟨b, s⟩ if b = (n1 ≥ n2)

(op1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′1 op e2, s
′⟩

(op2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨v op e2, s⟩ −→ ⟨v op e ′2, s
′⟩

27

How to read these? The rule (op +) says that for any instantiation of the metavariables n, n1 and n2 (i.e.
any choice of three integers), that satisfies the sidecondition, there is a transition from the instantiated
configuration on the left to the one on the right.

We use a strict naming convention for metavariables: n can only be instantiated by integers, not by
arbitrary expressions.

The rule (op1) says that for any instantiation of e1, e
′
1, e2, s, s

′ (i.e. any three expressions and two stores),
if a transition of the form above the line can be deduced then we can deduce the transition below the
line.

Observe that – as you would expect – none of these first rules introduce changes in the store part of
configurations.

Example
If we want to find the possible sequences of transitions of ⟨(2 + 3) + (6 + 7), ∅⟩ ... look
for derivations of transitions.
(you might think the answer should be 18 – but we want to know what this definition
says happens)

(op1)

(op +)
⟨2 + 3, ∅⟩ −→ ⟨5, ∅⟩

⟨(2 + 3) + (6 + 7), ∅⟩ −→ ⟨5 + (6 + 7), ∅⟩

(op2)

(op +)
⟨6 + 7, ∅⟩ −→ ⟨13, ∅⟩

⟨5 + (6 + 7), ∅⟩ −→ ⟨5 + 13, ∅⟩

(op +)
⟨5 + 13, ∅⟩ −→ ⟨18, ∅⟩

28

First transition: using (op1) with e1 = 2+3, e ′1 = 5, e2 = 6+7, op = +, s = ∅, s ′ = ∅, and using (op +)
with n1 = 2, n2 = 3, s = ∅. Note couldn’t begin with (op2) as e1 = 2+ 3 is not a value, and couldn’t use
(op +) directly on (2 + 3) + (6 + 7) as 2 + 3 and 6 + 7 are not numbers from Z – just expressions which
might eventually evaluate to numbers (recall, by convention the n in the rules ranges over Z only).

Second transition: using (op2) with e1 = 5, e2 = 6 + 7, e ′2 = 13, op = +, s = ∅, s ′ = ∅, and using
(op +) with n1 = 6, n2 = 7, s = ∅. Note that to use (op2) we needed that e1 = 5 is a value. We couldn’t
use (op1) as e1 = 5 does not have any transitions itself.

Third transition: using (op +) with n1 = 5, n2 = 13, s = ∅.

To find each transition we do something like proof search in natural deduction: starting with a state (at

15

the bottom left), look for a rule and an instantiation of the metavariables in that rule that makes the
left-hand-side of its conclusion match that state. Beware that in general there might be more than one
rule and one instantiation that does this. If there isn’t a derivation concluding in ⟨e, s⟩ −→ ⟨e ′, s ′⟩ then
there isn’t such a transition.

L1 Semantics (3 of 4) – store and sequencing

(deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

(seq1) ⟨skip; e2, s⟩ −→ ⟨e2, s⟩

(seq2)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1; e2, s⟩ −→ ⟨e ′1; e2, s ′⟩

29

Example

⟨l := 3; !l , {l 7→ 0}⟩ −→ ⟨skip; !l , {l 7→ 3}⟩
−→ ⟨!l , {l 7→ 3}⟩
−→ ⟨3, {l 7→ 3}⟩

⟨l := 3; l :=!l , {l 7→ 0}⟩ −→ ?

⟨15+!l , ∅⟩ −→ ?

30

L1 Semantics (4 of 4) – The rest (conditionals and while)

(if1) ⟨if true then e2 else e3, s⟩ −→ ⟨e2, s⟩

(if2) ⟨if false then e2 else e3, s⟩ −→ ⟨e3, s⟩

(if3)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨if e1 then e2 else e3, s⟩ −→ ⟨if e ′1 then e2 else e3, s
′⟩

(while)
⟨while e1 do e2 done , s⟩ −→ ⟨if e1 then (e2;while e1 do e2 done) else skip, s⟩

31

Example
If
e = (l2 := 0;while !l1 ≥ 1 do (l2 :=!l2+!l1; l1 :=!l1 +−1) done)
s = {l1 7→ 3, l2 7→ 0}
then
⟨e, s⟩ −→∗ ?

32

That concludes our definition of L1. The full definition is collected on page 29.

16

The semantics of the semantics: what do those rules mean, more formally?
We defined the transition relation ⟨e, s⟩ −→ ⟨e ′, s ′⟩ by giving some rules, eg

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

(op1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′1 op e2, s
′⟩

• Start with the set A = Config ∗ Config = (L1 ∗ store) ∗ (L1 ∗ store).
• The rules define a subset −→ ⊆ A
• Notation: ⟨e, s⟩ −→ ⟨e ′, s ′⟩ is just infix notation for ((e, s), (e ′, s ′)) ∈−→

33

Derivations
For each rule we can construct the set of all concrete rule instances, taking all values of
the metavariables that satisfy the side condition. For example, for (op +) and (op1) we
take all values of n1,n2, s,n (satisfying n = n1 + n2) and of e1, e2, s, e

′
1, s

′.

n1 = 2, n2 = 2, s = {}, n = 4 n1 = 2, n2 = 3, s = {}, n = 5
(op+)

⟨2 + 2, {}⟩ −→ ⟨4, {}⟩
(op +)

⟨2 + 3, {}⟩ −→ ⟨5, {}⟩

e1 = 2 + 2, e2 = 3, s = {}, e′1 = 4, s′ = {} e1 = 2 + 2, e2 = 3, s = {}, e′1 = false, s′ = {l 7→ 7}

(op1)
⟨2 + 2, {}⟩ −→ ⟨4, {}⟩

⟨(2 + 2) + 3, {}⟩ −→ ⟨4 + 3, {}⟩
(op1)

⟨2 + 2, {}⟩ −→ ⟨false, {l 7→ 7}⟩
⟨(2 + 2) + 3, {}⟩ −→ ⟨false+ 3, {l 7→ 7}⟩

Note the last has a premise that is not itself derivable, but nonetheless it is a concrete
instance of (op1).

34

Derivations
A derivation of a transition ⟨e, s⟩ −→ ⟨e ′, s ′⟩ is a finite tree of elements of A in which
every node is justified as a concrete rule instance.

⟨2 + 2, {}⟩ −→ ⟨4, {}⟩
(op+)

⟨(2 + 2) + 3, {}⟩ −→ ⟨4 + 3, {}⟩
(op1)

⟨(2 + 2) + 3 ≥ 5, {}⟩ −→ ⟨4 + 3 ≥ 5, {}⟩
(op1)

Definition 1. ⟨e, s⟩ −→ ⟨e ′, s ′⟩ is an element of the reduction relation iff there is a
derivation with that as the root node.

(for −→, the rules all have either 0 or 1 premises, so these trees are spindly)

35

Closure
Equivalently:
Each rule defines the subsets X ⊆ A that are closed under that rule

X = {X ⊆ A | for all concrete instances a1 . . . an
a

. (a1 ∈ X ∧ . . .∧ an ∈ X)⇒ a ∈ X}

Definition 2. The relation −→ is the smallest subset of A closed under all those implica-
tions:

−→ =
⋂
X

(The subsets have to closed under intersection for this to work out – but for non-
pathological rules, this is fine).

36

17

Search for derivations
That defines −→, but not in a way that’s practically computable.

Often one wants to compute, for some concrete ⟨e, s⟩, the set of all ⟨e ′, s ′⟩ such that
⟨e, s⟩ −→ ⟨e ′, s ′⟩.

(Or for partly symbolic ⟨e, s⟩)
(Or, for some concrete ⟨e, s⟩ and ⟨e ′, s ′⟩, whether ⟨e, s⟩ −→ ⟨e ′, s ′⟩)

Search algorithm:
1. start trying to construct a derivation ending in ⟨e, s⟩ −→ ⟨e ′, s ′⟩, for fresh metavari-

ables e ′ and s ′

2. find all the rules that could possibly match
3. for each, construct the most general instance(s) that match, introducing fresh

metavariables as needed, and unifying with the information you already have
4. keep on going until you reach the leaves

37

Example: compute the set of all ⟨e ′, s ′⟩ such that ⟨((2 + 2) + 3) ≥ 5, {}⟩ −→ ⟨e ′, s ′⟩.
Start with a partial derivation with that conclusion:

?

⟨(2 + 2) + 3 ≥ 5, {}⟩ −→ ⟨e ′′, s ′′⟩
(?)

The only rule that can be instantiated to match that is (op1) (rules (op +) and (op ≥) only
apply to concrete numbers, (op2) only if the LHS is a value, and all the others have different
top-level expression constructors)

(op1)
⟨e1, s⟩ −→ ⟨e ′

1, s
′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′
1 op e2, s

′⟩

The instantiation must have e1 = (2 + 2) + 3, op =≥, e2 = 5, s = {}. We don’t yet have
any constraint on the instantiations of e ′

1 and s ′, but we do know e ′′ = e ′
1 op e2 and s ′′ = s ′.

So instantiate e ′
1 with some fresh e ′′

1 (picking a metavariable that doesn’t occur in any rule, to
reduce confusion).

?

⟨(2 + 2) + 3, {}⟩ −→ ⟨e ′′
1 , s

′′⟩
(?)

⟨((2 + 2) + 3) ≥ 5, {}⟩ −→ ⟨e ′′
1 ≥ 5, s ′′⟩

(op1)

38

?

⟨(2 + 2) + 3, {}⟩ −→ ⟨e ′′
1 , s

′′⟩
(?)

⟨((2 + 2) + 3) ≥ 5, {}⟩ −→ ⟨e ′′
1 ≥ 5, s ′′⟩

(op1)

The only rule that can be instantiated to match that is again (op1).

(op1)
⟨e1, s⟩ −→ ⟨e ′

1, s
′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′
1 op e2, s

′⟩

This instantiation must have e1 = 2 + 2, op = +, e2 = 3, s = {}. We don’t yet have any
constraint on the instantiations of e ′

1 and s ′, but we do know e ′′ = e ′
1 op e2 and s ′′ = s ′. So

instantiate e ′
1 with some fresh e ′′′

1

?

⟨2 + 2, {}⟩ −→ ⟨e ′′′
1 , s ′′⟩

(?)

⟨(2 + 2) + 3, {}⟩ −→ ⟨e ′′′
1 + 3, s ′′⟩

(op1)

⟨((2 + 2) + 3) ≥ 5, {}⟩ −→ ⟨(e ′′′
1 + 3) ≥ 5, s ′′⟩

(op1)

39

18

?

⟨2 + 2, {}⟩ −→ ⟨e ′′′
1 , s ′′⟩

(?)

⟨(2 + 2) + 3, {}⟩ −→ ⟨e ′′′
1 + 3, s ′′⟩

(op1)

⟨((2 + 2) + 3) ≥ 5, {}⟩ −→ ⟨(e ′′′
1 + 3) ≥ 5, s ′′⟩

(op1)

The only rule that can be instantiated to match that is (op +). (To know that (op1) and (op2)
can’t apply, we need to check that ⟨n, s⟩ can never reduce, which we can see from inspecting
each rule conclusion.)

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

This instantiation must have n1 = 2, n2 = 2, s = {}, n = n1 + n2. So n = 4, so e ′′′
1 = 4, and

s ′′ = {}. Substituting those in, we have a concrete derivation:

⟨2 + 2, {}⟩ −→ ⟨4, {}⟩
(op +)

⟨(2 + 2) + 3, {}⟩ −→ ⟨4 + 3, {}⟩
(op1)

⟨((2 + 2) + 3) ≥ 5, {}⟩ −→ ⟨(4 + 3) ≥ 5, {}⟩
(op1)

Moreover, because we never had any choice, and always constructed the most general instances,
that is the only derivation. (Of the first transition...)

40

Determinacy

Theorem 1 (L1 Determinacy) If ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→ ⟨e2, s2⟩ then
⟨e1, s1⟩ = ⟨e2, s2⟩.
Proof – see later

41

Note that top-level universal quantifiers are usually left out – the theorem really says“For all e, s, e1, s1, e2, s2,
if ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→ ⟨e2, s2⟩ then ⟨e1, s1⟩ = ⟨e2, s2⟩”.

L1 implementation
Many possible implementation strategies, including:

1. animate the rules — use unification to try to match rule conclusion left-hand-sides
against a configuration; use backtracking search to find all possible transitions.
Hand-coded, or in Prolog/LambdaProlog/Twelf.

2. write an interpreter working directly over the syntax of configurations. Coming up,
in ML and Java.

3. compile to a stack-based virtual machine, and an interpreter for that. See Compiler
Construction.

4. compile to assembly language, dealing with register allocation etc. etc. See Compiler
Construction/Optimizing Compilers.

42

L1 implementation
Will implement an interpreter for L1, following the definition. Use OCaml (or mosml –
Moscow ML) as the implementation language, as datatypes and pattern matching are
good for this kind of thing.
First, must pick representations for locations, stores, and expressions:

type l o c = s t r i n g

type s t o r e = (l o c ∗ i n t) l i s t

43

We’ve chosen to represent locations as strings, so they pretty-print trivially. A lower-level implementation
would use ML references.

In the semantics, a store is a finite partial function from locations to integers. In the implementation, we
represent a store as a list of loc∗int pairs containing, for each ℓ in the domain of the store and mapped
to n, exactly one element of the form (l ,n). The order of the list will not be important. This is not a
very efficient implementation, but it is simple.

19

type oper = Plus | GTEQ

type exp r =
| I n t e g e r of i n t
| Boolean of boo l
| Op of exp r ∗ oper ∗ exp r
| I f of exp r ∗ exp r ∗ exp r
| Ass i gn of l o c ∗ exp r
| Dere f of l o c
| Sk ip
| Seq of exp r ∗ exp r
| While of exp r ∗ exp r

44

The expression and operation datatypes have essentially the same form as the abstract grammar. Note,
though, that it does not exactly match the semantics, as that allowed arbitrary integers whereas here we
use the bounded Moscow ML integers – so not every term of the abstract syntax is representable as an
element of type expr, and the interpreter will fail with an overflow exception if + overflows.

Store operations
Define auxiliary operations

lookup : s t o r e ∗ l o c −> i n t op t i on
update : s t o r e ∗(l o c ∗ i n t) −> s t o r e op t i on

which both return None if given a location that is not in the domain of the store.

Recall that a value of type T option is either None or
Some v for a value v of T.

45

The single-step function
Now define the single-step function
reduce : expr*store -> (expr*store) option

which takes a configuration (e, s) and returns either
None, if ⟨e, s⟩ ̸−→,
or Some (e’,s ’) , if it has a transition ⟨e, s⟩ −→ ⟨e ′, s ′⟩.
Note that if the semantics didn’t define a deterministic transition system we’d have to be
more elaborate.

46

(you might think it would be better ML style to use exceptions instead of these options; that would be
fine).

(op +), (op ≥)

l e t rec r educe (e , s) =
match e with
| I n t e g e r n −> None
| Boolean b −> None
| Op (e1 , opr , e2) −>

(match (e1 , opr , e2) with
| (I n t e g e r n1 , Plus , I n t e g e r n2) −> Some(I n t e g e r (n1+n2) , s) (∗ op + ∗)
| (I n t e g e r n1 , GTEQ, I n t e g e r n2) −> Some(Boolean (n1>=n2) , s) (∗ op >=∗)
| (e1 , opr , e2) −> (

. . .

47

Contrast this code with the semantic rules given earlier.

20

(op1), (op2)

| (e1 , opr , e2) −> (
i f (i s v a l u e e1) then

(match r educe (e2 , s) with
| Some (e2 ’ , s ’) −> Some (Op(e1 , opr , e2 ’) , s ’)

(∗ (op2) ∗)
| None −> None)

e l s e
(match r educe (e1 , s) with
| Some (e1 ’ , s ’) −> Some(Op(e1 ’ , opr , e2) , s ’)

(∗ (op1) ∗)
| None −> None)))

48

Note that the code depends on global properties of the semantics, including the fact that it defines
a deterministic transition system, so the comments indicating that particular lines of code implement
particular semantic rules are not the whole story.

(assign1), (assign2)

| Ass i gn (l , e) −>
(match e with
| I n t e g e r n −>

(match update s (l , n) with
| Some s ’ −> Some(Skip , s ’)

(∗ (a s s i g n 1) ∗)
| None −> None)

| −>
(match r educe (e , s) with
| Some (e ’ , s ’) −> Some(As s i gn (l , e ’) , s ’)

(∗ (a s s i g n 2) ∗)
| None −> None))

49

The many-step evaluation function
Now define the many-step evaluation function

e v a l u a t e : exp r ∗ s t o r e −> (exp r ∗ s t o r e) op t i on

which takes a configuration (e, s) and returns the (e ’, s ’) such that ⟨e, s⟩ −→∗

⟨e ′, s ′⟩ ̸−→, if there is such, or does not return.

l e t rec e v a l u a t e (e , s) =
match r educe (e , s) with
| None −> (e , s)
| Some (e ’ , s ’) −> e v a l u a t e (e ’ , s ’)

50

Demo

ocaml
#use ” l 1 / l 1 ocaml . ml ’ ’ ; ;

(e , s) ; ;
− : e xp r ∗ (s t r i n g ∗ i n t) l i s t =
(Seq (As s i gn (” l 1 ” , I n t e g e r 3) , Dere f ” l 1 ”) , [(” l 1 ” , 0)])

r educe (e , s) ; ;
− : (exp r ∗ (l o c ∗ i n t) l i s t) op t i on =
Some (Seq (Skip , Dere f ” l 1 ”) , [(” l 1 ” , 3)])

p r e t t y r e d u c e (e , s) ; ;
< l 1 :=3 ; ! l 1 , { l 1=0 } >

−−> < s k i p ; ! l 1 , { l 1=3 } >
−−> < ! l 1 , { l 1=3 } >
−−> < 3 , { l 1=3 } >
−/−> (a va lue)

− : u n i t = ()

51

21

The full interpreter code is in Appendix A, and you can also download it from the course website, in the
file l1.ml, together with a pretty-printer and the type-checker we will come to soon. For comparison,
there is also a Java implementation in l1.java.

The Java Implementation
Quite different code structure:

• the ML groups together all the parts of each algorithm, into the reduce,
infertype, and prettyprint functions;

• the Java groups together everything to do with each clause of the abstract syntax,
in the IfThenElse, Assign, etc. classes.

52

22

L1 is a simple language, but it nonetheless involves several language design choices.

Language design 1. Order of evaluation
For (e1 op e2), the rules above say e1 should be fully reduced, to a value, before we
start reducing e2. For example:
⟨(l := 1; 0) + (l := 2; 0), {l 7→ 0}⟩ −→5 ⟨0, {l → 2 }⟩
For right-to-left evaluation, replace (op1) and (op2) by

(op1b)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e1 op e ′2, s
′⟩

(op2b)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op v , s⟩ −→ ⟨e ′1 op v , s ′⟩

In this language (call it L1b)

⟨(l := 1; 0) + (l := 2; 0), {l 7→ 0}⟩ −→5 ⟨0, {l → 1 }⟩

53

Left-to-right evaluation is arguably more intuitive than right-to-left.

One could also underspecify, taking both (op1) and (op1b) rules. That language doesn’t have the Deter-
minacy property.

Language design 2. Assignment results
Recall

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)
(seq1) ⟨skip; e2, s⟩ −→ ⟨e2, s⟩

So
⟨l := 1; l := 2, {l 7→ 0}⟩ −→ ⟨skip; l := 2, {l 7→ 1}⟩

−→∗ ⟨skip, {l 7→ 2}⟩

We’ve chosen ℓ := n to result in skip, and e1; e2 to only progress if e1 = skip, not for
any value. Instead could have this:

(assign1’) ⟨ℓ := n, s⟩ −→ ⟨n, s + (ℓ 7→ n)⟩ if ℓ ∈ dom(s)
(seq1’) ⟨v ; e2, s⟩ −→ ⟨e2, s⟩

54

Matter of taste? Another possiblity: return the old value, e.g. in ANSI C signal handler installation.

Language design 3. Store initialization
Recall that

(deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

both require ℓ ∈ dom(s), otherwise the expressions are stuck.
Instead, could

1. implicitly initialize all locations to 0, or
2. allow assignment to an ℓ /∈ dom(s) to initialize that ℓ.

55

In the next section we will introduce a type system to rule out any program that could reach a stuck
expression of these forms. (Would the two alternatives be a good idea?)

23

Language design 4. Storable values
Recall stores s are finite partial functions from L to Z, with rules:

(deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

Can store only integers. ⟨l := true, s⟩ is stuck.
Why not allow storage of any value? of locations? of programs?
Also, store is global. We will consider programs that can create new locations later.

56

Language design 5. Operators and basic values
Booleans are really not integers (unlike in C)
The L1 impl and semantics aren’t quite in step.
Exercise: fix the implementation to match the semantics.
Exercise: fix the semantics to match the implementation.

57

Expressiveness
Is L1 expressive enough to write interesting programs?

• yes: it’s Turing-powerful (try coding an arbitrary register machine in L1).

• no: there’s no support for gadgets like functions, objects, lists, trees, modules,.....
Is L1 too expressive? (ie, can we write too many programs in it)

• yes: we’d like to forbid programs like 3 + false as early as possible, rather than let
the program get stuck or give a runtime error. We’ll do so with a type system.

58

2.2 Typing

L1 Typing 59

Type systems
used for

• describing when programs make sense
• preventing certain kinds of errors
• structuring programs
• guiding language design

Ideally, well-typed programs don’t get stuck.

60

Type systems are also used to provide information to compiler optimizers; to enforce security proper-

24

ties, from simple absence of buffer overflows to sophisticated information-flow policies; and (in research
languages) for many subtle properties, e.g. type systems that allow only polynomial-time computation.
There are rich connections with logic, which we’ll return to later.

Formal type systems
We will define a ternary relation Γ ⊢ e:T , read as ‘expression e has type T , under
assumptions Γ on the types of locations that may occur in e’. For example (according to
the definition coming up):

{} ⊢ if true then 2 else 3 + 4 : int
l1:intref ⊢ if !l1 ≥ 3 then !l1 else 3 : int
{} ̸⊢ 3 + false : T for any T
{} ̸⊢ if true then 3 else false : int

61

Note that the last is excluded despite the fact that when you execute the program you will always get an
int – type systems define approximations to the behaviour of programs, often quite crude – and this has
to be so, as we generally would like them to be decidable, so that compilation is guaranteed to terminate.

Types for L1
Types of expressions:

T ::= int | bool | unit

Types of locations:
Tloc ::= intref

Write T and Tloc for the sets of all terms of these grammars.
Let Γ range over TypeEnv, the finite partial functions from locations L to Tloc. Notation:
write a Γ as l1:intref, ..., lk:intref instead of {l1 7→ intref, ..., lk 7→ intref}.

62

• concretely, T = {int, bool, unit} and Tloc = {intref}.

• in this language, there is only one type in Tloc, so a Γ can be thought of as just a set of locations.
(Later, Tloc will be more interesting.)

Defining the type judgement Γ ⊢ e:T (1 of 3)

(int) Γ ⊢ n:int for n ∈ Z

(bool) Γ ⊢ b:bool for b ∈ {true, false}

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int
(op ≥)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 ≥ e2:bool

(if) Γ ⊢ e1:bool Γ ⊢ e2:T Γ ⊢ e3:T

Γ ⊢ if e1 then e2 else e3:T

63

Note that in (if) the T is arbitrary, so long as both premises have the same T .

In some rules we arrange the premises vertically to save space, e.g.

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int

but this is merely visual layout. Derivations using such a rule should be written as if it was in the
horizontal form.

(op +) Γ ⊢ e1:int Γ ⊢ e2:int

Γ ⊢ e1 + e2:int

25

Example
To show {} ⊢ if false then 2 else 3 + 4:int we can give a type derivation like this:

(if)

(bool)
{} ⊢ false:bool

(int)
{} ⊢ 2:int ∇

{} ⊢ if false then 2 else 3 + 4:int

where ∇ is

(op +)

(int)
{} ⊢ 3:int

(int)
{} ⊢ 4:int

{} ⊢ 3 + 4:int

64

Defining the type judgement Γ ⊢ e:T (2 of 3)

(assign) Γ(ℓ) = intref Γ ⊢ e:int

Γ ⊢ ℓ := e:unit

(deref) Γ(ℓ) = intref

Γ ⊢!ℓ:int

65

Here the Γ(ℓ) = intref just means ℓ ∈ dom(Γ).

Defining the type judgement Γ ⊢ e:T (3 of 3)

(skip) Γ ⊢ skip:unit

(seq) Γ ⊢ e1:unit Γ ⊢ e2:T

Γ ⊢ e1; e2:T

(while) Γ ⊢ e1:bool Γ ⊢ e2:unit

Γ ⊢ while e1 do e2 done :unit

66

Note that the typing rules are syntax-directed – for each clause of the abstract syntax for expressions
there is exactly one rule with a conclusion of that form.

Properties

Theorem 2 (Progress) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e is a value or
there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.

Theorem 3 (Type Preservation) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) and ⟨e, s⟩ −→
⟨e ′, s ′⟩ then Γ ⊢ e ′:T and dom(Γ) ⊆ dom(s ′).

From these two we have that well-typed programs don’t get stuck:

Theorem 4 (Safety) If Γ ⊢ e:T , dom(Γ) ⊆ dom(s), and ⟨e, s⟩ −→∗ ⟨e ′, s ′⟩ then either
e ′ is a value or there exist e ′′, s ′′ such that ⟨e ′, s ′⟩ −→ ⟨e ′′, s ′′⟩.

67

(we’ll discuss how to prove these results soon)

Semantic style: one could make an explicit definition of what configurations are runtime errors. Here,
instead, those configurations are just stuck.

26

Type checking, typeability, and type inference
Type checking problem for a type system: given Γ, e,T , is Γ ⊢ e:T derivable?
Type inference problem: given Γ and e, find T such that Γ ⊢ e:T is derivable, or show
there is none.
Second problem is usually harder than the first. Solving it usually results in a type inference
algorithm: computing a type T for a phrase e, given type environment Γ (or failing, if
there is none).
For this type system, though, both are easy.

68

More Properties

Theorem 5 (Type inference) Given Γ, e, one can find T such that Γ ⊢ e:T , or show
that there is none.

Theorem 6 (Decidability of type checking) Given Γ, e,T , one can decide Γ ⊢ e:T .

Also:

Theorem 7 (Uniqueness of typing) If Γ ⊢ e:T and Γ ⊢ e:T ′ then T = T ′.

69

The file l1.ml contains also an implementation of a type inference algorithm for L1 – take a look.

Type inference – Implementation
First must pick representations for types and for Γ’s:

type type L1 =
| Ty in t
| Ty un i t
| Ty bool

type t y p e l o c =
| Ty i n t r e f

type typeEnv = (l o c ∗ t y p e l o c) l i s t

Now define the type inference function

i n f e r t y p e : typeEnv −> exp r −> type L1 op t i on

70

In the semantics, type environments Γ are partial functions from locations to the singleton set {intref}.
Here, just as we did for stores, we represent them as a list of loc∗type loc pairs containing, for each ℓ in
the domain of the type environment, exactly one element of the form (l , intref).

The Type Inference Algorithm

l e t r ec i n f e r t y p e gamma e =
match e with
| I n t e g e r n −> Some Ty in t
| Boolean b −> Some Ty bool
| Op (e1 , opr , e2) −>

(match (i n f e r t y p e gamma e1 , opr , i n f e r t y p e gamma e2) with
| (Some Ty int , Plus , Some Ty in t) −> Some Ty in t
| (Some Ty int , GTEQ, Some Ty in t) −> Some Ty bool
| −> None)

| I f (e1 , e2 , e3) −>
(match (i n f e r t y p e gamma e1 , i n f e r t y p e gamma e2 , i n f e r t y p e gamma e3) with
| (Some Ty bool , Some t2 , Some t3) −>

(i f t2=t3 then Some t2 e l s e None)
| −> None)

| Dere f l −>
(match l ookup gamma l with
| Some Ty i n t r e f −> Some Ty in t
| None −> None)

| Ass i gn (l , e) −>
(match (lookup gamma l , i n f e r t y p e gamma e) with
| (Some Ty i n t r e f , Some Ty in t) −> Some Ty un i t
| −> None)

| Sk ip −> Some Ty un i t
| Seq (e1 , e2) −>

(match (i n f e r t y p e gamma e1 , i n f e r t y p e gamma e2) with
| (Some Ty unit , Some t2) −> Some t2
| −> None)

| While (e1 , e2) −>
(match (i n f e r t y p e gamma e1 , i n f e r t y p e gamma e2) with
| (Some Ty bool , Some Ty un i t) −> Some Ty un i t
| −> None)

71

27

The Type Inference Algorithm – If

l e t r ec i n f e r t y p e gamma e =
match e with
. . .
| I f (e1 , e2 , e3) −>

(match (i n f e r t y p e gamma e1 , i n f e r t y p e gamma e2 , i n f e r t y p e gamma e3) with
| (Some Ty bool , Some t2 , Some t3) −>

(i f t2=t3 then Some t2 e l s e None)
| −> None)

(if)

Γ ⊢ e1:bool
Γ ⊢ e2:T
Γ ⊢ e3:T

Γ ⊢ if e1 then e2 else e3:T

72

The Type Inference Algorithm – Deref

| Dere f l −>
(match l ookup gamma l with
| Some Ty i n t r e f −> Some Ty in t
| None −> None)

(deref) Γ(ℓ) = intref

Γ ⊢!ℓ:int

73

Again, the code depends on a uniqueness property (Theorem 7), without which we would have to have
infertype return a type L1 list of all the possible types.

Executing L1 directly as OCaml
L1 is (roughly) a fragment of OCaml – given a typable L1 expression e and an initial store
s, e can be executed in OCaml by wrapping it

let skip = ()

and l1 = ref n1

and l2 = ref n2

.. .

and lk = ref nk

in

e

;

where s is the store {l1 7→ n1, ..., lk 7→ nk} and all locations that occur in e are contained
in {l1, ..., lk}.

(under what condition is the semantics the same?)

74

(watch out for ∼1 and -1)

Why Not Types?
• “I can’t write the code I want in this type system.”
(the Pascal complaint) usually false for a modern typed language

• “It’s too tiresome to get the types right throughout development.”
(the untyped-scripting-language complaint)

• “Type annotations are too verbose.”
type inference means you only have to write them where it’s useful

• “Type error messages are incomprehensible.”
hmm. Sadly, sometimes true.

• “I really can’t write the code I want.”

75

Some languages build the type system into the syntax. Original FORTRAN, BASIC etc. had typing built
into variable names, with e.g. those beginning with I or J storing integers). Sometimes typing is built into
the grammar, with e.g. separate grammatical classes of expressions and commands. As the type systems
become more expressive, however, they quickly go beyond what can be captured in context-free grammars.
They must then be separated from lexing and parsing, both conceptually and in implementations.

28

2.3 L1: Collected definition

Syntax

Booleans b ∈ B = {true, false}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ℓ ∈ L = {l , l0, l1, l2, ...}

Operations op ::=+ |≥

Expressions
e ::= n | b | e1 op e2 | if e1 then e2 else e3 |

ℓ := e |!ℓ |
skip | e1; e2 |
while e1 do e2 done

Operational semantics

Note that for each construct there are some computation rules, doing ‘real work’, and some context (or
congruence) rules, allowing subcomputations and specifying their order.

Say stores s are finite partial functions from L to Z. Say values v are expressions from the grammar
v ::= b | n | skip.

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

(op ≥) ⟨n1 ≥ n2, s⟩ −→ ⟨b, s⟩ if b = (n1 ≥ n2)

(op1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′1 op e2, s
′⟩

(op2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨v op e2, s⟩ −→ ⟨v op e ′2, s
′⟩

(deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

(seq1) ⟨skip; e2, s⟩ −→ ⟨e2, s⟩

(seq2)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1; e2, s⟩ −→ ⟨e ′1; e2, s ′⟩

(if1) ⟨if true then e2 else e3, s⟩ −→ ⟨e2, s⟩

(if2) ⟨if false then e2 else e3, s⟩ −→ ⟨e3, s⟩

(if3)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨if e1 then e2 else e3, s⟩ −→ ⟨if e ′1 then e2 else e3, s
′⟩

(while)
⟨while e1 do e2 done , s⟩ −→ ⟨if e1 then (e2;while e1 do e2 done) else skip, s⟩

29

Typing

Types of expressions:
T ::= int | bool | unit

Types of locations:
Tloc ::= intref

Write T and Tloc for the sets of all terms of these grammars.

Let Γ range over TypeEnv, the finite partial functions from locations L to Tloc.

(int) Γ ⊢ n:int for n ∈ Z

(bool) Γ ⊢ b:bool for b ∈ {true, false}

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int
(op ≥)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 ≥ e2:bool

(if) Γ ⊢ e1:bool Γ ⊢ e2:T Γ ⊢ e3:T

Γ ⊢ if e1 then e2 else e3:T

(assign)
Γ(ℓ) = intref Γ ⊢ e:int

Γ ⊢ ℓ := e:unit

(deref)
Γ(ℓ) = intref

Γ ⊢!ℓ:int

(skip) Γ ⊢ skip:unit

(seq) Γ ⊢ e1:unit Γ ⊢ e2:T

Γ ⊢ e1; e2:T

(while) Γ ⊢ e1:bool Γ ⊢ e2:unit

Γ ⊢ while e1 do e2 done :unit

30

2.4 Exercises

Exercise 1. ⋆Write a program to compute the factorial of the integer initially in location l1. Take care
to ensure that your program really is an expression in L1.

Exercise 2. ⋆Give full derivations of all the reduction steps of
⟨(l0 := 7); (l1 := (!l0 + 2)), {l0 7→ 0, l1 7→ 0}⟩

Exercise 3. ⋆Give full derivations of the first four reduction steps of the ⟨e, s⟩ of the first L1 example on
Slide 22.

Exercise 4. ⋆Adapt the implementation code to correspond to the two rules (op1b) and (op2b) on Slide 53.
Give some test cases that distinguish between the original and the new semantics.

Exercise 5. ⋆Adapt the implementation code to correspond to the two rules (assign1’) and (seq1’) on
Slide 54. Give some test cases that distinguish between the original and the new semantics.

Exercise 6. ⋆⋆Fix the L1 semantics to match the implementation, taking care with the representation
of integers.

Exercise 7. ⋆Give a type derivation for (l0 := 7); (l1 := (!l0 + 2)) with Γ = l0:intref, l1:intref.

Exercise 8. ⋆Give a type derivation for e on Slide 32 with Γ = l1:intref, l2:intref, l3:intref .

Exercise 9. ⋆Does Type Preservation hold for the variant language with rules (assign1’) and (seq1’)? on
Slide 54? If not, give an example, and show how the type rules could be adjusted to make it true.

Exercise 10. ⋆Adapt the type inference implementation to match your revised type system from Exercise 9.

Exercise 11. ⋆Check whether OCaml (or mosml), the L1 implementation (in either OCaml, mosml, or
Java), and the L1 semantics agree on the order of evaluation for operators and sequencing.

Exercise 12. ⋆Adapt the implementation to output derivation trees, in ASCII, (or to show where proof
search gets stuck) for −→ or ⊢.

Testing the semantics
We stated several properties (progress, preservation) of our definitions. We want to prove
that they hold in general – but first, can we dynamically test them, to quickly and easily
shake out obvious errors?

Testing won’t give us the complete assurance of proof – it typically can’t cover all cases
– and it doesn’t give us the insight and strengthened intuition from doing proof, but it
can quickly find some issues at low cost. Executing our mathematical definitions is often
very useful, and under-exploited.

76

Recall:
Theorem 2 (Progress) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e is a value or
there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.

It’s an implication, so we have to generate random Γ, e, T , and s such that the premise
holds, and check whether the conclusion holds.

We have implementations of type inference and reduction, and the subset and is-a-value
relations are also easy to check. If those implementations are correct w.r.t. the mathe-
matical rules, we’ve made our semantics executable as a test oracle.

77

31

What does “random” mean? The sets of possible Γ, e, and s are all infinite. What
distribution? Simplest thing: impose a size bound, on the number of AST nodes in e
and the maximum size of integer constants, and generate some flat-ish distribution up to
that size.

Most stupid algorithm: literally as above, generate and then check the premises.

Probably hopelessly inefficient: Γ ⊢ e:T will usually be false.

How can we do better? Generate random derivations?

Probably need to be symbolic...

78

32

3 Proof about semantics – really, proof about inductive definitions

Key concepts in this chapter:

• Structural induction

• Rule induction

Proof about semantics – really,
proof about inductive definitions

79

We’ve stated several ‘theorems’, but how do we know they are true?
Intuition is often wrong – we need proof.
Use proof process also for strengthening our intuition about subtle language features, and
for debugging definitions – it helps you examine all the various cases.
Most of our definitions are inductive. To prove things about them, we need the corre-
sponding induction principles.

80

Three forms of induction
Prove facts about all natural numbers by mathematical induction.
Prove facts about all terms of a grammar (e.g. the L1 expressions) by structural induction.
Prove facts about all elements of a relation defined by rules (e.g. the L1 transition relation,
or the L1 typing relation) by rule induction.

We shall see that all three boil down to induction over certain trees.

81

Principle of Mathematical Induction
For any property Φ(x) of natural numbers x ∈ N = {0, 1, 2, ...}, to prove
∀ x ∈ N.Φ(x)
it’s enough to prove
Φ(0) and ∀ x ∈ N.Φ(x)⇒ Φ(x + 1).
i.e.(
Φ(0) ∧ (∀ x ∈ N.Φ(x)⇒ Φ(x + 1))

)
⇒ ∀ x ∈ N.Φ(x)

82

(NB, the natural numbers include 0)(
Φ(0) ∧ (∀ x ∈ N.Φ(x)⇒ Φ(x + 1))

)
⇒ ∀ x ∈ N.Φ(x)

For example, to prove

Theorem 81 + 2 + ...+ x = 1/2 ∗ x ∗ (x + 1)

use mathematical induction for Φ(x) = (1 + 2 + ...+ x = 1/2 ∗ x ∗ (x + 1))
There’s a model proof in the notes, as an example of good style. Writing a clear proof
structure like this becomes essential when things get more complex – you have to use the
formalism to help you get things right. Emulate it!

83

33

Theorem 8 1 + 2 + ...+ x = 1/2 ∗ x ∗ (x + 1) .

I have annotated the proof to say what’s going on.

Proof. We prove ∀ x .Φ(x), where
(state Φ explicitly)

Φ(x)
def
= (1 + 2 + ...+ x = 1/2 ∗ x ∗ (x + 1))

by mathematical induction
(state the induction principle you’re using)
.

(Now show each conjunct of the premise of the induction principle)

Base case: (conjunct Φ(0))

Φ(0) is
(instantiate Φ)
(1 + ...+ 0 = 1/2 ∗ 0 ∗ (0 + 1)), which holds as both sides are equal to 0.

Inductive step: (conjunct ∀ x ∈ N.Φ(x) ⇒ Φ(x + 1))

Consider an arbitrary k ∈ N (it’s a universal (∀), so consider an arbitrary one).
Suppose Φ(k) (to show the implication Φ(k) ⇒ Φ(k + 1), assume the premise and try to show the conclusion).
We have to show Φ(k + 1), i.e. (state what we have to show explicitly)

(1 + 2 + ...+ (k + 1)) = 1/2 ∗ (k + 1) ∗ ((k + 1) + 1)

Now, the left hand side is

(1 + 2 + ...+ (k + 1)) = (1 + 2 + ...+ k) + (k + 1) (rearranging)
= (1/2 ∗ k ∗ (k + 1)) + (k + 1) (using Φ(k))

(say where you use the ‘induction hypothesis’ assumption Φ(k) made above)

and the right hand side is (rearranging)

1/2 ∗ (k + 1) ∗ ((k + 1) + 1) = 1/2 ∗ (k ∗ (k + 1) + (k + 1) ∗ 1 + 1 ∗ k + 1)
= 1/2 ∗ k ∗ (k + 1) + 1/2 ∗ ((k + 1) + k + 1)
= 1/2 ∗ k ∗ (k + 1) + (k + 1)

which is equal to the LHS.

Principle of Mathematical Induction
For any property Φ(x) of natural numbers x ∈ N = {0, 1, 2, ...}, to prove ∀ x ∈ N.Φ(x)
it’s enough to prove (a) Φ(0) and (b) ∀ x ∈ N.Φ(x)⇒ Φ(x + 1),

Why is this sound? Looking back to our definitions of what inductive definitions mean...
N is isomorphic to the abstract syntax trees of the grammar n ::= zero | succ (n).
Then, roughly speaking:

1. in terms of derivations: (a) establishes Φ for any root zero , and (b) shows that if
Φ holds for a tree x , then it holds for (all) trees succ (x) – and one can imagine
stitching together those implications, or

2. in terms of least fixed points: N is the smallest set closed under zero and succ ().
(a) and (b) show that Φ is also closed under those, so N ⊆ Φ, i.e. ∀x.x ∈ N ⇒
x ∈ Φ

84

(NB, the natural numbers include 0)

34

3.1 Abstract Syntax and Structural Induction

Abstract Syntax and Structural Induction
How to prove facts about all expressions, e.g. Determinacy for L1?

Theorem 1 (Determinacy) If ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→ ⟨e2, s2⟩ then ⟨e1, s1⟩ =
⟨e2, s2⟩ .

First, don’t forget the elided universal quantifiers.
Theorem 1 (Determinacy) For all e, s, e1, s1, e2, s2, if ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→
⟨e2, s2⟩ then ⟨e1, s1⟩ = ⟨e2, s2⟩ .

85

Abstract Syntax
Then, have to pay attention to what an expression is.
Recall we said:

e ::= n | b | e op e | if e then e else e |
ℓ := e |!ℓ |
skip | e; e |
while e do e done

defining a set of expressions.

86

Q: Is an expression, e.g. if !l ≥ 0 then skip else (skip; l := 0):
1. a list of characters [‘i’, ‘f’, ‘ ’, ‘!’, ‘l’, ..];
2. a list of tokens [IF, DEREF, LOC "l", GTEQ, ..]; or
3. an abstract syntax tree?

if then else

≥ skip ;

!l 0 skip l :=

0

87

A: an abstract syntax tree. Hence: 2 + 2 ̸= 4

+

2 2

4

1 + 2 + 3 – ambiguous
(1 + 2) + 3 ̸= 1 + (2 + 3)

+

+ 3

1 2

+

1 +

2 3

Parentheses are only used for disambiguation – they are not part of the grammar. 1+2 =
(1 + 2) = ((1 + 2)) = (((((1)))) + ((2)))

88

For semantics we don’t want to be distracted by concrete syntax – it’s easiest to work with abstract
syntax trees, which for this grammar are finite trees, with ordered branches, labelled as follows:

• leaves (nullary nodes) labelled by B ∪ Z ∪({!}∗L)∪{skip} = {true, false, skip}∪{...,−1, 0, 1, ...}∪
{!l , !l1, !l2, ...}.

35

• unary nodes labelled by {l :=, l1 :=, l2 :=, ...}

• binary nodes labelled by {+,≥, ; ,while do }

• ternary nodes labelled by {if then else }

Abstract grammar suggests a concrete syntax – we write expressions as strings just for convenience, using
parentheses to disambiguate where required and infix notation, but really mean trees.

Theorem 1 (Determinacy) For all e, s, e1, s1, e2, s2, if ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→
⟨e2, s2⟩ then ⟨e1, s1⟩ = ⟨e2, s2⟩ .

Does it seem likely to be true?

More to the point: can we easily see any reason why it’s false? Do we have some intuition
why it’s true?

89

Principle of Structural Induction (for abstract syntax)
For any property Φ(e) of expressions e, to prove
∀ e ∈ L1.Φ(e)
it’s enough to prove for each tree constructor c (taking k ≥ 0 arguments) that if Φ holds
for the subtrees e1, .., ek then Φ holds for the tree c(e1, .., ek). i.e.(
∀ c.∀ e1, .., ek.(Φ(e1) ∧ ... ∧ Φ(ek))⇒ Φ(c(e1, .., ek))

)
⇒ ∀ e.Φ(e)

where the tree constructors (or node labels) c are n, true, false, !l , skip, l :=, while do ,
if then else , etc.

90

In particular, for L1: to show ∀ e ∈ L1.Φ(e) it’s enough to show:

nullary: Φ(skip)
∀ b ∈ {true, false}.Φ(b)
∀ n ∈ Z.Φ(n)
∀ ℓ ∈ L.Φ(!ℓ)

unary: ∀ ℓ ∈ L.∀ e.Φ(e)⇒ Φ(ℓ := e)
binary: ∀ op .∀ e1, e2.(Φ(e1) ∧ Φ(e2))⇒ Φ(e1 op e2)

∀ e1, e2.(Φ(e1) ∧ Φ(e2))⇒ Φ(e1; e2)
∀ e1, e2.(Φ(e1) ∧ Φ(e2))⇒ Φ(while e1 do e2 done)

ternary: ∀ e1, e2, e3.(Φ(e1) ∧ Φ(e2) ∧ Φ(e3))⇒ Φ(if e1 then e2 else e3)

(See how this comes directly from the grammar)

91

Proving Determinacy (Outline)
Theorem 1 (Determinacy) If ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→ ⟨e2, s2⟩ then ⟨e1, s1⟩ =
⟨e2, s2⟩ .
Take

Φ(e)
def
= ∀ s, e ′, s ′, e ′′, s ′′.

(⟨e, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨e, s⟩ −→ ⟨e ′′, s ′′⟩)
⇒ ⟨e ′, s ′⟩ = ⟨e ′′, s ′′⟩

and show ∀ e ∈ L1.Φ(e) by structural induction.

92

To do that we need to verify all the premises of the principle of structural induction – the formulae in
the second box below – for this Φ.

36

Φ(e)
def
= ∀ s, e ′, s ′, e ′′, s ′′.

(⟨e, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨e, s⟩ −→ ⟨e ′′, s ′′⟩)
⇒ ⟨e ′, s ′⟩ = ⟨e ′′, s ′′⟩

nullary: Φ(skip)
∀ b ∈ {true, false}.Φ(b)
∀ n ∈ Z.Φ(n)
∀ ℓ ∈ L.Φ(!ℓ)

unary: ∀ ℓ ∈ L.∀ e.Φ(e) ⇒ Φ(ℓ := e)
binary: ∀ op .∀ e1, e2.(Φ(e1) ∧ Φ(e2)) ⇒ Φ(e1 op e2)

∀ e1, e2.(Φ(e1) ∧ Φ(e2)) ⇒ Φ(e1; e2)
∀ e1, e2.(Φ(e1) ∧ Φ(e2)) ⇒ Φ(while e1 do e2 done)

ternary: ∀ e1, e2, e3.(Φ(e1) ∧ Φ(e2) ∧ Φ(e3)) ⇒ Φ(if e1 then e2 else e3)

93

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

(op ≥) ⟨n1 ≥ n2, s⟩ −→ ⟨b, s⟩ if b = (n1 ≥ n2)

(op1)
⟨e1, s⟩ −→ ⟨e′

1, s
′⟩

⟨e1 op e2, s⟩ −→ ⟨e′
1 op e2, s

′⟩

(op2)
⟨e2, s⟩ −→ ⟨e′

2, s
′⟩

⟨v op e2, s⟩ −→ ⟨v op e′
2, s

′⟩

(deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e′, s′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e′, s′⟩

(seq1) ⟨skip; e2, s⟩ −→ ⟨e2, s⟩

(seq2)
⟨e1, s⟩ −→ ⟨e′

1, s
′⟩

⟨e1; e2, s⟩ −→ ⟨e′
1; e2, s

′⟩

(if1) ⟨if true then e2 else e3, s⟩ −→ ⟨e2, s⟩

(if2) ⟨if false then e2 else e3, s⟩ −→ ⟨e3, s⟩

(if3)
⟨e1, s⟩ −→ ⟨e′

1, s
′⟩

⟨if e1 then e2 else e3, s⟩ −→ ⟨if e′
1 then e2 else e3, s

′⟩

(while)
⟨while e1 do e2 done , s⟩ −→ ⟨if e1 then (e2;while e1 do e2 done) else skip, s⟩

94

Φ(e)
def
= ∀ s, e ′, s ′, e ′′, s ′′.

(⟨e, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨e, s⟩ −→ ⟨e ′′, s ′′⟩)
⇒ ⟨e ′, s ′⟩ = ⟨e ′′, s ′′⟩

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

95

Lemma: Values don’t reduce

Lemma 9 For all e ∈ L1, if e is a value then ∀ s.¬ ∃e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩.

Proof. By defn e is a value if it is of one of the forms n, b, skip. By examination of
the rules on slides ..., there is no rule with conclusion of the form ⟨e, s⟩ −→ ⟨e ′, s ′⟩
for e one of n, b, skip.

96

37

Inversion
In proofs involving multiple inductive definitions one often needs an inversion property,
that, given a tuple in one inductively defined relation, gives you a case analysis of the
possible“last rule”used.

Lemma 10 (Inversion for −→) If ⟨e, s⟩ −→ ⟨ê, ŝ⟩ then either
1. (op +) there exists n1, n2, and n such that e = n1 + n2, ê = n, ŝ = s, and

n = n1 + n2 (NB watch out for the two different +s), or
2. (op1) there exists e1, e2, op , and e ′1 such that e = e1 op e2, ê = e ′1 op e2, and
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩, or

3. ...

Lemma 11 (Inversion for ⊢) If Γ ⊢ e:T then either
1. ...

97

All the determinacy proof details are in the notes. 98

Having proved those 9 things, consider an example (!l+2)+3. To see why Φ((!l+2)+3)
holds:

+

+ 3

!l 2

99

38

Theorem 1 (Determinacy) If ⟨e, s⟩ −→ ⟨e1, s1⟩ and ⟨e, s⟩ −→ ⟨e2, s2⟩ then ⟨e1, s1⟩ = ⟨e2, s2⟩ .

Proof. Take

Φ(e)
def
= ∀ s, e ′, s ′, e ′′, s ′′.(⟨e, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨e, s⟩ −→ ⟨e ′′, s ′′⟩)⇒ ⟨e ′, s ′⟩ = ⟨e ′′, s ′′⟩

We show ∀ e ∈ L1.Φ(e) by structural induction.

Cases skip, b,n. For e of these forms there are no rules with a conclusion of the form ⟨e, ...⟩ −→ ⟨.., ..⟩ so
the left hand side of the implication cannot hold, so the implication is true.

Case !ℓ. Take arbitrary s, e ′, s ′, e ′′, s ′′ such that ⟨!ℓ, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨!ℓ, s⟩ −→ ⟨e ′′, s ′′⟩.

The only rule which could be applicable is (deref), in which case, for those transitions to be instances
of the rule we must have

ℓ ∈ dom(s) ℓ ∈ dom(s)
e ′ = s(ℓ) e ′′ = s(ℓ)
s ′ = s s ′′ = s

so e ′ = e ′′ and s ′ = s ′′.

Case ℓ := e. Suppose Φ(e) (then we have to show Φ(ℓ := e)).

Take arbitrary s, e ′, s ′, e ′′, s ′′ such that ⟨ℓ := e, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨ℓ := e, s⟩ −→ ⟨e ′′, s ′′⟩.

It’s handy to have this lemma:

Lemma 12For all e ∈ L1, if e is a value then ∀ s.¬ ∃e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩.

Proof. By defn e is a value if it is of one of the forms n, b, skip. By examination of the
rules on slides ..., there is no rule with conclusion of the form ⟨e, s⟩ −→ ⟨e ′, s ′⟩ for e one of
n, b, skip.

The only rules which could be applicable, for each of the two transitions, are (assign1) and (assign2).

case ⟨ℓ := e, s⟩ −→ ⟨e ′, s ′⟩ is an instance of (assign1). Then for some n we have e = n and
ℓ ∈ dom(s) and e ′ = skip and s ′ = s + {ℓ 7→ n}.

case ⟨ℓ := n, s⟩ −→ ⟨e ′′, s ′′⟩ is an instance of (assign1) (note we are using the fact that e = n
here). Then e ′′ = skip and s ′′ = s + {ℓ 7→ n} so ⟨e ′, s ′⟩ = ⟨e ′′, s ′′⟩ as required.

case ⟨ℓ := e, s⟩ −→ ⟨e ′′, s ′′⟩ is an instance of (assign2). Then ⟨n, s⟩ −→ ⟨e ′′, s ′′⟩, which
contradicts the lemma, so this case cannot arise.

case ⟨ℓ := e, s⟩ −→ ⟨e ′, s ′⟩ is an instance of (assign2). Then for some e ′1 we have ⟨e, s⟩ −→ ⟨e ′1, s ′⟩
(*) and e ′ = (ℓ := e ′1).

case ⟨ℓ := e, s⟩ −→ ⟨e ′′, s ′′⟩ is an instance of (assign1). Then for some n we have e = n, which
contradicts the lemma, so this case cannot arise.

case ⟨ℓ := e, s⟩ −→ ⟨e ′′, s ′′⟩ is an instance of (assign2). Then for some e ′′1 we have ⟨e, s⟩ −→
⟨e ′′1 , s ′′⟩(**) and e ′′ = (ℓ := e ′′1). Now, by the induction hypothesis Φ(e), (*) and (**) we
have ⟨e ′1, s ′⟩ = ⟨e ′′1 , s ′′⟩, so ⟨e ′, s ′⟩ = ⟨ℓ := e ′1, s

′⟩ = ⟨ℓ := e ′′1 , s
′′⟩ = ⟨e ′′, s ′′⟩ as required.

Case e1 op e2. Suppose Φ(e1) and Φ(e2).

Take arbitrary s, e ′, s ′, e ′′, s ′′ such that ⟨e1 op e2, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨e1 op e2, s⟩ −→ ⟨e ′′, s ′′⟩.

By examining the expressions in the left-hand-sides of the conclusions of the rules, and using the
lemma above, the only possibilities are those below (you should check why this is so for yourself).

case op = + and ⟨e1 + e2, s⟩ −→ ⟨e ′, s ′⟩ is an instance of (op+) and ⟨e1 + e2, s⟩ −→ ⟨e ′′, s ′′⟩ is an
instance of (op+).

Then for some n1,n2 we have e1 = n1, e2 = n2, e
′ = n3 = e ′′ for n3 = n1+n2, and s ′ = s = s ′′.

39

case op =≥ and ⟨e1 ≥ e2, s⟩ −→ ⟨e ′, s ′⟩ is an instance of (op≥) and ⟨e1 ≥ e2, s⟩ −→ ⟨e ′′, s ′′⟩ is an
instance of (op≥).

Then for some n1,n2 we have e1 = n1, e2 = n2, e
′ = b = e ′′ for b = (n1 ≥ n2), and s ′ = s = s ′′.

case ⟨e1 op e2, s⟩ −→ ⟨e ′, s ′⟩ is an instance of (op1) and ⟨e1 op e2, s⟩ −→ ⟨e ′′, s ′′⟩ is an instance
of (op1).

Then for some e ′1 and e ′′1 we have ⟨e1, s⟩ −→ ⟨e ′1, s ′⟩ (*), ⟨e1, s⟩ −→ ⟨e ′′1 , s ′′⟩ (**), e ′ =
e ′1 op e2, and e ′′ = e ′′1 op e2. Now, by the induction hypothesis Φ(e1), (*) and (**) we have
⟨e ′1, s ′⟩ = ⟨e ′′1 , s ′′⟩, so ⟨e ′, s ′⟩ = ⟨e ′1 op e2, s

′⟩ = ⟨e ′′1 op e2, s
′′⟩ = ⟨e ′′, s ′′⟩ as required.

case ⟨e1 op e2, s⟩ −→ ⟨e ′, s ′⟩ is an instance of (op2) and ⟨e1 op e2, s⟩ −→ ⟨e ′′, s ′′⟩ is an instance
of (op2).

Similar, save that we use the induction hypothesis Φ(e2).

Case e1; e2. Suppose Φ(e1) and Φ(e2).

Take arbitrary s, e ′, s ′, e ′′, s ′′ such that ⟨e1; e2, s⟩ −→ ⟨e ′, s ′⟩ ∧ ⟨e1; e2, s⟩ −→ ⟨e ′′, s ′′⟩.

By examining the expressions in the left-hand-sides of the conclusions of the rules, and using the
lemma above, the only possibilities are those below.

case e1 = skip and both transitions are instances of (seq1).

Then ⟨e ′, s ′⟩ = ⟨e2, s⟩ = ⟨e ′′, s ′′⟩.

case e1 is not a value and both transitions are instances of (seq2). Then for some e ′1 and e ′′1 we
have ⟨e1, s⟩ −→ ⟨e ′1, s ′⟩ (*), ⟨e1, s⟩ −→ ⟨e ′′1 , s ′′⟩ (**), e ′ = e ′1; e2, and e ′′ = e ′′1 ; e2

Then by the induction hypothesis Φ(e1) we have ⟨e ′1, s ′⟩ = ⟨e ′′1 , s ′′⟩, so ⟨e ′, s ′⟩ = ⟨e ′1; e2, s ′⟩ =
⟨e ′′1 ; e2, s ′′⟩ = ⟨e ′′, s ′′⟩ as required.

Case while e1 do e2 done . Suppose Φ(e1) and Φ(e2).

Take arbitrary s, e ′, s ′, e ′′, s ′′ such that ⟨while e1 do e2 done , s⟩ −→ ⟨e ′, s ′⟩∧⟨while e1 do e2 done , s⟩ −→
⟨e ′′, s ′′⟩.

By examining the expressions in the left-hand-sides of the conclusions of the rules both must be
instances of (while), so ⟨e ′, s ′⟩ = ⟨if e1 then (e2;while e1 do e2 done) else skip, s⟩ = ⟨e ′′, s ′′⟩.

Case if e1 then e2 else e3. Suppose Φ(e1), Φ(e2) and Φ(e3).

Take arbitrary s, e ′, s ′, e ′′, s ′′ such that ⟨if e1 then e2 else e3, s⟩ −→ ⟨e ′, s ′⟩∧⟨if e1 then e2 else e3, s⟩ −→
⟨e ′′, s ′′⟩.

By examining the expressions in the left-hand-sides of the conclusions of the rules, and using the
lemma above, the only possibilities are those below.

case e1 = true and both transitions are instances of (if1).

case e1 = false and both transitions are instances of (if2).

case e1 is not a value and both transitions are instances of (if3).

The first two cases are immediate; the last uses Φ(e1).

(check we’ve done all the cases!)

(note that the level of written detail can vary, as here – if you and the reader agree – but you must do
all the steps in your head. If in any doubt, write it down, as an aid to thought...!)

40

3.2 Inductive Definitions and Rule Induction

Inductive Definitions and Rule Induction
How to prove facts about all elements of the L1 typing relation or the L1 reduction
relation, e.g. Progress or Type Preservation?

Theorem 2 (Progress) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e is a value or
there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.
Theorem 3 (Type Preservation) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) and ⟨e, s⟩ −→
⟨e ′, s ′⟩ then Γ ⊢ e ′:T and dom(Γ) ⊆ dom(s ′).

100

Recall that a derivation of a transition ⟨e, s⟩ −→ ⟨e ′, s ′⟩ or typing judgment Γ ⊢ e:T is
a finite tree such that each step is a concrete rule instance.

⟨2 + 2, {}⟩ −→ ⟨4, {}⟩
(op+)

⟨(2 + 2) + 3, {}⟩ −→ ⟨4 + 3, {}⟩
(op1)

⟨(2 + 2) + 3 ≥ 5, {}⟩ −→ ⟨4 + 3 ≥ 5, {}⟩
(op1)

Γ ⊢!l :int (deref)
Γ ⊢ 2:int

(int)

Γ ⊢ (!l + 2):int
(op +)

Γ ⊢ 3:int
(int)

Γ ⊢ (!l + 2) + 3:int
(op +)

and ⟨e, s⟩ −→ ⟨e ′, s ′⟩ is an element of the reduction relation (resp. Γ ⊢ e:T is an element
of the transition relation) iff there is a derivation with that as the root node.

101

Now, to prove something about an inductively-defined set, we use rule induction.

Principle of Rule Induction
For any property Φ(a) of elements a of A, and any set of rules which define a subset SR

of A, to prove

∀ a ∈ SR.Φ(a)

it’s enough to prove that {a | Φ(a)} is closed under the rules, ie for each concrete rule
instance

h1 .. hk
c

if Φ(h1) ∧ ... ∧ Φ(hk) then Φ(c).
Why is this sound? Just like mathematical induction, you can think of the soundness
argument informally in terms of stitching together implications about derivations, or use
the fact that the inductively defined relation is a least fixed point.

102

For some proofs a slightly different principle is useful – this variant allows you to assume each of the hi
are themselves members of SR.

Principle of rule induction (a slight variant)
For any property Φ(a) of elements a of A, and any set of rules which inductively define
the set SR, to prove

∀ a ∈ SR.Φ(a)

it’s enough to prove that
for each concrete rule instance

h1 .. hk
c

if Φ(h1) ∧ ... ∧ Φ(hk) ∧ h1 ∈ SR ∧ .. ∧ hk ∈ SR then Φ(c).

103

(This is just the original principle for the property (Φ(a) ∧ a ∈ SR).)

41

Proving Progress (Outline)
Theorem 2 (Progress) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e is a value or
there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.
Proof Take

Φ(Γ, e,T)
def
= ∀ s. dom(Γ) ⊆ dom(s)⇒

value(e) ∨ (∃ e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩)

We show that for all Γ, e,T , if Γ ⊢ e:T then Φ(Γ, e,T), by rule induction on the
definition of ⊢.

104

Principle of Rule Induction (variant form): to prove Φ(a) for all a in the set SR, it’s
enough to prove that for each concrete rule instance

h1 .. hk
c

if Φ(h1) ∧ ... ∧ Φ(hk) ∧ h1 ∈ SR ∧ .. ∧ hk ∈ SR then Φ(c).
Instantiating to the L1 typing rules, have to show:

(int) ∀ Γ,n.Φ(Γ,n, int)
(deref) ∀ Γ, ℓ.Γ(ℓ) = intref ⇒ Φ(Γ, !ℓ, int)
(op +) ∀ Γ, e1, e2.(Φ(Γ, e1, int) ∧ Φ(Γ, e2, int) ∧ Γ ⊢ e1:int ∧ Γ ⊢ e2:int)

⇒ Φ(Γ, e1 + e2, int)
(seq) ∀ Γ, e1, e2,T .(Φ(Γ, e1, unit) ∧ Φ(Γ, e2,T) ∧ Γ ⊢ e1:unit ∧ Γ ⊢ e2:T)

⇒ Φ(Γ, e1; e2,T)
etc.

105

Having proved those 10 things, consider an example Γ ⊢ (!l + 2) + 3:int. To see why
Φ(Γ, (!l + 2) + 3, int) holds:

Γ ⊢!l :int (deref)
Γ ⊢ 2:int

(int)

Γ ⊢ (!l + 2):int
(op +)

Γ ⊢ 3:int
(int)

Γ ⊢ (!l + 2) + 3:int
(op +)

106

42

Theorem 2 (Progress) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e is a value or there exist e ′, s ′ such
that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.

Proof. Take

Φ(Γ, e,T)
def
= ∀ s.dom(Γ) ⊆ dom(s)⇒ value(e) ∨ (∃ e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩)

We show that for all Γ, e,T , if Γ ⊢ e:T then Φ(Γ, e,T), by rule induction on the definition of ⊢.

Case (int). Recall the rule scheme
(int) Γ ⊢ n:int for n ∈ Z

It has no premises, so we have to show that for all instances Γ, e,T of the conclusion we have
Φ(Γ, e,T).

For any such instance, there must be an n ∈ Z for which e = n.

Now Φ is of the form ∀ s.dom(Γ) ⊆ dom(s)⇒ ..., so consider an arbitrary s and assume dom(Γ) ⊆
dom(s).

We have to show value(e) ∨ (∃ e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩). But the first disjunct is true as integers are
values (according to the definition).

Case (bool) similar.

Case (op+). Recall the rule

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int

We have to show that for all Γ, e1, e2, if Φ(Γ, e1, int) and Φ(Γ, e2, int) then Φ(Γ, e1 + e2, int).

Suppose Φ(Γ, e1, int) (*), Φ(Γ, e2, int) (**), Γ ⊢ e1:int (***), and Γ ⊢ e2:int (****) (note that we’re
using the variant form of rule induction here).

Consider an arbitrary s. Assume dom(Γ) ⊆ dom(s).

We have to show value(e1 + e2) ∨ (∃ e ′, s ′.⟨e1 + e2, s⟩ −→ ⟨e ′, s ′⟩).

Now the first disjunct is false (e1+e2 is not a value), so we have to show the second, i.e.∃⟨e ′, s ′⟩.⟨e1+
e2, s⟩ −→ ⟨e ′, s ′⟩.

By (*) one of the following holds.

case ∃ e ′1, s ′.⟨e1, s⟩ −→ ⟨e ′1, s ′⟩.

Then by (op1) we have ⟨e1 + e2, s⟩ −→ ⟨e ′1 + e2, s
′⟩, so we are done.

case e1 is a value. By (**) one of the following holds.

case ∃ e ′2, s ′.⟨e2, s⟩ −→ ⟨e ′2, s ′⟩.

Then by (op2) ⟨e1 + e2, s⟩ −→ ⟨e1 + e ′2, s
′⟩, so we are done.

case e2 is a value.

(Now want to use (op+), but need to know that e1 and e2 are really integers.)

Lemma 13 for all Γ, e,T, if Γ ⊢ e:T, e is a value and T = int then for some n ∈ Z we
have e = n.

Proof. By rule induction. Take Φ′(Γ, e,T) = ((value(e) ∧ T = int)⇒ ∃ n ∈ Z.e = n).

Case (int). ok

Case (bool),(skip). In instances of these rules the conclusion is a value but the type is not
int, so ok.

Case otherwise. In instances of all other rules the conclusion is not a value, so ok.

43

(a rather trivial use of rule induction – we never needed to use the induction hypothesis,
just to do case analysis of the last rule that might have been used in a derivation of
Γ ⊢ e:T).

Using the Lemma, (***) and (****) there exist n1 ∈ Z and n2 ∈ Z such that e1 = n1
and e2 = n2. Then by (op+) ⟨e1 + e2, s⟩ −→ ⟨n, s⟩ where n = n1 + n2, so we are done.

Case (op ≥). Similar to (op +).

Case (if). Recall the rule

(if)

Γ ⊢ e1:bool
Γ ⊢ e2:T
Γ ⊢ e3:T

Γ ⊢ if e1 then e2 else e3:T

Suppose Φ(Γ, e1, bool) (*1), Φ(Γ, e2,T) (*2), Φ(Γ, e3,T) (*3), Γ ⊢ e1:bool (*4), Γ ⊢ e2:T (*5) and
Γ ⊢ e3:T (*6).

Consider an arbitrary s. Assume dom(Γ) ⊆ dom(s). Write e for if e1 then e2 else e3.

This e is not a value, so we have to show ⟨e, s⟩ has a transition.

case ∃ e ′1, s ′.⟨e1, s⟩ −→ ⟨e ′1, s ′⟩.

Then by (if3) ⟨e, s⟩ −→ ⟨if e ′1 then e2 else e3, s⟩, so we are done.

case e1 is a value.

(Now want to use (if1) or (if2), but need to know that e1 ∈ {true, false}. Realize should have
proved a stronger Lemma above).

Lemma 14For all Γ, e,T. if Γ ⊢ e:T and e is a value, then T = int ⇒ ∃ n ∈ Z.e = n,
T = bool⇒ ∃ b ∈ {true, false}.e = b, and T = unit⇒ e = skip.

Proof. By rule induction – details omitted.

Using the Lemma and (*4) we have ∃ b ∈ {true, false}.e1 = b.

case b = true. Use (if1).

case b = false. Use (if2).

Case (deref). Recall the rule (deref)
Γ(ℓ) = intref

Γ ⊢!ℓ:int

(This is a leaf – it has no Γ ⊢ e:T premises - so no Φs to assume).

Consider an arbitrary s with dom(Γ) ⊆ dom(s).

By the condition Γ(ℓ) = intref we have ℓ ∈ dom(Γ), so ℓ ∈ dom(s), so there is some n with
s(ℓ) = n, so there is an instance of (deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩.

Cases (assign), (skip), (seq), (while). Left as an exercise.

44

Theorem 3 (Type Preservation) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) and ⟨e, s⟩ −→ ⟨e ′, s ′⟩ then Γ ⊢ e ′:T
and dom(Γ) ⊆ dom(s ′).

Proof. First show the second part, using the following lemma.

Lemma 15If ⟨e, s⟩ −→ ⟨e ′, s ′⟩ then dom(s ′) = dom(s).

Proof. Rule induction on derivations of ⟨e, s⟩ −→ ⟨e ′, s ′⟩. Take Φ(e, s, e ′, s ′) = (dom(s) =
dom(s ′)).

All rules are immediate uses of the induction hypothesis except (assign1), for which we note that
if ℓ ∈ dom(s) then dom(s + (ℓ 7→ n)) = dom(s).

Now prove the first part, ie If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) and ⟨e, s⟩ −→ ⟨e ′, s ′⟩ then Γ ⊢ e ′:T .

Prove by rule induction on derivations of ⟨e, s⟩ −→ ⟨e ′, s ′⟩.

Take Φ(e, s, e ′, s ′) = ∀ Γ,T .(Γ ⊢ e:T ∧ dom(Γ) ⊆ dom(s))⇒ Γ ⊢ e ′:T .

Case (op+). Recall
(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

Take arbitrary Γ,T . Suppose Γ ⊢ n1 + n2:T (*) and dom(Γ) ⊆ dom(s). The last rule in the
derivation of (*) must have been (op+), so must have T = int. Then can use (int) to derive
Γ ⊢ n:T .

Case (op ≥). Similar.

Case (op1). Recall

(op1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′1 op e2, s
′⟩

Suppose Φ(e1, s, e
′
1, s

′) (*) and ⟨e1, s⟩ −→ ⟨e ′1, s ′⟩. Have to show Φ(e1 op e2, s, e
′
1 op e2, s

′). Take
arbitrary Γ,T . Suppose Γ ⊢ e1 op e2:T and dom(Γ) ⊆ dom(s) (**).

case op = +. The last rule in the derivation of Γ ⊢ e1 + e2:T must have been (op+), so must
have T = int, Γ ⊢ e1:int (***) and Γ ⊢ e2:int (****). By the induction hypothesis (*), (**),
and (***) we have Γ ⊢ e ′1:int. By the (op+) rule Γ ⊢ e ′1 + e2:T .

case op =≥. Similar.

Case s (op2) (deref), (assign1), (assign2), (seq1), (seq2), (if1), (if2), (if3), (while). Left as exercises.

Proving Progress
Theorem 2 (Progress) If Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e is a value or
there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.
Proof Take

Φ(Γ, e,T)
def
= ∀ s. dom(Γ) ⊆ dom(s)⇒

value(e) ∨ (∃ e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩)

We show that for all Γ, e,T , if Γ ⊢ e:T then Φ(Γ, e,T), by rule induction on the
definition of ⊢.

107

45

Principle of Rule Induction (variant form): to prove Φ(a) for all a in the set SR defined
by the rules, it’s enough to prove that for each rule instance

h1 .. hk
c

if Φ(h1) ∧ ... ∧ Φ(hk) ∧ h1 ∈ SR ∧ .. ∧ hk ∈ SR then Φ(c).
Instantiating to the L1 typing rules, have to show:

(int) ∀ Γ,n.Φ(Γ,n, int)
(deref) ∀ Γ, ℓ.Γ(ℓ) = intref ⇒ Φ(Γ, !ℓ, int)
(op +) ∀ Γ, e1, e2.(Φ(Γ, e1, int) ∧ Φ(Γ, e2, int) ∧ Γ ⊢ e1:int ∧ Γ ⊢ e2:int)

⇒ Φ(Γ, e1 + e2, int)
(seq) ∀ Γ, e1, e2,T .(Φ(Γ, e1, unit) ∧ Φ(Γ, e2,T) ∧ Γ ⊢ e1:unit ∧ Γ ⊢ e2:T)

⇒ Φ(Γ, e1; e2,T)
etc.

108

Φ(Γ, e,T)
def
= ∀ s. dom(Γ) ⊆ dom(s)⇒

value(e) ∨ (∃ e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩)

Case (op+). Recall the rule

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int

Suppose Φ(Γ, e1, int), Φ(Γ, e2, int), Γ ⊢ e1:int, and Γ ⊢ e2:int. We have to show
Φ(Γ, e1 + e2, int).
Consider an arbitrary s. Assume dom(Γ) ⊆ dom(s).
Now e1 + e2 is not a value, so we have to show ∃⟨e ′, s ′⟩.⟨e1 + e2, s⟩ −→ ⟨e ′, s ′⟩.

109

Using Φ(Γ, e1, int) and Φ(Γ, e2, int) we have:
case e1 reduces. Then e1 + e2 does, using (op1).
case e1 is a value but e2 reduces. Then e1 + e2 does, using (op2).
case Both e1 and e2 are values. Want to use:

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

Lemma 16for all Γ, e,T , if Γ ⊢ e:T , e is a value and T = int then for some
n ∈ Z we have e = n.

We assumed (the variant rule induction principle) that Γ ⊢ e1:int and Γ ⊢ e2:int,
so using this Lemma have e1 = n1 and e2 = n2.
Then e1 + e2 reduces, using rule (op+).

110

Lemma: Values of integer type

Lemma 17 for all Γ, e,T , if Γ ⊢ e:T , e is a value and T = int then for some n ∈ Z
we have e = n.

111

All the other cases are in the notes. 112

Which Induction Principle to Use?
Which of these induction principles to use is a matter of convenience – you want to use
an induction principle that matches the definitions you’re working with.

113

For completeness, observe the following:

Mathematical induction over N is essentially the same as structural induction over n ::= zero | succ (n).

46

Instead of using structural induction (for an arbitrary grammar), you could use mathematical induction
on the size of terms.

Instead of using structural induction, you could use rule induction: supposing some fixed set of tree node
labels (e.g. all the character strings), take A to be the set of all trees with those labels, and consider each
clause of your grammar (e.g.e ::= ... | e + e) to be a rule

e e
e + e

3.3 Example proofs

Example Proofs
In the notes there are detailed example proofs for Determinacy (structural induction),
Progress (rule induction on type derivations), and Type Preservation (rule induction on
reduction derivations).
You should read them off-line, and do the exercises.

114

When is a proof a proof?
What’s a proof?
Formal: a derivation in formal logic (e.g. a big natural deduction proof tree). Often far

too verbose to deal with by hand (but can machine-check such things).
Informal but rigorous: an argument to persuade the reader that, if pushed, you could

write a fully formal proof (the usual mathematical notion, e.g. those we just did).
Have to learn by practice to see when they are rigorous.

Bogus: neither of the above.

115

Remember – the point is to use the mathematics to help you think about things that are too complex to
keep in your head all at once: to keep track of all the cases etc. To do that, and to communicate with
other people, it’s important to write down the reasoning and proof structure as clearly as possible. After
you’ve done a proof you should give it to someone (your supervision partner first, perhaps) to see if they
(a) can understand what you’ve said, and (b) if they believe it.

Sometimes it seems hard or pointless to prove things because they seem ‘too obvious’....
1. proof lets you see (and explain) why they are obvious
2. sometimes the obvious facts are false...
3. sometimes the obvious facts are not obvious at all
4. sometimes a proof contains or suggests an algorithm that you need – eg, proofs

that type inference is decidable (for fancier type systems)

116

Theorem 4 (Safety) If Γ ⊢ e:T, dom(Γ) ⊆ dom(s), and ⟨e, s⟩ −→∗ ⟨e ′, s ′⟩ then either e ′ is a value or
there exist e ′′, s ′′ such that ⟨e ′, s ′⟩ −→ ⟨e ′′, s ′′⟩.

Proof. Hint: induction along −→∗ using the previous results.

Theorem 7 (Uniqueness of typing) If Γ ⊢ e:T and Γ ⊢ e:T ′ then T = T ′. The proof is left as Exercise
18.

Theorem 5 (Decidability of typeability) Given Γ, e, one can decide ∃ T .Γ ⊢ e:T.

Theorem 6 (Decidability of type checking) Given Γ, e,T, one can decide Γ ⊢ e:T.

Proof. The implementation gives a type inference algorithm, which, if correct, and together with Unique-
ness, implies both of these results.

Summarising Proof Techniques
Determinacy structural induction for e
Progress rule induction for Γ ⊢ e:T
Type Preservation rule induction for ⟨e, s⟩ −→ ⟨e ′, s ′⟩
Safety mathematical induction on −→k

Uniqueness of typing ...
Decidability of typability exhibiting an algorithm
Decidability of checking corollary of other results

117

47

3.4 Exercises

You should be able to prove all the theorems about L1 independently. These exercises are to get you
started.

Exercise 13. ⋆Without looking at the proof in the notes, do the cases of the proof of Theorem 1 (Deter-
minacy) for e1 op e2, e1; e2, while e1 do e2 done , and if e1 then e2 else e3.

Exercise 14. ⋆Try proving Determinacy for the language with nondeterministic order of evaluation for
e1 op e2 (ie with both (op1) and (op1b) rules), which is not determinate. Explain where exactly the
proof can’t be carried through.

Exercise 13.5 ⋆Flesh out the statements of Inversion for the operational semantics and type system.
Prove them by rule induction (this needs a trivial use of rule induction, without relying on the induction
hypothesis).

Exercise 15. ⋆Complete the proof of Theorem 2 (Progress).

Exercise 16. ⋆⋆Complete the proof of Theorem 3 (Type Preservation).

Exercise 17. ⋆⋆Give an alternate proof of Theorem 3 (Type Preservation) by rule induction over type
derivations.

Exercise 18. ⋆⋆Prove Theorem 7 (Uniqueness of Typing).

48

4 Functions

Functions – L2 118

Functions, Methods, Procedures...
fun addone x = x+1

public int addone(int x) {

x+1

}

<script type="text/vbscript">

function addone(x)

addone = x+1

end function

</script>

119

Most languages have some kind of function, method, or procedure – some way of abstracting a piece of
code on a formal parameter so that you can use the code multiple times with different arguments, without
having to duplicate the code in the source. The next two lectures explore the design space for functions,
adding them to L1.

Functions – Examples
We will add expressions like these to L1.

(fun x:int→ x + 1)
(fun x:int→ x + 1) 7
(fun y:int→ (fun x:int→ x + y))
(fun y:int→ (fun x:int→ x + y)) 1
(fun x:int→ int→ (fun y:int→ x (x y)))
(fun x:int→ int→ (fun y:int→ x (x y))) (fun x:int→ x + 1)(
(fun x:int→ int→ (fun y:int→ x (x y))) (fun x:int→ x + 1)

)
7

120

For simplicity, we’ll deal with anonymous functions only. Functions will always take a single argument
and return a single result — though either might itself be a function or a tuple.

Functions – Syntax
First, extend the L1 syntax:
Variables x ∈ X for a set X = {x, y, z, ...}
Expressions

e ::= ... | fun x :T → e | e1 e2 | x

Types
T ::= int | bool | unit | T1 → T2

Tloc ::= intref

121

Concrete syntax. By convention, application associates to the left, so e1 e2 e3 denotes (e1 e2) e3, and type
arrows associate to the right, so T1 → T2 → T3 denotes T1 → (T2 → T3). A fun extends to the right
as far as parentheses permit, so fun x:unit → x; x denotes fun x:unit → (x; x), not (fun x:unit → x); x.
These conventions work well for functions that take several arguments, e.g.fun x:unit→ fun y:int→ x; y
has type unit→ int→ int, and we can fully apply it simply by juxtaposing it with its two arguments
(fun x:unit→ fun y:int→ x; y) skip 15.

49

• Variables are not locations (L ∩ X = {}), so x := 3 is not in the syntax.

• You can’t abstract on locations. For example, (fun l :intref →!l) is not in the syntax.

• The (non-meta) variables x, y, z are not the same as metavariables x , y , z . In the notes they are
distinguished by font; in handwriting one just have to keep track in your head – not often a problem.

• These expressions look like lambda terms (and fun x:int → x could be written λx:int.x). But, (a)
we’re adding them to a rich language, not working with the pure lambda calculus (cf. Foundations
of Functional Programming), and (b) we’re going to explore several options for how they should
behave.

Type-directed language design. This type grammar (and expression syntax) suggests the language will
include higher-order functions – you can abstract on a variable of any type, including function types. If
you only wanted first-order functions, you’d say

A ::= int | bool | unit
T ::= A | A→ T
Tloc ::= intref

Note that first-order function types include types like int→ (int→ int) and int→ (int→ (int→ int)), of
functions that take an argument of base type and return a (first-order) function, e.g.

(fun y:int→ (fun x:int→ x + y))

Some languages go further, forbidding partial application. We’ll come back to this.

4.1 Abstract syntax up to alpha conversion, and substitution

In order to express the semantics for functions, we need some auxiliary definitions.

Variable shadowing
(fun x:int→ (fun x:int→ x + 1))
class F {

void m() {

int y;

{int y; ... } // Static error

...

{int y; ... }

...

}

}

122

Variable shadowing is not allowed in Java. For large systems that would be a problem, eg in a language
with nested function definitions, where you may wish to write a local function parameter without being
aware of what is in the surrounding namespace.

Alpha conversion
In expressions fun x :T → e the x is a binder.

• inside e, any x ’s (that aren’t themselves binders and are not inside another
fun x :T ′ → ...) mean the same thing – the formal parameter of this function.

• outside this fun x :T → e, it doesn’t matter which variable we used for the formal
parameter – in fact, we shouldn’t be able to tell. For example, fun x:int→ x + 2
should be the same as fun y:int→ y + 2.

cf
∫ 1

0
x+ x2dx =

∫ 1

0
y + y2dy

123

50

Alpha conversion – free and bound occurrences
In a bit more detail (but still informally):
Say an occurrence of x in an expression e is free if it is not inside any (fun x :T → ...).
For example:

17
x + y
fun x:int→ x + 2
fun x:int→ x + z
if y then 2 + x else ((fun x:int→ x + 2)z)

All the other occurrences of x are bound by the closest enclosing fun x :T →

124

Note that in fun x:int→ 2 the x is not an occurrence. Likewise, in fun x:int→ x+ 2 the left x is not an
occurrence; here the right x is an occurrence that is bound by the left x.

Sometimes it is handy to draw in the binding:

Alpha conversion – Binding examples

fun x:int→x�� +2

fun x:int→x�� +z

fun y:int→y�� +z

fun z:int→z�� +z��

fun x:int→ (fun x:int→x�� +2)

125

Alpha Conversion – The Convention
Convention: we will allow ourselves to any time at all, in any expression ...(fun x :T →
e)..., replace the binding x and all occurrences of x that are bound by that binder, by
any other variable – so long as that doesn’t change the binding graph.
For example:

fun x:int→x�� +z = fun y:int→y�� +z ̸= fun z:int→z�� +z��

126

This is called ‘working up to alpha conversion’. It amounts to regarding the syntax not
as abstract syntax trees, but as abstract syntax trees with pointers...

127

51

Abstract Syntax up to Alpha Conversion

fun x:int→ x + z = fun y:int→ y + z ̸= fun z:int→ z + z
Start with naive abstract syntax trees:

fun x:int→

+

x z

fun y:int→

+

y z

fun z:int→

+

z z

add pointers (from each x node to the closest enclosing fun x :T → node);
remove names of binders and the occurrences they bind

fun ··· :int→

+

•

<<

z

fun ··· :int→

+

•

<<

z

fun ··· :int→

+

•

<<

•

bb

128

fun x:int→ (fun x:int→ x + 2)
= fun y:int→ (fun z:int→ z + 2) ̸= fun z:int→ (fun y:int→ z + 2)

fun ··· :int→

fun ··· :int→

+

•

==

2

fun ··· :int→

fun ··· :int→

+

•

77

2

129

(fun x:int→ x) 7 fun z:int→ int→ int→ (fun y:int→ z y y)

@

fun ··· :int→ 7

•

AA

fun ··· :int→ int→ int→

fun ··· :int→

@

@ •

jj

•

66

•

^^
130

De Bruijn indices
Our implementation will use those pointers – known as De Bruijn indices. Each occurrence
of a bound variable is represented by the number of fun ··· :T → nodes you have to count
out to to get to its binder.

fun ··· :int→ (fun ··· :int→ v0 + 2) ̸= fun ··· :int→ (fun ··· :int→ v1 + 2)

fun ··· :int→

fun ··· :int→

+

•

==

2

fun ··· :int→

fun ··· :int→

+

•

77

2

131

52

Free Variables
Say the free variables of an expression e are the set of variables x for which there is an
occurence of x free in e.

fv(x) = {x}
fv(e1 op e2) = fv(e1) ∪ fv(e2)
fv(fun x :T → e) = fv(e)− {x}

Say e is closed if fv(e) = {}.
If E is a set of expressions, write fv(E) for

⋃
e ∈ E fv(e).

(note this definition is alpha-invariant - all our definitions should be)

132

For example
fv(x + y) = {x, y}
fv(fun x:int→ x + y) = {y}
fv(x + (fun x:int→ x + y)7) = {x, y}

Full definition of fv(e) is by recursion on the structure of e:

fv(x) = {x}
fv(fun x :T → e) = fv(e)− {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(n) = {}
fv(e1 op e2) = fv(e1) ∪ fv(e2)
fv(if e1 then e2 else e3) = fv(e1) ∪ fv(e2) ∪ fv(e3)
fv(b) = {}
fv(skip) = {}
fv(ℓ := e) = fv(e)
fv(!ℓ) = {}
fv(e1; e2) = fv(e1) ∪ fv(e2)
fv(while e1 do e2 done) = fv(e1) ∪ fv(e2)

The semantics for functions will involve substituting actual parameters for formal parameters.

Substitution – Examples
The semantics for functions will involve substituting actual parameters for formal param-
eters.
Write {e/x}e ′ for the result of substituting e for all free occurrences of x in e ′. For
example

{3/x}(x ≥ x) = (3 ≥ 3)
{3/x}((fun x:int→ x + y)x) = (fun x:int→ x + y)3
{y + 2/x}(fun y:int→ x + y) = fun z:int→ (y + 2) + z

133

Note that substitution is a meta-operation – it’s not part of the L2 expression grammar.

The notation used for substitution varies – people write {3/x}e, or [3/x]e, or e[3/x], or {x ← 3}e, or...

Substitution – Definition
Defining that:

{e/z}x = e if x = z
= x otherwise

{e/z}(fun x :T → e1) = fun x :T → ({e/z}e1) if x ̸= z (*)
and x /∈ fv(e) (*)

{e/z}(e1 e2) = ({e/z}e1)({e/z}e2)
...

if (*) is not true, we first have to pick an alpha-variant of fun x :T → e1 to make it so
(always can)

134

53

Substitution – Example Again

{y + 2/x}(fun y:int→ x + y)
= {y + 2/x}(fun y′:int→ x + y′) renaming
= fun y′:int→ {y + 2/x}(x + y′) as y′ ̸= x and y′ /∈ fv(y + 2)
= fun y′:int→ {y + 2/x}x + {y + 2/x}y′
= fun y′:int→ (y + 2) + y′

(could have chosen any other z instead of y′, except y or x)

135

Simultaneous substitution
A substitution σ is a finite partial function from variables to expressions.
Notation: write a σ as {e1/x1, .., ek/xk} instead of {x1 7→ e1, ..., xk 7→ ek} (for the
function mapping x1 to e1 etc.)
A definition of σ e is given in the notes.

136

Write dom(σ) for the set of variables in the domain of σ; ran(σ) for the set of expressions in the range of
σ, ie

dom({e1/x1, .., ek/xk}) = {x1, .., xk}
ran({e1/x1, .., ek/xk}) = {e1, .., ek}

Define the application of simultaneous substitution to a term by:

σ x = σ(x) if x ∈ dom(σ)
= x otherwise

σ(fun x :T → e) = fun x :T → (σ e) if x /∈ dom(σ) and x /∈ fv(ran(σ)) (*)
σ(e1 e2) = (σ e1)(σ e2)
σ n = n
σ(e1 op e2) = σ(e1) op σ(e2)
σ(if e1 then e2 else e3) = if σ(e1) then σ(e2) else σ(e3)
σ(b) = b
σ(skip) = skip
σ(ℓ := e) = ℓ := σ(e)
σ(!ℓ) = !ℓ
σ(e1; e2) = σ(e1);σ(e2)
σ(while e1 do e2 done) = while σ(e1) do σ(e2) done

4.2 Function Behaviour

Function Behaviour
Consider the expression
e = (fun x:unit→ (l := 1); x) (l := 2)
then
⟨e, {l 7→ 0}⟩ −→∗ ⟨skip, {l 7→ ???}⟩

137

Function Behaviour. Choice 1: Call-by-value
Informally: reduce left-hand-side of application to a fun-term; reduce argument to a value;
then replace all occurrences of the formal parameter in the fun-term by that value.
e = (fun x:unit→ (l := 1); x)(l := 2)

⟨e, {l = 0}⟩ −→ ⟨(fun x:unit→ (l := 1); x)skip, {l = 2}⟩
−→ ⟨(l := 1); skip , {l = 2}⟩
−→ ⟨skip; skip , {l = 1}⟩
−→ ⟨skip , {l = 1}⟩

138

This is a common design choice — ML, Java. It is a strict semantics – fully evaluating the argument to
function before doing the application.

54

L2 Call-by-value
Values v ::= b | n | skip | fun x :T → e

(app1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e ′1 e2, s
′⟩

(app2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩
⟨v e2, s⟩ −→ ⟨v e ′2, s

′⟩

(fun) ⟨(fun x :T → e) v , s⟩ −→ ⟨{v/x}e, s⟩

139

L2 Call-by-value – reduction examples

⟨(fun x:int→ fun y:int→ x + y) (3 + 4) 5 , s⟩
= ⟨

(
(fun x:int→ fun y:int→ x + y) (3 + 4)

)
5 , s⟩

−→ ⟨
(
(fun x:int→ fun y:int→ x + y) 7

)
5 , s⟩

−→ ⟨
(
{7/x}(fun y:int→ x + y)

)
5 , s⟩

= ⟨
(
(fun y:int→ 7 + y)

)
5 , s⟩

−→ ⟨7 + 5 , s⟩
−→ ⟨12 , s⟩

(fun f:int→ int→ f 3) (fun x:int→ (1 + 2) + x)

140

• The rules for these constructs don’t touch the store. In a pure functional language, configurations
would just be expressions.

• A naive implementation of these rules would have to traverse e and copy v as many times as there
are free occurrences of x in e. Real implementations don’t do that, using environments instead of
doing substitution. Environments are more efficient; substitutions are simpler to write down – so
better for implementation and semantics respectively.

Function Behaviour. Choice 2: Call-by-name
Informally: reduce left-hand-side of application to a fun-term; then replace all occurrences
of the formal parameter in the fun-term by the argument.
e = (fun x:unit→ (l := 1); x) (l := 2)

⟨e, {l 7→ 0}⟩ −→ ⟨(l := 1); l := 2, {l 7→ 0}⟩
−→ ⟨skip ; l := 2, {l 7→ 1}⟩
−→ ⟨l := 2 , {l 7→ 1}⟩
−→ ⟨skip , {l 7→ 2}⟩

141

This is the foundation of ‘lazy’ functional languages – e.g. Haskell

55

L2 Call-by-name
(same typing rules as before)

(CBN-app)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e ′1 e2, s
′⟩

(CBN-fun) ⟨(fun x :T → e)e2, s⟩ −→ ⟨{e2/x}e, s⟩

Here, don’t evaluate the argument at all if it isn’t used

⟨(fun x:unit→ skip)(l := 2), {l 7→ 0}⟩
−→ ⟨{l := 2/x}skip , {l 7→ 0}⟩
= ⟨skip , {l 7→ 0}⟩

but if it is, end up evaluating it repeatedly.

142

Without strict, call-by-value semantics, it becomes hard to understand what order your code is going to
be run in. Non-strict languages typically don’t allow unrestricted side effects (our combination of store
and CBN is pretty odd). Haskell encourages pure programming, without effects (store operations, IO,
etc.) except where really necessary. Where they are necessary, it uses a fancy type system to give you
some control of evaluation order.

For a pure language, Call-By-Name gives the same results as Call-By-Need, which is more efficient. The
first time the argument evaluated we ‘overwrite’ all other copies by that value.

Call-By-Need Example (Haskell)
let notdivby x y = y ‘mod‘ x /= 0

enumFrom n = n : (enumFrom (n+1))

sieve (x:xs) =

x : sieve (filter (notdivby x) xs)

in

sieve (enumFrom 2)

==>

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,

59,61,67,71,73,79,83,89,97,101,103,107,109,

113,127,131,137,139,149,151,157,163,167,173,

179,181,191,193,197,199,211,223,227,229,233,

Interrupted!

143

Purity 144

Function Behaviour. Choice 3: Full beta
Allow both left and right-hand sides of application to reduce. At any point where the
left-hand-side has reduced to a fun-term, replace all occurrences of the formal parameter
in the fun-term by the argument. Allow reduction inside lambdas.
(fun x:int→ 2 + 2) −→ (fun x:int→ 4)

145

56

L2 Beta

(beta-app1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e ′1 e2, s
′⟩

(beta-app2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e1 e ′2, s
′⟩

(beta-fun1) ⟨(fun x :T → e)e2, s⟩ −→ ⟨{e2/x}e, s⟩

(beta-fun2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨fun x :T → e, s⟩ −→ ⟨fun x :T → e ′, s ′⟩

146

This reduction relation includes the CBV and CBN relations, and also reduction inside lambdas.

L2 Beta: Example

(fun x:int→ x + x) (2 + 2)

|| ++
(fun x:int→ x + x) 4

$$

(2 + 2) + (2 + 2)

vv ((
4 + (2 + 2)

��

(2 + 2) + 4

rr
4 + 4

��
8

147

Function Behaviour. Choice 4: Normal-order reduction
Leftmost, outermost variant of full beta.

148

• What will (fun x:unit→ skip) (while true do skip done) do in the different semantics?

• What about (fun x:unit→ skip) (ℓ :=!ℓ+ 1)?

Back to CBV (from now on). 149

4.3 Function Typing

Typing functions (1)
Before, Γ gave the types of store locations; it ranged over TypeEnv which was the set
of all finite partial functions from locations L to Tloc.
Now, it must also give assumptions on the types of variables:
Type environments Γ are now pairs of a Γloc (a partial function from L to Tloc as before)
and a Γvar, a partial function from X to T.
For example, we might have Γloc = l1:intref and Γvar = x:int, y:bool→ int.
Notation: we write dom(Γ) for the union of dom(Γloc) and dom(Γvar). If x /∈ dom(Γvar),
we write Γ, x :T for the pair of Γloc and the partial function which maps x to T but
otherwise is like Γvar.

150

57

Typing functions (2)

(var) Γ ⊢ x :T if Γ(x) = T

(fun) Γ, x :T ⊢ e:T ′

Γ ⊢ fun x :T → e : T → T ′

(app) Γ ⊢ e1:T → T ′ Γ ⊢ e2:T

Γ ⊢ e1 e2:T
′

151

Typing functions – Example

x:int ⊢ x:int
(var)

x:int ⊢ 2:int
(int)

x:int ⊢ x + 2:int
(op+)

{} ⊢ (fun x:int→ x + 2):int→ int
(fun)

{} ⊢ 2:int
(int)

{} ⊢ (fun x:int→ x + 2) 2:int
(app)

152

Typing functions – Example

(fun (x:int→ int)→ x((fun x:int→ x)3)) 153

• Note that sometimes you need the alpha convention, e.g. to type

fun x:int→ x + (fun x:bool→ if x then 3 else 4)true

It’s a good idea to start out with all binders different from each other and from all free variables.
It would be a bad idea to prohibit variable shadowing like this in source programs.

• In ML you have parametrically polymorphic functions, e.g. (fun x:α → x):α → α, but we won’t
talk about them here – that’s in Part II Types.

Another example:

−− (seq)l :intref ⊢ 2:int
(int)−−(fun)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \
ℓ:intref ⊢ 2:int

l :intref ⊢ (l := 2):unit
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \

(asn)

l :intref, x:unit ⊢ 1:int
(int)

l :intref, x:unit ⊢ (l := 1):unit
(asn)

l :intref, x:unit ⊢ x:unit
(var)

l :intref, x:unit ⊢ (l := 1); x:unit
(seq)

l :intref ⊢ (fun x:unit→ (l := 1); x):unit→ unit
(fun)

ll : intref | − (ll := 2) : unit

l :intref ⊢ (fun x:unit→ (l := 1); x) (l := 2):unit
(app)

INFER ERROR. Line 8469 ff. SEE DETAILS IN stderr.

Properties of Typing
We only consider executions of closed programs, with no free variables.

Theorem 18 (Progress) If e closed and Γ ⊢ e:T and dom(Γ) ⊆ dom(s) then either e
is a value or there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.
Note there are now more stuck configurations, e.g.((3) (4))

Theorem 19 (Type Preservation) If e closed and Γ ⊢ e:T and dom(Γ) ⊆ dom(s) and
⟨e, s⟩ −→ ⟨e ′, s ′⟩ then Γ ⊢ e ′:T and e ′ closed and dom(Γ) ⊆ dom(s ′).

154

58

Proving Type Preservation
Theorem 19 (Type Preservation) If e closed and Γ ⊢ e:T and dom(Γ) ⊆ dom(s) and
⟨e, s⟩ −→ ⟨e ′, s ′⟩ then Γ ⊢ e ′:T and e ′ closed and dom(Γ) ⊆ dom(s ′).
Taking

Φ(e, s, e ′, s ′) =
∀ Γ,T .
Γ ⊢ e:T ∧ closed(e) ∧ dom(Γ) ⊆ dom(s)

⇒
Γ ⊢ e ′:T ∧ closed(e ′) ∧ dom(Γ) ⊆ dom(s ′)

we show ∀ e, s, e ′, s ′.⟨e, s⟩ −→ ⟨e ′, s ′⟩ ⇒ Φ(e, s, e ′, s ′) by rule induction.

155

To prove this one uses:

Lemma 20 (Substitution) If Γ ⊢ e:T and Γ, x :T ⊢ e ′:T ′ with x /∈ dom(Γ) then
Γ ⊢ {e/x}e ′:T ′.

156

Determinacy and type inference properties also hold.

Normalization

Theorem 21 (Normalization) In the sublanguage without while loops or store opera-
tions, if Γ ⊢ e:T and e closed then there does not exist an infinite reduction sequence
⟨e, {}⟩ −→ ⟨e1, {}⟩ −→ ⟨e2, {}⟩ −→ ...

Proof. ? can’t do a simple induction, as reduction can make terms grow. See Pierce
Ch.12 (the details are not in the scope of this course).

157

4.4 Local Definitions and Recursive Functions

Local definitions
For readability, want to be able to name definitions, and to restrict their scope, so add:

e ::= ... | let x :T = e1 in e2

this x is a binder, binding any free occurrences of x in e2.
Can regard just as syntactic sugar :

let x :T = e1 in e2 ⇝ (fun x :T → e2)e1

158

Local definitions – derived typing and reduction rules (CBV)

let x :T = e1 in e2 ⇝ (fun x :T → e2)e1

(let) Γ ⊢ e1:T Γ, x :T ⊢ e2:T
′

Γ ⊢ let x :T = e1 in e2:T
′

(let1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨let x :T = e1 in e2, s⟩ −→ ⟨let x :T = e ′1 in e2, s
′⟩

(let2)
⟨let x :T = v in e2, s⟩ −→ ⟨{v/x}e2, s⟩

159

Our alpha convention means this really is a local definition – there is no way to refer to the locally-defined

59

variable outside the let .

x + let x:int = x in (x + 2) = x + let y:int = x in (y + 2)

Recursive definitions – first attempt
How about

x = (fun y:int→ if y ≥ 1 then y + (x (y +−1)) else 0)

where we use x within the definition of x? Think about evaluating x 3.
Could add something like this:

e ::= ... | let rec x :T = e in e ′

(here the x binds in both e and e ′) then say

let rec x:int→ int =
(fun y:int→ if y ≥ 1 then y + (x(y +−1)) else 0)

in x 3

160

But...
What about
let rec x = (x, x) in x ?
Have some rather weird things, eg
let rec x:int list = 3 :: x in x
does that terminate? if so, is it equal to let rec x:int list = 3 :: 3 :: x in x ? does
let rec x:int list = 3 :: (x + 1) in x terminate?
In a CBN language, it is reasonable to allow this kind of thing, as will only compute as
much as needed. In a CBV language, would usually disallow, allowing recursive definitions
only of functions...

161

Recursive Functions
So, specialize the previous let rec construct to

T = T1 → T2 recursion only at function types
e = fun y :T1 → e1 and only of function values

e ::= ... | let rec x :T1 → T2 = (fun y :T1 → e1) in e2

(here the y binds in e1; the x binds in (fun y :T → e1) and in e2)

(let rec fun) Γ, x :T1 → T2, y :T1 ⊢ e1:T2 Γ, x :T1 → T2 ⊢ e2:T

Γ ⊢ let rec x :T1 → T2 = (fun y :T1 → e1) in e2:T

Concrete syntax: In OCaml can write let rec f (x :T1):T2 = e1 in e2, or even
let rec f x = e1 in e2, for let rec f :T1 → T2 = fun x :T1 → e1 in e2.

162

Recursive Functions – Semantics

(letrecfun) ⟨let rec x :T1 → T2 = (fun y :T1 → e1) in e2, s⟩
−→
⟨{(fun y :T1 → let rec x :T1 → T2 = (fun y :T1 → e1) in e1)/x}e2, s⟩

163

60

For example:
let rec x:int→ int =
(fun y:int→ if y ≥ 1 then y + (x(y +−1)) else 0)

in
x 3

−→ (letrecfun)(
fun y:int→
let rec x:int→ int =
(fun y:int→ if y ≥ 1 then y + (x(y +−1)) else 0)

in
if y ≥ 1 then y + (x(y +−1)) else 0)
3

−→ (app)
let rec x:int→ int =
(fun y:int→ if y ≥ 1 then y + (x(y +−1)) else 0)

in
if 3 ≥ 1 then 3 + (x(3 +−1)) else 0)

−→ (letrecfun)
if 3 ≥ 1 then

3 + (
(
fun y:int→

let rec x:int→ int =
(fun y:int→ if y ≥ 1 then y + (x(y +−1)) else 0)

in
if y ≥ 1 then y + (x(y +−1)) else 0)

(3 +−1))
else
0
−→ ...

Recursive Functions – Minimization Example
Below, in the context of the let rec , x f n finds the smallest n ′ ≥ n for which f n ′ evaluates
to some m ′ ≤ 0.

let rec x:(int → int) → int → int
= fun f:int → int → fun z:int → if (f z) ≥ 1 then x f (z + 1) else z

in
let f:int → int
= (fun z:int → if z ≥ 3 then (if 3 ≥ z then 0 else 1) else 1)

in
x f 0

164

As a test case, we apply it to the function (fun z :int→ if z ≥ 3 then (if 3 ≥ z then 0 else 1) else 1),
which is 0 for argument 3 and 1 elsewhere.

More Syntactic Sugar
Do we need e1; e2?
No: Could encode by e1; e2 ⇝ (fun y :unit→ e2)e1

Do we need while e1 do e2 done ?
No: could encode by while e1 do e2 done ⇝

let rec w:unit→ unit =
fun y:unit→ if e1 then (e2; (w skip)) else skip

in
w skip

for fresh w and y not in fv(e1) ∪ fv(e2).

165

61

In each case typing is the same. Reduction is ‘essentially’ the same — we will be able to make this precise
when we study contextual equivalence.

4.5 Implementation

Implementation
There is an implementation of L2 on the course web page.
See especially Syntax.sml and Semantics.sml. It uses a front end written with mosm-
llex and mosmlyac.

166

The implementation lets you type in L2 expressions and initial stores and watch them resolve, type-check,
and reduce.

Implementation – Scope Resolution
datatype expr raw = ...

| Var raw of string

| Fun raw of string * type expr * expr raw

| App raw of expr raw * expr raw

| ...

datatype expr = ...

| Var of int

| Fun of type expr * expr

| App of expr * expr

resolve scopes : expr raw -> expr

167

(it raises an exception if the expression has any free variables)

Implementation – Substitution
subst : expr -> int -> expr -> expr

subst e 0 e’ substitutes e for the outermost var in e’.
(the definition is only sensible if e is closed, but that’s ok – we only evaluate whole
programs. For a general definition, see [Pierce, Ch. 6])
fun subst e n (Var n1) = if n=n1 then e else Var n1

| subst e n (Fun(t,e1)) = Fun(t,subst e (n+1) e1)

| subst e n (App(e1,e2)) = App(subst e n e1,subst e n e2)

| subst e n (Let(t,e1,e2))

= Let (t,subst e n e1,subst e (n+1) e2)

| subst e n (Letrecfun (tx,ty,e1,e2))

= Letrecfun (tx,ty,subst e (n+2) e1,subst e (n+1) e2)

| ...

168

If e’ represents a closed term fun x :T → e ′1 then e’ = Fun(t,e1’) for t and e1’ representing T and
e ′1. If also e represents a closed term e then subst e 0 e1’ represents {e/x}e ′1.

Implementation – CBV reduction
reduce (App (e1,e2),s) = (match e1 with

Fun (t,e) ->

(if (is value e2) then

Some (subst e2 0 e,s)

else

(match reduce (e2,s) with

Some(e2’,s’) -> Some(App (e1,e2’),s’)

| None -> None))

| -> (match reduce (e1,s) with

Some (e1’,s’)->Some(App(e1’,e2),s’)

| None -> None))

169

62

Implementation – Type Inference
type typeEnv

= (loc*type loc) list * type expr list

inftype gamma (Var n) = nth (snd gamma) n

inftype gamma (Fun (t,e))

= (match inftype (fst gamma, t::(snd gamma)) e with

Some t’ -> Some (func(t,t’))

| None -> None)

inftype gamma (App (e1,e2))

= (match (inftype gamma e1, inftype gamma e2) with

(Some (func(t1,t1’)), Some t2) ->

if t1=t2 then Some t1’ else None

| -> None)

170

Implementation – Closures
Naively implementing substitution is expensive. An efficient implementation would use
closures instead – cf. Compiler Construction.
We could give a more concrete semantics, closer to implementation, in terms of closures,
and then prove it corresponds to the original semantics...
(if you get that wrong, you end up with dynamic scoping, as in original LISP)

171

Aside: Small-step vs Big-step Semantics
Throughout this course we use small-step semantics, ⟨e, s⟩ −→ ⟨e ′, s ′⟩.
There is an alternative style, of big-step semantics ⟨e, s⟩ ⇓ ⟨v , s ′⟩, for example

⟨n, s⟩ ⇓ ⟨n, s⟩
⟨e1, s⟩ ⇓ ⟨n1, s ′⟩ ⟨e2, s ′⟩ ⇓ ⟨n2, s ′′⟩
⟨e1 + e2, s⟩ ⇓ ⟨n, s ′′⟩ n = n1 + n2

(see the notes from earlier courses by Andy Pitts).
For sequential languages, it doesn’t make a major difference. When we come to add
concurrency, small-step is more convenient.

172

63

4.6 L2: Collected Definition

Syntax

Booleans b ∈ B = {true, false}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ℓ ∈ L = {l , l0, l1, l2, ...}
Variables x ∈ X for a set X = {x, y, z, ...}

Operations op ::=+ |≥

Types
T ::= int | bool | unit | T1 → T2

Tloc ::= intref

Expressions
e ::= n | b | e1 op e2 | if e1 then e2 else e3 |

ℓ := e |!ℓ |
skip | e1; e2 |
while e1 do e2 done |
fun x :T → e | e1 e2 | x |
let x :T = e1 in e2|
let rec x :T1 → T2 = (fun y :T1 → e1) in e2

In expressions fun x :T → e the x is a binder. In expressions let x :T = e1 in e2 the x is a binder. In
expressions let rec x :T1 → T2 = (fun y :T1 → e1) in e2 the y binds in e1; the x binds in (fun y :T → e1)
and in e2.

Operational Semantics

Say stores s are finite partial functions from L to Z. Values v ::= b | n | skip | fun x :T → e

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

(op ≥) ⟨n1 ≥ n2, s⟩ −→ ⟨b, s⟩ if b = (n1 ≥ n2)

(op1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′1 op e2, s
′⟩

(op2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨v op e2, s⟩ −→ ⟨v op e ′2, s
′⟩

(deref) ⟨!ℓ, s⟩ −→ ⟨n, s⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s⟩ −→ ⟨skip, s + {ℓ 7→ n}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

(seq1) ⟨skip; e2, s⟩ −→ ⟨e2, s⟩

(seq2)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1; e2, s⟩ −→ ⟨e ′1; e2, s ′⟩

64

(if1) ⟨if true then e2 else e3, s⟩ −→ ⟨e2, s⟩

(if2) ⟨if false then e2 else e3, s⟩ −→ ⟨e3, s⟩

(if3)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨if e1 then e2 else e3, s⟩ −→ ⟨if e ′1 then e2 else e3, s
′⟩

(while)
⟨while e1 do e2 done , s⟩ −→ ⟨if e1 then (e2;while e1 do e2 done) else skip, s⟩

(app1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e ′1 e2, s
′⟩

(app2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩
⟨v e2, s⟩ −→ ⟨v e ′2, s

′⟩

(fun) ⟨(fun x :T → e) v , s⟩ −→ ⟨{v/x}e, s⟩

(let1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨let x :T = e1 in e2, s⟩ −→ ⟨let x :T = e ′1 in e2, s
′⟩

(let2)
⟨let x :T = v in e2, s⟩ −→ ⟨{v/x}e2, s⟩

(letrecfun) ⟨let rec x :T1 → T2 = (fun y :T1 → e1) in e2, s⟩
−→
⟨{(fun y :T1 → let rec x :T1 → T2 = (fun y :T1 → e1) in e1)/x}e2, s⟩

Typing

Type environments Γ are now pairs of a Γloc (a partial function from L to Tloc as before) and a Γvar, a
partial function from X to T.

(int) Γ ⊢ n:int for n ∈ Z

(bool) Γ ⊢ b:bool for b ∈ {true, false}

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int
(op ≥)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 ≥ e2:bool

(if) Γ ⊢ e1:bool Γ ⊢ e2:T Γ ⊢ e3:T

Γ ⊢ if e1 then e2 else e3:T

(assign)
Γ(ℓ) = intref Γ ⊢ e:int

Γ ⊢ ℓ := e:unit

(deref)
Γ(ℓ) = intref

Γ ⊢!ℓ:int

65

(skip) Γ ⊢ skip:unit

(seq) Γ ⊢ e1:unit Γ ⊢ e2:T

Γ ⊢ e1; e2:T

(while) Γ ⊢ e1:bool Γ ⊢ e2:unit

Γ ⊢ while e1 do e2 done :unit

(var) Γ ⊢ x :T if Γ(x) = T

(fun)
Γ, x :T ⊢ e:T ′

Γ ⊢ fun x :T → e : T → T ′

(app) Γ ⊢ e1:T → T ′ Γ ⊢ e2:T

Γ ⊢ e1 e2:T
′

(let)
Γ ⊢ e1:T Γ, x :T ⊢ e2:T

′

Γ ⊢ let x :T = e1 in e2:T
′

(let rec fun)
Γ, x :T1 → T2, y :T1 ⊢ e1:T2 Γ, x :T1 → T2 ⊢ e2:T

Γ ⊢ let rec x :T1 → T2 = (fun y :T1 → e1) in e2:T

66

4.7 Exercises

Exercise 19. ⋆What are the free variables of the following?

1. x + ((fun y:int→ z) 2)

2. x + (fun y:int→ z)

3. fun y:int→ fun y:int→ fun y:int→ y

4. !l0

5. while !l0 ≥ y do l0 := x done

Draw their abstract syntax trees (up to alpha equivalence).

Exercise 20. ⋆What are the results of the following substitutions?

1. {fun x:int→ y/z}fun y:int→ z y

2. {fun x:int→ x/x}fun y:int→ x y

3. {fun x:int→ x/x}fun x:int→ x x

Exercise 21. ⋆Give typing derivations, or show why no derivation exists, for:

1. if 6 then 7 else 8

2. fun x:int→ x + (fun x:bool→ if x then 3 else 4)true

Exercise 22. ⋆⋆Give a grammar for types, and typing rules for functions and application, that allow
only first-order functions and prohibit partial applications (see page 50).

Exercise 23. ⋆⋆Write a function of type unit → bool that, when applied to skip, returns true in the
CBV semantics and false in the CBN semantics. Is it possible to do it without using the store?

Exercise 24. ⋆⋆Prove Lemma 20 (Substitution).

Exercise 25. ⋆⋆Prove Theorem 19 (Type Preservation).

Exercise 26. ⋆⋆Adapt the L2 implementation to CBN functions. Think of a few good test cases and
check them in the new and old code.

Exercise 27. ⋆⋆⋆Re-implement the L2 interpreter to use closures instead of substitution.

67

5 Data

Data – L3 173

So far we have only looked at very simple basic data types – int, bool, and unit, and functions over them.
We now explore more structured data, in as simple a form as possible, and revisit the semantics of mutable
store.

5.1 Products and sums

The two basic notions are the product and the sum type.

The product type T1 ∗ T2 lets you tuple together values of types T1 and T2 – so for example a function
that takes an integer and returns a pair of an integer and a boolean has type int→ (int ∗ bool). In C one
has structs; in Java classes can have many fields.

The sum type T1+T2 lets you form a disjoint union, with a value of the sum type either being a value of
type T1 or a value of type T2. In C one has unions; in Java one might have many subclasses of a class
(see the l1.java representation of the L1 abstract syntax, for example).

In most languages these appear in richer forms, e.g. with labelled records rather than simple products,
or labelled variants, or ML datatypes with named constructors, rather than simple sums. We’ll look at
labelled records in detail, as a preliminary to the later lecture on subtyping.

Many languages don’t allow structured data types to appear in arbitrary positions – e.g. the old C lack
of support for functions that return structured values, inherited from close-to-the-metal early implemen-
tations. They might therefore have to have functions or methods that take a list of arguments, rather
than a single argument that could be of product (or sum, or record) type.

Products

T ::= ... | T1 ∗ T2

e ::= ... | (e1, e2) | fst e | snd e

174

Design choices:

• pairs, not arbitrary tuples – have int ∗ (int ∗ int) and (int ∗ int) ∗ int, but (a) they’re different, and
(b) we don’t have (int ∗ int ∗ int). In a full language you’d likely allow (b) (and still have it be a
different type from the other two).

• have projections fst and snd , not pattern matching fun (x , y)→ e. A full language should allow
the latter, as it often makes for much more elegant code.

• don’t have #e e ′ (couldn’t typecheck!).

68

Products – typing

(pair) Γ ⊢ e1:T1 Γ ⊢ e2:T2

Γ ⊢ (e1, e2):T1 ∗ T2

(proj1) Γ ⊢ e:T1 ∗ T2

Γ ⊢ fst e:T1

(proj2) Γ ⊢ e:T1 ∗ T2

Γ ⊢ snd e:T2

175

Products – reduction

v ::= ... | (v1, v2)

(pair1)
⟨e1, s⟩ −→ ⟨e ′

1, s
′⟩

⟨(e1, e2), s⟩ −→ ⟨(e ′
1, e2), s

′⟩

(pair2)
⟨e2, s⟩ −→ ⟨e ′

2, s
′⟩

⟨(v1, e2), s⟩ −→ ⟨(v1, e ′
2), s

′⟩

(proj1) ⟨fst (v1, v2), s⟩ −→ ⟨v1, s⟩ (proj2) ⟨snd (v1, v2), s⟩ −→ ⟨v2, s⟩

(proj3)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨fst e, s⟩ −→ ⟨fst e ′, s ′⟩
(proj4)

⟨e, s⟩ −→ ⟨e ′, s ′⟩
⟨snd e, s⟩ −→ ⟨snd e ′, s ′⟩

176

We have chosen left-to-right evaluation order for consistency.

Sums (or Variants, or Tagged Unions)

T ::= ... | T1 + T2

e ::= ... | inl e:T | inr e:T |
match e with inl (x1:T1)→ e1 | inr (x2:T2)→ e2

Those x s are binders, treated up to alpha-equivalence.

177

Here we diverge slightly from Moscow ML syntax – our T1+T2 corresponds to the Moscow ML (T1,T2)

Sum in the context of the declaration

datatype (’a,’b) Sum = inl of ’a | inr of ’b;

Sums – typing

(inl) Γ ⊢ e:T1

Γ ⊢ inl e:T1 + T2:T1 + T2

(inr) Γ ⊢ e:T2

Γ ⊢ inr e:T1 + T2:T1 + T2

(match)

Γ ⊢ e:T1 + T2

Γ, x :T1 ⊢ e1:T
Γ, y :T2 ⊢ e2:T

Γ ⊢ match e with inl (x :T1)→ e1 | inr (y :T2)→ e2:T

178

69

Sums – type annotations
match e with inl (x1:T1)→ e1 | inr (x2:T2)→ e2

Why do we have these type annotations?

To maintain the unique typing property. Otherwise

inl 3:int+ int

and
inl 3:int+ bool

179

You might instead have a compiler use a type inference algorithm that can infer them, or require every
sum type in a program to be declared, each with different names for the constructors inl , inr (cf OCaml).

Sums – reduction

v ::= ... | inl v :T | inr v :T

(inl)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨inl e:T , s⟩ −→ ⟨inl e ′:T , s ′⟩

(match1)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨match e with inl (x :T1)→ e1 | inr (y :T2)→ e2, s⟩
−→ ⟨match e ′ with inl (x :T1)→ e1 | inr (y :T2)→ e2, s

′⟩

(match2) ⟨match inl v :T with inl (x :T1)→ e1 | inr (y :T2)→ e2, s⟩
−→ ⟨{v/x}e1, s⟩

(inr) and (match3) like (inl) and (match2)

180

(inr)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨inr e:T , s⟩ −→ ⟨inr e ′:T , s ′⟩

(match3) ⟨match inr v :T with inl (x :T1)→ e1 | inr (y :T2)→ e2, s⟩
−→ ⟨{v/y}e2, s⟩

Constructors and Destructors

type constructors destructors
T → T fun x :T → e
T ∗ T (,) fst snd
T + T inl () inr () match
bool true false if

181

70

Proofs as programs: The Curry-Howard correspondence

(var) Γ, x :T ⊢ x :T

(fun) Γ, x :T ⊢ e:T ′

Γ ⊢ fun x :T → e : T → T ′

(app) Γ ⊢ e1:T → T ′ Γ ⊢ e2:T

Γ ⊢ e1 e2:T
′

Γ,P ⊢ P

Γ,P ⊢ P ′

Γ ⊢ P → P ′

Γ ⊢ P → P ′ Γ ⊢ P
Γ ⊢ P ′

182

Proofs as programs: The Curry-Howard correspondence

(var) Γ, x :T ⊢ x :T

(fun)
Γ, x :T ⊢ e:T ′

Γ ⊢ fun x :T → e : T → T ′

(app)
Γ ⊢ e1:T → T ′ Γ ⊢ e2:T

Γ ⊢ e1 e2:T ′

(pair)
Γ ⊢ e1:T1 Γ ⊢ e2:T2

Γ ⊢ (e1, e2):T1 ∗ T2

(proj1) Γ ⊢ e:T1 ∗ T2

Γ ⊢ fst e:T1

(proj2) Γ ⊢ e:T1 ∗ T2

Γ ⊢ snd e:T2

(inl) Γ ⊢ e:T1

Γ ⊢ inl e:T1 + T2:T1 + T2

(inr), (match), (unit), (zero), etc.. – but not (letrec)

Γ,P ⊢ P

Γ,P ⊢ P ′

Γ ⊢ P → P ′

Γ ⊢ P → P ′ Γ ⊢ P

Γ ⊢ P ′

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1

Γ ⊢ P1 ∧ P2

Γ ⊢ P2

Γ ⊢ P1

Γ ⊢ P1 ∨ P2

183

The typing rules for a pure language correspond to the rules for a natural deduction calculus.

5.2 Datatypes and Records

ML Datatypes
Datatypes in ML generalize both sums and products, in a sense
datatype IntList = Null of unit

| Cons of Int * IntList

is (roughly!) like saying
IntList = unit + (Int * IntList)

184

In L3 you cannot define IntList. It involves recursion at the type level (e.g. types for binary trees).
Making this precise is beyond the scope of this course.

Records
A generalization of products.
Take field labels
Labels lab ∈ LAB for a set LAB = {p, q, ...}

T ::= ... | {lab1:T1, .., labk:Tk}
e ::= ... | {lab1 = e1, .., labk = ek} | e.lab

(where in each record (type or expression) no lab occurs more than once)

185

Note:

71

• Labels are not the same syntactic class as variables, so (fun x:T → {x = 3}) is not an expression.

• In ML a pair (true, fun x:int→ x) is syntactic sugar for a record {1 = true, 2 = fun x:int→ x}.

• Note that #lab e is not an application, it just looks like one in the concrete syntax.

• Again we will choose a left-to-right evaluation order for consistency.

Records – typing

(record) Γ ⊢ e1:T1 .. Γ ⊢ ek:Tk

Γ ⊢ {lab1 = e1, .., labk = ek}:{lab1:T1, .., labk:Tk}

(recordproj) Γ ⊢ e:{lab1:T1, .., labk:Tk}
Γ ⊢ e.labi:Ti

186

• Here the field order matters, so (fun x:{ℓ1:int, ℓ2:bool} → x){ℓ2 = true, ℓ1 = 17} does not typecheck.

• Here you can reuse labels, so {} ⊢ ({ℓ1 = 17}, {ℓ1 = true}):{ℓ1:int} ∗ {ℓ1:bool} is legal, but in some
languages (e.g. OCaml) you can’t.

Records – reduction

v ::= ... | {lab1 = v1, .., labk = vk}

(record1)

⟨ei, s⟩ −→ ⟨e ′i, s ′⟩
⟨{lab1 = v1, .., labi = ei, .., labk = ek}, s⟩
−→ ⟨{lab1 = v1, .., labi = e ′i, .., labk = ek}, s ′⟩

(record2) ⟨{lab1 = v1, .., labk = vk}.labi, s⟩ −→ ⟨vi, s⟩

(record3)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨e.labi, s⟩ −→ ⟨e ′.labi, s ′⟩

187

5.3 Mutable Store

Mutable Store
Most languages have some kind of mutable store. Two main choices:
1 What we’ve got in L1 and L2:

e ::= ... | ℓ := e |!ℓ | x

• locations store mutable values
• variables refer to a previously-calculated value, immutably
• explicit dereferencing and assignment operators for locations fun x:int→ l :=
(!l) + x

188

2 In C and Java,
• variables let you refer to a previously calculated value and let you overwrite
that value with another.

• implicit dereferencing,
void foo(x:int) {

l = l + x

...}
• have some limited type machinery to limit mutability.

– pros and cons:

189

We are staying with option 1 here. But we will now overcome some limitations of references in L1/L2:

72

• can only store ints – we would like to store any value

• cannot create new locations (all must exist at beginning)

• cannot write functions that abstract on locations fun l :intref →!l

References

T ::= ... | T ref
Tloc ::= intref T ref
e ::= ... | ℓ := e | !ℓ

| e1 := e2 |!e | ref e | ℓ

190

We are now allowing variables of T ref type, e.g.fun x:int ref →!x. Whole programs should now have
no locations at the start. They should create new locations with ref.

References – Typing

(ref) Γ ⊢ e:T
Γ ⊢ ref e : T ref

(assign) Γ ⊢ e1:T ref Γ ⊢ e2:T

Γ ⊢ e1 := e2:unit

(deref) Γ ⊢ e:T ref
Γ ⊢!e:T

(loc) Γ(ℓ) = T ref

Γ ⊢ ℓ:T ref

191

References – Reduction
A location is a value:

v ::= ... | ℓ

Stores s were finite partial maps from L to Z. From now on, take them to be finite partial
maps from L to the set of all values.

(ref1) ⟨ ref v , s⟩ −→ ⟨ℓ, s + {ℓ 7→ v}⟩ ℓ /∈ dom(s)

(ref2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ ref e, s⟩ −→ ⟨ ref e ′, s ′⟩

192

(deref1) ⟨!ℓ, s⟩ −→ ⟨v , s⟩ if ℓ ∈ dom(s) and s(ℓ) = v

(deref2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩
⟨!e, s⟩ −→ ⟨!e ′, s ′⟩

(assign1) ⟨ℓ := v , s⟩ −→ ⟨skip, s + {ℓ 7→ v}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

(assign3)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨e := e2, s⟩ −→ ⟨e ′ := e2, s
′⟩

193

73

• A ref has to do something at runtime – (ref 0, ref 0) should return a pair of two new locations,
each containing 0, not a pair of one location repeated.

• Note the typing and this dynamics permit locations to contain locations, e.g. ref(ref 3).

• This semantics no longer has determinacy, for a technical reason – new locations are chosen arbi-
trarily. At the cost of some slight semantic complexity, we could regain determinacy by working
‘up to alpha for locations’.

• Within the language you cannot do arithmetic on locations (can in C, can’t in Java) or test whether
one is bigger than another. In L3 you cannot even test locations for equality (in ML you can).

• This store just grows during computation – an implementation can garbage collect. We don’t have
an explicit deallocation operation – if you do, you need a very baroque type system to prevent
dangling pointers being dereferenced.

Type-checking the store
For L1, our type properties used dom(Γ) ⊆ dom(s) to express the condition ‘all locations
mentioned in Γ exist in the store s’.
Now need more: for each ℓ ∈ dom(s) need that s(ℓ) is typable. Moreover, s(ℓ) might
contain some other locations...

194

Type-checking the store – Example
Consider

e = let x:(int→ int) ref = ref(fun z:int→ z) in
(x := (fun z:int→ if z ≥ 1 then z + ((!x) (z +−1)) else 0);
(!x) 3)

which has reductions

⟨e, {}⟩ −→∗

⟨e1, {l1 7→ (fun z:int→ z)}⟩ −→∗

⟨e2, {l1 7→ (fun z:int→ if z ≥ 1 then z + ((!l1) (z +−1)) else 0)}⟩
−→∗ ⟨6, ...⟩

195

For reference, e1 and e2 are

e1 = l1 := (fun z:int→ if z ≥ 1 then z + ((!l1) (z +−1)) else 0);
((!l1) 3)

e2 = skip; ((!l1) 3)

Have made a recursive function by ‘tying the knot by hand’, not using let rec . To do this we needed
to store function values. We couldn’t do this in L2, so this doesn’t contradict the normalization theorem
we had there.

Definition 22 (Well-typed store) Let Γ ⊢ s if dom(Γ) = dom(s) and if for all
ℓ ∈ dom(s), if Γ(ℓ) = T ref then Γ ⊢ s(ℓ):T .

Theorem 23 (Progress) If e closed and Γ ⊢ e:T and Γ ⊢ s then either e is a value or
there exist e ′, s ′ such that ⟨e, s⟩ −→ ⟨e ′, s ′⟩.

Theorem 24 (Type Preservation) If e closed and Γ ⊢ e:T and Γ ⊢ s and ⟨e, s⟩ −→
⟨e ′, s ′⟩ then e ′ is closed and for some Γ′ with disjoint domain to Γ we have Γ,Γ′ ⊢ e ′:T
and Γ,Γ′ ⊢ s ′.

Theorem 25 (Type Safety) If e closed and Γ ⊢ e:T and Γ ⊢ s and ⟨e, s⟩ −→∗ ⟨e ′, s ′⟩
then either e ′ is a value or there exist e ′′, s ′′ such that ⟨e ′, s ′⟩ −→ ⟨e ′′, s ′′⟩.

196

74

Implementation
The collected definition so far is in the notes, called L3.
It still roughly an OCaml fragment, but the OCaml syntax and typing rules for records
are different.

197

75

5.4 Evaluation Contexts

We end this chapter by showing a slightly different style for defining operational semantics, collecting
together many of the context rules into a single (eval) rule that uses a definition of a set of evaluation
contexts to describe where in your program the next step of reduction can take place. This style becomes
much more convenient for large languages, though for L1 and L2 there’s not much advantage either way.

Evaluation Contexts
Define evaluation contexts

E ::= op e | v op | if then e else e |
; e |
e | v |

let x :T = in e2 |
(, e) | (v ,) | fst | snd |
inl :T | inr :T |
match with inl (x :T)→ e | inr (x :T)→ e |
{lab1 = v1, .., labi = , .., labk = ek} | .lab |
:= e | v := |! | ref

198

and have the single context rule

(eval)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨E [e], s⟩ −→ ⟨E [e ′], s ′⟩

replacing the rules (all those with ≥ 1 premise) (op1), (op2), (seq2), (if3), (app1), (app2),
(let1), (pair1), (pair2), (proj3), (proj4), (inl), (inr), (match1), (record1), (record3), (ref2),
(deref2), (assign2), (assign3).
To (eval) we add all the computation rules (all the rest) (op +), (op ≥), (seq1), (if1),
(if2), (while), (fun), (let2), (letrecfun), (proj1), (proj2), (match2), (case3), (record2),
(ref1), (deref1), (assign1).

Theorem 26The two definitions of −→ define the same relation.

199

76

5.5 L3: Collected definition

L3 syntax

Booleans b ∈ B = {true, false}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ℓ ∈ L = {l , l0, l1, l2, ...}
Variables x ∈ X for a set X = {x, y, z, ...}
Labels lab ∈ LAB for a set LAB = {p, q, ...}

Operations op ::=+ |≥

Types:
T ::= int | bool | unit | T1 → T2|T1 ∗ T2|T1 + T2|{lab1:T1, .., labk:Tk}|T ref

Expressions
e ::= n | b | e1 op e2 | if e1 then e2 else e3 |

e1 := e2 |!e | ref e | ℓ |
skip | e1; e2 |
while e1 do e2 done |
fun x :T → e | e1 e2 | x |
let x :T = e1 in e2|
let rec x :T1 → T2 = (fun y :T1 → e1) in e2|
(e1, e2) | fst e | snd e|
inl e:T | inr e:T |
match e with inl (x1:T1)→ e1 | inr (x2:T2)→ e2|
{lab1 = e1, .., labk = ek} | e.lab

(where in each record (type or expression) no lab occurs more than once)

In expressions fun x :T → e the x is a binder. In expressions let x :T = e1 in e2 the x is a binder. In
expressions let rec x :T1 → T2 = (fun y :T1 → e1) in e2 the y binds in e1; the x binds in (fun y :T → e1)
and in e2. In match e with inl (x1:T1) → e1 | inr (x2:T2) → e2 the x1 binds in e1 and the x2 binds in
e2.

L3 semantics

Stores s are finite partial maps from L to the set of all values.

Values v ::= b | n | skip | fun x :T → e|(v1, v2)|inl v :T | inr v :T |{lab1 = v1, .., labk = vk}|ℓ

(op +) ⟨n1 + n2, s⟩ −→ ⟨n, s⟩ if n = n1 + n2

(op ≥) ⟨n1 ≥ n2, s⟩ −→ ⟨b, s⟩ if b = (n1 ≥ n2)

(op1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 op e2, s⟩ −→ ⟨e ′1 op e2, s
′⟩

(op2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨v op e2, s⟩ −→ ⟨v op e ′2, s
′⟩

(seq1) ⟨skip; e2, s⟩ −→ ⟨e2, s⟩

(seq2)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1; e2, s⟩ −→ ⟨e ′1; e2, s ′⟩

77

(if1) ⟨if true then e2 else e3, s⟩ −→ ⟨e2, s⟩

(if2) ⟨if false then e2 else e3, s⟩ −→ ⟨e3, s⟩

(if3)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨if e1 then e2 else e3, s⟩ −→ ⟨if e ′1 then e2 else e3, s
′⟩

(while)
⟨while e1 do e2 done , s⟩ −→ ⟨if e1 then (e2;while e1 do e2 done) else skip, s⟩

(app1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e ′1 e2, s
′⟩

(app2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩
⟨v e2, s⟩ −→ ⟨v e ′2, s

′⟩

(fun) ⟨(fun x :T → e) v , s⟩ −→ ⟨{v/x}e, s⟩

(let1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨let x :T = e1 in e2, s⟩ −→ ⟨let x :T = e ′1 in e2, s
′⟩

(let2)
⟨let x :T = v in e2, s⟩ −→ ⟨{v/x}e2, s⟩

(letrecfun) ⟨let rec x :T1 → T2 = (fun y :T1 → e1) in e2, s⟩
−→
⟨{(fun y :T1 → let rec x :T1 → T2 = (fun y :T1 → e1) in e1)/x}e2, s⟩

(pair1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨(e1, e2), s⟩ −→ ⟨(e ′1, e2), s ′⟩

(pair2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨(v1, e2), s⟩ −→ ⟨(v1, e ′2), s ′⟩

(proj1) ⟨fst (v1, v2), s⟩ −→ ⟨v1, s⟩ (proj2) ⟨snd (v1, v2), s⟩ −→ ⟨v2, s⟩

(proj3)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨fst e, s⟩ −→ ⟨fst e ′, s ′⟩
(proj4)

⟨e, s⟩ −→ ⟨e ′, s ′⟩
⟨snd e, s⟩ −→ ⟨snd e ′, s ′⟩

(inl)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨inl e:T , s⟩ −→ ⟨inl e ′:T , s ′⟩

(match1)

⟨e, s⟩ −→ ⟨e ′, s ′⟩
⟨match e with inl (x :T1)→ e1 | inr (y :T2)→ e2, s⟩
−→ ⟨match e ′ with inl (x :T1)→ e1 | inr (y :T2)→ e2, s

′⟩

(match2) ⟨match inl v :T with inl (x :T1)→ e1 | inr (y :T2)→ e2, s⟩
−→ ⟨{v/x}e1, s⟩

(inr) and (match3) like (inl) and (match2)

78

(inr)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨inr e:T , s⟩ −→ ⟨inr e ′:T , s ′⟩

(match3) ⟨match inr v :T with inl (x :T1)→ e1 | inr (y :T2)→ e2, s⟩
−→ ⟨{v/y}e2, s⟩

(record1)

⟨ei, s⟩ −→ ⟨e ′i, s ′⟩
⟨{lab1 = v1, .., labi = ei, .., labk = ek}, s⟩
−→ ⟨{lab1 = v1, .., labi = e ′i, .., labk = ek}, s ′⟩

(record2) ⟨{lab1 = v1, .., labk = vk}.labi, s⟩ −→ ⟨vi, s⟩

(record3)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨e.labi, s⟩ −→ ⟨e ′.labi, s ′⟩

(ref1) ⟨ ref v , s⟩ −→ ⟨ℓ, s + {ℓ 7→ v}⟩ ℓ /∈ dom(s)

(ref2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ ref e, s⟩ −→ ⟨ ref e ′, s ′⟩

(deref1) ⟨!ℓ, s⟩ −→ ⟨v , s⟩ if ℓ ∈ dom(s) and s(ℓ) = v

(deref2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩
⟨!e, s⟩ −→ ⟨!e ′, s ′⟩

(assign1) ⟨ℓ := v , s⟩ −→ ⟨skip, s + {ℓ 7→ v}⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨ℓ := e, s⟩ −→ ⟨ℓ := e ′, s ′⟩

(assign3)
⟨e, s⟩ −→ ⟨e ′, s ′⟩

⟨e := e2, s⟩ −→ ⟨e ′ := e2, s
′⟩

L3 Typing

Type environments, Γ ∈ TypeEnv2, are pairs of a finite partial function Γloc from L to Tloc and a finite
partial function Γvar from X to T .

We use an abbreviated notation to access and manipulate such pairs, writing Γ(ℓ) for Γloc(ℓ) and Γ(x)
for Γvar(x), and similarly writing just Γ, x :T for the pair of Γloc and Γvar, x :T .

(int) Γ ⊢ n:int for n ∈ Z

(bool) Γ ⊢ b:bool for b ∈ {true, false}

(op +)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 + e2:int
(op ≥)

Γ ⊢ e1:int
Γ ⊢ e2:int

Γ ⊢ e1 ≥ e2:bool

(if) Γ ⊢ e1:bool Γ ⊢ e2:T Γ ⊢ e3:T

Γ ⊢ if e1 then e2 else e3:T

79

(skip) Γ ⊢ skip:unit

(seq) Γ ⊢ e1:unit Γ ⊢ e2:T

Γ ⊢ e1; e2:T

(while) Γ ⊢ e1:bool Γ ⊢ e2:unit

Γ ⊢ while e1 do e2 done :unit

(var) Γ ⊢ x :T if Γ(x) = T

(fun)
Γ, x :T ⊢ e:T ′

Γ ⊢ fun x :T → e : T → T ′

(app) Γ ⊢ e1:T → T ′ Γ ⊢ e2:T

Γ ⊢ e1 e2:T
′

(let)
Γ ⊢ e1:T Γ, x :T ⊢ e2:T

′

Γ ⊢ let x :T = e1 in e2:T
′

(let rec fun)
Γ, x :T1 → T2, y :T1 ⊢ e1:T2 Γ, x :T1 → T2 ⊢ e2:T

Γ ⊢ let rec x :T1 → T2 = (fun y :T1 → e1) in e2:T

(pair) Γ ⊢ e1:T1 Γ ⊢ e2:T2

Γ ⊢ (e1, e2):T1 ∗ T2

(proj1) Γ ⊢ e:T1 ∗ T2

Γ ⊢ fst e:T1

(proj2) Γ ⊢ e:T1 ∗ T2

Γ ⊢ snd e:T2

(inl) Γ ⊢ e:T1

Γ ⊢ inl e:T1 + T2:T1 + T2

(inr) Γ ⊢ e:T2

Γ ⊢ inr e:T1 + T2:T1 + T2

(match)

Γ ⊢ e:T1 + T2

Γ, x :T1 ⊢ e1:T
Γ, y :T2 ⊢ e2:T

Γ ⊢ match e with inl (x :T1)→ e1 | inr (y :T2)→ e2:T

(record) Γ ⊢ e1:T1 .. Γ ⊢ ek:Tk

Γ ⊢ {lab1 = e1, .., labk = ek}:{lab1:T1, .., labk:Tk}

(recordproj)
Γ ⊢ e:{lab1:T1, .., labk:Tk}

Γ ⊢ e.labi:Ti

80

(ref) Γ ⊢ e:T
Γ ⊢ ref e : T ref

(assign) Γ ⊢ e1:T ref Γ ⊢ e2:T

Γ ⊢ e1 := e2:unit

(deref) Γ ⊢ e:T ref
Γ ⊢!e:T

(loc)
Γ(ℓ) = T ref

Γ ⊢ ℓ:T ref

5.6 Exercises

Exercise 28. ⋆⋆Prove Theorem 24: Type Preservation for L3.

Exercise 29. ⋆⋆Labelled variant types are a generalization of sum types, just as records are a generaliza-
tion of products. Design abstract syntax, type rules and evaluation rules for labelled variants, analogously
to the way in which records generalise products.

Exercise 30. ⋆⋆Design type rules and evaluation rules for ML-style exceptions. Start with exceptions
that do not carry any values. Hint 1: take care with nested handlers within recursive functions. Hint 2:
you might want to express your semantics using evaluation contexts.

Exercise 31. ⋆⋆⋆Extend the L2 implementation to cover all of L3.

81

6 Subtyping and Objects

Subtyping and Objects 200

Our type systems so far would all be annoying to use, as they’re quite rigid (Pascal-like). There is little
support for code reuse, so you would have to have different sorting code for, e.g., int lists and int ∗ int
lists.

Polymorphism
Ability to use expressions at many different types.

• Ad-hoc polymorphism (overloading).
e.g. in Moscow ML the built-in + can be used to add two integers or to add two
reals. (see Haskell type classes)

• Parametric Polymorphism – as in ML. See the Part II Types course.
can write a function that for any type α takes an argument of type α list and
computes its length (parametric – uniform in whatever α is)

• Subtype polymorphism – as in various OO languages. See here.
Dating back to the 1960s (Simula etc); formalized in 1980,1984,...

201

Subtyping – Motivation
Recall

(app)

Γ ⊢ e1:T → T ′

Γ ⊢ e2:T

Γ ⊢ e1 e2:T
′

so can’t type
̸⊢ (fun x:{p:int} → x.p) {p = 3, q = 4} : int

even though we’re giving the function a better argument, with more structure, than it
needs.

202

Subsumption
‘Better’? Any value of type {p:int, q:int} can be used wherever a value of type {p:int}
is expected. (*)
Introduce a subtyping relation between types, written T <: T ′, read as T is a subtype
of T ′ (a T is useful in more contexts than a T ′).
Will define it on the next slides, but it will include {p:int, q:int} <: {p:int} <: {}
Introduce a subsumption rule

(sub) Γ ⊢ e:T T <: T ′

Γ ⊢ e:T ′

allowing subtyping to be used, capturing (*).
Can then deduce {p = 3, q = 4}:{p:int}, hence can type the example.

203

82

Example

x:{p:int} ⊢ x:{p:int}
(var)

x:{p:int} ⊢ x.p:int
(record-proj)

{} ⊢ (fun x:{p:int} → x.p):{p:int} → int
(fun)

{} ⊢ 3:int
(var)

{} ⊢ 4:int
(var)∫

{} ⊢ {p = 3, q = 4}:{p:int, q:int}
(record)

(⋆)

{} ⊢ {p = 3, q = 4}:{p:int}
(sub)

{} ⊢ (fun x:{p:int} → x.p){p = 3, q = 4}:int
(app)

where (⋆) is {p:int, q:int} <: {p:int}

204

Now, we define the subtype relation.

The Subtype Relation T <: T ′

(s-refl)
T <: T

(s-trans) T <: T ′ T ′ <: T ′′

T <: T ′′

205

Subtyping – Records

Forgetting fields on the right:
{lab1:T1, .., labk:Tk, labk+1:Tk+1, .., labk+k′ :Tk+k′}
<: (s-record-width)

{lab1:T1, .., labk:Tk}
Allowing subtyping within fields:

(s-record-depth)
T1 <: T ′

1 .. Tk <: T ′
k

{lab1:T1, .., labk:Tk} <: {lab1:T ′
1, .., labk:T

′
k}

Combining these:

{p:int, q:int} <: {p:int}
(s-record-width)

{r:int} <: {}
(s-record-width)

{x:{p:int, q:int}, y:{r:int}} <: {x:{p:int}, y:{}}
(s-record-depth)

206

Another example:

{x:{p:int, q:int}, y:{r:int}} <: {x:{p:int, q:int}}
(s-rec-w)

{p:int, q:int} <: {p:int}
(s-rec-w)

{x:{p:int, q:int}} <: {x:{p:int}}
(s-rec-d)

{x:{p:int, q:int}, y:{r:int}} <: {x:{p:int}}
(s-trans)

Allowing reordering of fields:

(s-record-order)
π a permutation of 1, .., k

{lab1:T1, .., labk:Tk} <: {labπ(1):Tπ(1), .., labπ(k):Tπ(k)}

(the subtype order is not anti-symmetric – it is a preorder, not a partial order)

207

Subtyping – Functions

(s-fun)
T ′

1 <: T1 T2 <: T ′
2

T1 → T2 <: T ′
1 → T ′

2

contravariant on the left of →
covariant on the right of → (like (s-record-depth))

208

83

If f :T1 → T2 then we can give f any argument which is a subtype of T1; we can regard
the result of f as any supertype of T2. e.g., for

f = fun x:{p:int} → {p = x.p, q = 28}

we have
{} ⊢ f :{p:int} → {p:int, q:int}
{} ⊢ f :{p:int} → {p:int}
{} ⊢ f :{p:int, q:int} → {p:int, q:int}
{} ⊢ f :{p:int, q:int} → {p:int}

as
{p:int, q:int} <: {p:int}

209

On the other hand, for

fun x:{p:int, q:int} → {p = (x.p) + (x.q)}

we have
{} ⊢ f :{p:int, q:int} → {p:int}
{} ̸⊢ f :{p:int} → T for any T
{} ̸⊢ f :T → {p:int, q:int} for any T

210

Subtyping – Products
Just like (s-record-depth)

(s-pair)
T1 <: T ′

1 T2 <: T ′
2

T1 ∗ T2 <: T ′
1 ∗ T ′

2

Subtyping – Sums
Exercise.

211

Subtyping – References
Are either of these any good?

T <: T ′

T ref <: T ′ ref
T ′ <: T

T ref <: T ′ ref

No...

212

Semantics
No change (note that we’ve not changed the expression grammar).

Properties
Have Type Preservation and Progress.

Implementation
Type inference is more subtle, as the rules are no longer syntax-directed.
Getting a good runtime implementation is also tricky, especially with field re-ordering.

213

84

Subtyping – Down-casts
The subsumption rule (sub) permits up-casting at any point. How about down-casting?
We could add

e ::= ... | (T)e

with typing rule
Γ ⊢ e:T ′

Γ ⊢ (T)e:T

then you need a dynamic type-check...
This gives flexibility, but at the cost of many potential run-time errors. Many uses might
be better handled by Parametric Polymorphism, aka Generics. (cf. work by Martin Odersky
at EPFL, Lausanne, now in Java 1.5)

214

The following development is taken from [Pierce, Chapter 18], where you can find more details (including
a treatment of self and a direct semantics for a ‘featherweight’ fragment of Java).

(Very Simple) Objects

let c:{get:unit→ int, inc:unit→ unit} =
let x:int ref = ref 0 in
{get = fun y:unit→!x,
inc = fun y:unit→ x := 1+!x}

in
(c.inc)(); (c.get)()

Counter = {get:unit→ int, inc:unit→ unit}.

215

Using Subtyping

let c:{get:unit→ int, inc:unit→ unit, reset:unit→ unit} =
let x:int ref = ref 0 in
{get = fun y:unit→!x,
inc = fun y:unit→ x := 1+!x,
reset = fun y:unit→ x := 0}

in
(c.inc)(); (c.get)()

ResetCounter = {get:unit → int, inc:unit → unit, reset:unit → unit}
<: Counter = {get:unit → int, inc:unit → unit}.

216

Object Generators

let newCounter:unit→ {get:unit→ int, inc:unit→ unit} =
fun y:unit→

let x:int ref = ref 0 in
{get = fun y:unit→!x,
inc = fun y:unit→ x := 1+!x}

in
((newCounter ()).inc) ()

and onwards to simple classes...

217

85

Reusing Method Code (Simple Classes)
Recall Counter = {get:unit→ int, inc:unit→ unit}.
First, make the internal state into a record. CounterRep = {p:int ref}.

let counterClass:CounterRep → Counter =
fun x:CounterRep →
{get = fun y:unit→!(x.p),
inc = fun y:unit→ (x.p) := 1+!(x.p)}

let newCounter:unit→ Counter =
fun y:unit→

let x:CounterRep = {p = ref 0} in
counterClass x

218

Reusing Method Code (Simple Classes)

let resetCounterClass:CounterRep → ResetCounter =
fun x:CounterRep →

let super = counterClass x in
{get = super.get,
inc = super.inc,
reset = fun y:unit→ (x.p) := 0}

CounterRep = {p:int ref}.
Counter = {get:unit→ int, inc:unit→ unit}.
ResetCounter = {get:unit→ int, inc:unit→ unit, reset:unit→ unit}.

219

Reusing Method Code (Simple Classes)
class Counter

{ protected int p;

Counter() { this.p=0; }

int get () { return this.p; }

void inc () { this.p++ ; }

};

class ResetCounter

extends Counter

{ void reset () {this.p=0;}

};

220

Subtyping – Structural vs Named

A′ = {} with {p:int}
A′′ = A′ with {q:bool}
A′′′ = A′ with {r:int}

{}

{p:int}

{p:int, q:bool} {p:int, r:int}

Object (ish!)

A′

A′′ A′′

221

6.1 Exercises

Exercise 32. ⋆For each of the following, either give a type derivation or explain why it is untypable.

1. {} ⊢ {p = {p = {p = {p = 3}}}}:{p:{}}

86

2. {} ⊢ fun x:{p:bool, q:{p:int, q:bool}} → x.q.p : ?

3. {} ⊢ fun f:{p:int} → int→ (f {q = 3}) + (f {p = 4}) : ?

4. {} ⊢ fun f:{p:int} → int→ (f {q = 3,p = 2}) + (f {p = 4}) : ?

Exercise 33. ⋆For each of the two bogus T ref subtype rules on Slide 212, give an example program that
is typable with that rule but gets stuck at runtime.

Exercise 34. ⋆⋆What should the subtype rules for sums T + T ′ be?

Exercise 35. ⋆⋆...and for let and let rec ?

Exercise 36. ⋆⋆Prove a Progress Theorem for L3 with subtyping.

87

7 Concurrency

Concurrency 222

Our focus so far has been on semantics for sequential computation. But the world is not
sequential...

• hardware is intrinsically parallel (fine-grain, across words, to coarse-grain, e.g. mul-
tiple execution units)

• multi-processor machines
• multi-threading (perhaps on a single processor)
• networked machines

223

Problems
• the state-spaces of our systems become large, with the combinatorial explosion –
with n threads, each of which can be in 2 states, the system has 2n states.

• the state-spaces become complex
• computation becomes nondeterministic (unless synchrony is imposed), as different
threads operate at different speeds.

• parallel components competing for access to resources may deadlock or suffer star-
vation. Need mutual exclusion between components accessing a resource.

224

More Problems!
• partial failure (of some processes, of some machines in a network, of some persistent
storage devices). Need transactional mechanisms.

• communication between different environments (with different local resources (e.g.
different local stores, or libraries, or...)

• partial version change
• communication between administrative regions with partial trust (or, indeed, no
trust); protection against mailicious attack.

• dealing with contingent complexity (embedded historical accidents; upwards-
compatible deltas)

225

Theme: as for sequential languages, but much more so, it’s a complicated world.
Aim of this lecture: just to give you a taste of how a little semantics can be used to
express some of the fine distinctions. Primarily (1) to boost your intuition for informal
reasoning, but also (2) this can support rigorous proof about really hairy crypto protocols,
cache-coherency protocols, comms, database transactions,....
Going to define the simplest possible concurrent language, call it L1, and explore a few
issues. You’ve seen most of them informally in C&DS.

226

88

Booleans b ∈ B = {true, false}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ℓ ∈ L = {l , l0, l1, l2, ...}
Operations op ::=+ |≥
Expressions

e ::= n | b | e1 op e2 | if e1 then e2 else e3 |
ℓ := e |!ℓ |
skip | e1; e2 |
while e1 do e2 done |
e1 e2

T ::= int | bool | unit | proc
Tloc ::= intref

227

Parallel Composition: Typing and Reduction

(thread) Γ ⊢ e:unit
Γ ⊢ e:proc

(parallel) Γ ⊢ e1:proc Γ ⊢ e2:proc

Γ ⊢ e1 e2:proc

(parallel1)
⟨e1, s⟩ −→ ⟨e ′1, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e ′1 e2, s
′⟩

(parallel2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨e1 e2, s⟩ −→ ⟨e1 e ′2, s
′⟩

228

Parallel Composition: Design Choices
• threads don’t return a value
• threads don’t have an identity
• termination of a thread cannot be observed within the language
• threads aren’t partitioned into ‘processes’ or machines
• threads can’t be killed externally

229

Threads execute asynchronously – the semantics allows any interleaving of the reductions
of the threads.
All threads can read and write the shared memory.

⟨() l := 2, {l 7→ 1}⟩ // ⟨() (), {l 7→ 2}⟩

⟨l := 1 l := 2, {l 7→ 0}⟩

44

**
⟨l := 1 (), {l 7→ 2}⟩ // ⟨() (), {l 7→ 1}⟩

230

NB from here on, we are using () instead of skip — that’s the ML syntax.

But, assignments and dereferencing are atomic. For example,
⟨l := 3498734590879238429384 | l := 7, {l 7→ 0}⟩
will reduce to a state with l either 3498734590879238429384 or 7, not something with
the first word of one and the second word of the other. Implement?
But but, in (l := e) e ′, the steps of evaluating e and e ′ can be interleaved.
Think of (l := 1+!l) (l := 7+!l) – there are races....

231

89

The behaviour of (l := 1+!l) (l := 7+!l) for the initial store {l 7→ 0}:
⟨(
)
(l

:=
7
+
!l
),
{l

7→
1
}⟩

r
// •

+
// •

w
// ⟨
()

()
,
{l

7→
8
}⟩

⟨(
l
:=

1
)
(l

:=
7
+
!l
),
{l

7→
0
}⟩ r

))

w

55

⟨(
)
(l

:=
7
+

0
),
{l

7→
1
}⟩

+

))
⟨(
l
:=

1
+

0
)
(l

:=
7
+
!l
),
{l

7→
0
}⟩

r

''

+

77

⟨(
l
:=

1
)
(l

:=
7
+

0
),
{l

7→
0
}⟩ +

))

w

55

⟨(
)
(l

:=
7
),
{l

7→
1
}⟩

w
// ⟨
()

()
,
{l

7→
7
}⟩

⟨(
l
:=

1
+
!l
)
(l

:=
7
+
!l
),
{l

7→
0
}⟩

r

77

r

''

⟨(
l
:=

1
+

0
)
(l

:=
7
+

0
),
{l

7→
0
}⟩

+

55

+
))

⟨(
l
:=

1
)
(l

:=
7
),
{l

7→
0
}⟩w

55

w

))
⟨(
l
:=

1
+
!l
)
(l

:=
7
+

0
),
{l

7→
0
}⟩

r

77

+
''

⟨(
l
:=

1
+

0
)
(l

:=
7
),
{l

7→
0
}⟩+

55

w

))

⟨l
:=

1
()
,
{l

7→
7
}⟩

w
// ⟨
()

()
,
{l

7→
1
}⟩

⟨(
l
:=

1
+
!l
)
(l

:=
7
),
{l

7→
0
}⟩r

55

w

))

⟨l
:=

1
+

0
()
,
{l

7→
7
}⟩

+

55

⟨l
:=

1
+
!l

()
,
{l

7→
7
}⟩

r
// •

+
// •

w
// ⟨
()

()
,
{l

7→
8
}⟩

90

Note that the labels +, w and r in the picture are just informal hints as to how those transitions were
derived – they are not actually part of the reduction relation.

Some of the nondeterministic choices “don’t matter”, as you can get back to the same state. Others do...

Morals
• There is a combinatorial explosion.
• Drawing state-space diagrams only works for really tiny examples – we need better
techniques for analysis.

• Almost certainly you (as the programmer) didn’t want all those 3 outcomes to be
possible – need better idioms or constructs for programming.

232

So, how do we get anything coherent done?
Need some way(s) to synchronize between threads, so can enforce mutual exclusion for
shared data.
cf. Lamport’s “Bakery” algorithm from Concurrent and Distributed Systems. Can you
code that in L1? If not, what’s the smallest extension required?
Usually, though, you can depend on built-in support from the scheduler, e.g. for mutexes
and condition variables (or, at a lower level, tas or cas).

233

See this – in the library – for a good discussion of mutexes and condition variables: A. Birrell, J. Guttag,
J. Horning, and R. Levin. Thread synchronization: a Formal Specification. In G. Nelson, editor, System
Programming with Modula-3, chapter 5, pages 119-129. Prentice-Hall, 1991.

See N. Lynch. Distributed Algorithms for other mutual exclusion algorithms (and much else besides).

Consider simple mutexes, with commands to lock an unlocked mutex and to unlock a locked mutex (and
do nothing for an unlock of an unlocked mutex).

Adding Primitive Mutexes
Mutex names m ∈ M = {m,m1, ...}
Configurations ⟨e, s,M ⟩ where M :M→ B is the mutex state
Expressions e ::= ... | lock m | unlock m

(lock)
Γ ⊢ lock m:unit

(unlock)
Γ ⊢ unlock m:unit

(lock) ⟨lock m, s,M ⟩ −→ ⟨(), s,M + {m 7→ true}⟩ if ¬M (m)

(unlock) ⟨unlock m, s,M ⟩ −→ ⟨(), s,M + {m 7→ false}⟩

234

Note that (lock) atomically (a) checks the mutex is currently false, (b) changes its state, and (c) lets the
thread proceed.

Also, there is no record of which thread is holding a locked mutex.

Need to adapt all the other semantic rules to carry the mutex state M around. For
example, replace

(op2)
⟨e2, s⟩ −→ ⟨e ′2, s ′⟩

⟨v op e2, s⟩ −→ ⟨v op e ′2, s
′⟩

by

(op2)
⟨e2, s,M ⟩ −→ ⟨e ′2, s ′,M ′⟩

⟨v op e2, s,M ⟩ −→ ⟨v op e ′2, s
′,M ′⟩

235

91

Using a Mutex
Consider
e = (lock m; l := 1+!l ;unlock m) (lock m; l := 7+!l ;unlock m)
The behaviour of ⟨e, s,M ⟩, with the initial store s = {l 7→ 0} and initial mutex state
M0 = λm ∈ M.false, is:

⟨(l := 1+!l ; unlock m) (lock m; l := 7+!l ; unlock m), s,M ′⟩

((
⟨e, s,M0⟩

lock m

88

lock m

&&

⟨() (), {l 7→ 8},M ⟩

⟨(lock m; l := 1+!l ; unlock m) (l := 7+!l ; unlock m), s,M ′⟩

66

(where M ′ = M0 + {m 7→ true})

236

In all the intervening states (until the first unlock) the second lock can’t proceed.

Look back to behaviour of the program without mutexes. We’ve essentially cut down to the top and
bottom paths (and also added some extra reductions for lock , unlock , and ;).

In this example, l := 1+!l and l := 7+!l commute, so we end up in the same final state whichever got the
lock first. In general, that won’t be the case.

Using Several Mutexes
lock m can block (that’s the point). Hence, you can deadlock.

e = (lock m1; lock m2; l1 :=!l2;unlock m1;unlock m2)
(lock m2; lock m1; l2 :=!l1;unlock m1;unlock m2)

237

Locking Disciplines
So, suppose we have several programs e1, ..., ek, all well-typed with Γ ⊢ ei:unit, that we
want to execute concurrently without ‘interference’ (whatever that is). Think of them as
transaction bodies.
There are many possible locking disciplines. We’ll focus on one, to see how it – and the
properties it guarantees – can be made precise and proved.

238

An Ordered 2PL Discipline, Informally
Concurrent & Distributed Systems, Lecture 7:

• Associate a lock with every object
– Could be mutual exclusion, or MRSW

• Transactions proceed in two phases:
– Expanding Phase: during which locks are acquired but none are released,
– Shrinking Phase: during which locks are released, and no further are acquired.

• Operations on objects occur in either phase, providing appropriate locks are held
– Guarantees serializable execution.

...
• Non-Strict Isolation: releasing locks during execution means others can access those objects

– Fixed using strict 2PL: hold all locks until transaction end.

239

An Ordered 2PL Discipline, still informally but less so
Fix an association between locations and mutexes. For simplicity, make it 1:1 – associate
l with m, l1 with m1, etc.
Fix a lock acquisition order. For simplicity, make it m,m0,m1,m2,
Require that each ei

• acquires the lock mj for each location lj it uses, before it uses it
• acquires and releases each lock in a properly-bracketed way
• does not acquire any lock after it’s released any lock (two-phase)
• acquires locks in increasing order

Then, informally, (e1 ... ek) should (a) never deadlock, and (b) be serializable – any exe-
cution of it should be ‘equivalent’ to an execution of eπ(1); ...; eπ(k) for some permutation
π.

240

These are semantic properties again. In general, it won’t be computable whether they hold. For simple
ei, though, it’s often obvious. Further, one can construct syntactic disciplines that are checkable and are

92

sufficient to guarantee these.

Problem: Need a Thread-Local Semantics
Our existing semantics defines the behaviour only of global configurations ⟨e, s,M ⟩. To
state properties of subexpressions, e.g.

• ei acquires the lock mj for each location lj it uses, before it uses it
which really means

• in any execution of ⟨(e1 ... ei ... ek), s,M ⟩, ei acquires the lock mj for each loca-
tion lj it uses, before it uses it

we need some notion of the behaviour of the thread ei on its own

241

Solution: Thread local semantics
Instead of only defining the global ⟨e, s,M ⟩ −→ ⟨e ′, s ′,M ′⟩, with rules

(assign1) ⟨ℓ := n, s,M ⟩ −→ ⟨skip, s + {ℓ 7→ n},M ⟩ if ℓ ∈ dom(s)

(parallel1)
⟨e1, s,M ⟩ −→ ⟨e ′

1, s
′,M ′⟩

⟨e1 e2, s,M ⟩ −→ ⟨e ′
1 e2, s

′,M ′⟩

define a per-thread e
a−→ e ′ and use that to define ⟨e, s,M ⟩ −→ ⟨e ′, s ′,M ′⟩, with rules

like
(t-assign1) ℓ := n

ℓ:=n−→ skip

(t-parallel1)
e1

a−→ e ′
1

e1 e2
a−→ e ′

1 e2

(c-assign)
e

ℓ:=n−→ e ′ ℓ ∈ dom(s)

⟨e, s,M ⟩ −→ ⟨e ′, s + {ℓ 7→ n},M ⟩

242

Note the per-thread rules don’t mention s or M . Instead, we record in the label a what
interactions with the store or mutexes it has.

a ::= τ | ℓ := n |!ℓ = n | lock m | unlock m

Conventionally, τ (tau), stands for “no interactions”, so e
τ−→ e ′ if e does an internal

step, not involving the store or mutexes.

Theorem 27 (Coincidence of global and thread-local semantics) The two definitions
of −→ agree exactly.

Proof strategy: a couple of rule inductions.

243

The full thread local semantics are on the next page.

Example of Thread-local transitions
For e = (lock m; (l := 1+!l ;unlock m)) we have

e
lock m−→ skip; (l := 1+!l ;unlock m)
τ−→ (l := 1+!l ;unlock m)

!l=n−→ (l := 1 + n;unlock m) for any n ∈ Z
τ−→ (l := n ′;unlock m) for n ′ = 1 + n

l:=n′

−→ skip;unlock m
τ−→ unlock m

unlock m−→ skip

Hence, using (t-parallel) and the (c-*) rules, for s ′ = s + {l 7→ 1 + s(l)},
⟨e e ′, s,M0⟩ −→−→−→−→−→−→−→ ⟨skip e ′, s ′,M0⟩

244

(need l ∈ dom(s) also)

93

One often uses similar labelled transitions in defining communication between threads (or machines), and
also in working with observational equivalences for concurrent languages (cf. bisimulation) – to come in
Topics in Concurrency.

94

Global Semantics Thread-Local Semantics

(op +) ⟨n1 + n2, s,M ⟩ −→ ⟨n, s,M ⟩ if n = n1 + n2

(op ≥) ⟨n1 ≥ n2, s,M ⟩ −→ ⟨b, s,M ⟩ if b = (n1 ≥ n2)

(op1)
⟨e1, s,M ⟩ −→ ⟨e ′

1, s
′,M ′⟩

⟨e1 op e2, s,M ⟩ −→ ⟨e ′
1 op e2, s

′,M ′⟩

(op2)
⟨e2, s,M ⟩ −→ ⟨e ′

2, s
′,M ′⟩

⟨v op e2, s,M ⟩ −→ ⟨v op e ′
2, s

′,M ′⟩

(deref) ⟨!ℓ, s,M ⟩ −→ ⟨n, s,M ⟩ if ℓ ∈ dom(s) and s(ℓ) = n

(assign1) ⟨ℓ := n, s,M ⟩ −→ ⟨skip, s + {ℓ 7→ n},M ⟩ if ℓ ∈ dom(s)

(assign2)
⟨e, s,M ⟩ −→ ⟨e ′, s ′,M ′⟩

⟨ℓ := e, s,M ⟩ −→ ⟨ℓ := e ′, s ′,M ′⟩

(seq1) ⟨skip; e2, s,M ⟩ −→ ⟨e2, s,M ⟩

(seq2)
⟨e1, s,M ⟩ −→ ⟨e ′

1, s
′,M ′⟩

⟨e1; e2, s,M ⟩ −→ ⟨e ′
1; e2, s

′,M ′⟩

(if1) ⟨if true then e2 else e3, s,M ⟩ −→ ⟨e2, s,M ⟩

(if2) ⟨if false then e2 else e3, s,M ⟩ −→ ⟨e3, s,M ⟩

(if3)
⟨e1, s,M ⟩ −→ ⟨e ′

1, s
′,M ′⟩

⟨if e1 then e2 else e3, s,M ⟩ −→ ⟨if e ′
1 then e2 else e3, s

′,M ′⟩

(while)
⟨while e1 do e2 done , s,M ⟩ −→ ⟨if e1 then (e2;while e1 do e2 done) else skip, ⟩

(parallel1)
⟨e1, s,M ⟩ −→ ⟨e ′

1, s
′,M ′⟩

⟨e1 e2, s,M ⟩ −→ ⟨e ′
1 e2, s

′,M ′⟩

(parallel2)
⟨e2, s,M ⟩ −→ ⟨e ′

2, s
′,M ′⟩

⟨e1 e2, s,M ⟩ −→ ⟨e1 e ′
2, s

′,M ′⟩

(lock) ⟨lock m, s,M ⟩ −→ ⟨(), s,M + {m 7→ true}⟩ if ¬M (m)

(unlock) ⟨unlock m, s,M ⟩ −→ ⟨(), s,M + {m 7→ false}⟩

(t-op +) n1 + n2
τ−→ n if n = n1 + n2

(t-op ≥) n1 ≥ n2
τ−→ b if b = (n1 ≥ n2)

(t-op1)
e1

a−→ e ′
1

e1 op e2
a−→ e ′

1 op e2

(t-op2)
e2

a−→ e ′
2

v op e2
a−→ v op e ′

2

(t-deref) !ℓ
!ℓ=n−→ n

(t-assign1) ℓ := n
ℓ:=n−→ skip

(t-assign2)
e

a−→ e ′

ℓ := e
a−→ ℓ := e ′

(t-seq1) skip; e2
τ−→ e2

(t-seq2)
e1

a−→ e ′
1

e1; e2
a−→ e ′

1; e2

(t-if1) if true then e2 else e3
τ−→ e2

(t-if2) if false then e2 else e3
τ−→ e3

(t-if3)
e1

a−→ e ′
1

if e1 then e2 else e3
a−→ if e ′

1 then e2 else e3

(t-while)

while e1 do e2 done
τ−→ if e1 then (e2;while e1 do e2 done) else skip

(t-parallel1)
e1

a−→ e ′
1

e1 e2
a−→ e ′

1 e2

(t-parallel2)
e2

a−→ e ′
2

e1 e2
a−→ e1 e ′

2

(t-lock) lock m
lock m−→ ()

(t-unlock) unlock m
unlock m−→ ()

(c-tau) e
τ−→ e ′

⟨e, s,M ⟩ −→ ⟨e ′, s,M ⟩

(c-assign)
e

ℓ:=n−→ e ′ ℓ ∈ dom(s)

⟨e, s,M ⟩ −→ ⟨e ′, s + {ℓ 7→ n},M ⟩
(c-lock)

e
lock m−→ e ′ ¬ M (m)

⟨e, s,M ⟩ −→ ⟨e ′, s,M + {m 7→ true}⟩

(c-deref)
e

!ℓ=n−→ e ′ ℓ ∈ dom(s) ∧ s(ℓ) = n

⟨e, s,M ⟩ −→ ⟨e ′, s,M ⟩
(c-unlock) e

unlock m−→ e ′

⟨e, s,M ⟩ −→ ⟨e ′, s,M + {m 7→ false}⟩

95

Now can make the Ordered 2PL Discipline precise
Say e obeys the discipline if for any (finite or infinite) e

a1−→ e1
a2−→ e2

a3−→ ...
• if ai is (lj := n) or (!lj = n) then for some k < i we have ak = lock mj without
an intervening unlock mj .

• for each j , the subsequence of a1, a2, ... with labels lock mj and unlock mj is a

prefix of ((lock mj)(unlock mj))
∗. Moreover, if ¬(ek

a−→) then the subsequence
does not end in a lock mj .

• if ai = lock mj and ai′ = unlock mj′ then i < i′

• if ai = lock mj and ai′ = lock mj′ and i < i′ then j < j′

245

... and make the guaranteed properties precise
Say e1, ..., ek are serializable if for any initial store s, if ⟨(e1 ... ek), s,M0⟩ −→∗

⟨e ′, s ′,M ′⟩ ̸−→ then for some permutation π we have ⟨eπ(1); ...; eπ(k), s,M0⟩ −→∗

⟨e ′′, s ′,M ′⟩.
Say they are deadlock-free if for any initial store s, if ⟨(e1 ... ek), s,M0⟩ −→∗

⟨e ′, s ′,M ⟩ ̸−→ then not e ′
lock m−→ e ′′,

i.e.e ′ does not contain any blocked lock m subexpressions.
(Warning: there are many subtle variations of these properties!)

246

The Theorem

Conjecture 28If each ei obeys the discipline, then e1, ...ek are serializable and deadlock-
free.

(may be false!)
Proof strategy: Consider a (derivation of a) computation
⟨(e1 ... ek), s,M0⟩ −→ ⟨ê1, s1,M1⟩ −→ ⟨ê2, s2,M2⟩ −→ ...
We know each êi is a corresponding parallel composition. Look at the points at which
each ei acquires its final lock. That defines a serialization order. In between times,
consider commutativity of actions of the different ei – the premises guarantee that many
actions are semantically independent, and so can be permuted.

247

We’ve not discussed fairness – the semantics allows any interleaving between parallel
components, not only fair ones.

248

Language Properties
(Obviously!) don’t have Determinacy.
Still have Type Preservation.
Have Progress, but it has to be modified – a well-typed expression of type proc will reduce
to some parallel composition of unit values.
Typing and type inference is scarcely changed.
(very fancy type systems can be used to enforce locking disciplines)

249

7.1 Exercises

Exercise 37. ⋆⋆Are the mutexes specified here similar to those described in C&DS?

Exercise 38. ⋆⋆Can you show all the conditions for O2PL are necessary, by giving for each an example
that satisfies all the others and either is not serialisable or deadlocks?

Exercise 39. ⋆⋆⋆⋆Prove the Conjecture about it.

Exercise 40. ⋆⋆⋆Write a semantics for an extension of L1 with threads that are more like Unix threads
(e.g. with thread ids, fork, etc..). Include some of the various ways Unix threads can exchange informa-
tion.

96

8 Semantic Equivalence

Semantic Equivalence 250

2 + 2
?≃ 4

In what sense are these two expressions the same?
They have different abstract syntax trees.
They have different reduction sequences.
But, you’d hope that in any program you could replace one by the other without affecting
the result.... ∫ 2+2

0

esin(x)dx =

∫ 4

0

esin(x)dx

251

How about (l := 0; 4)
?≃ (l := 1; 3+!l)

They will produce the same result (in any store), but you cannot replace one by the other
in an arbitrary program context. For example:
C [] = +!l

C [l := 0; 4] = (l := 0; 4)+!l
̸≃

C [l := 1; 3+!l] = (l := 1; 3+!l)+!l

On the other hand, consider

(l :=!l + 1); (l :=!l − 1)
?≃ (l :=!l)

252

Those were all particular expressions – may want to know that some general laws are
valid for all e1, e2, How about these:

e1; (e2; e3)
?≃ (e1; e2); e3

(if e1 then e2 else e3); e
?≃ if e1 then e2; e else e3; e

e; (if e1 then e2 else e3)
?≃ if e1 then e; e2 else e; e3

e; (if e1 then e2 else e3)
?≃ if e; e1 then e2 else e3

253

let x = ref 0 in fun y:int→ (x :=!x + y); !x
?≃

let x = ref 0 in fun y:int→ (x :=!x− y); (0−!x)
254

97

Temporarily extend L3 with pointer equality

op ::= ... |=

(op =)

Γ ⊢ e1:T ref
Γ ⊢ e2:T ref

Γ ⊢ e1 = e2:bool

(op =) ⟨ℓ = ℓ′, s⟩ −→ ⟨b, s⟩ if b = (ℓ = ℓ′)

255

f = let x = ref 0 in
let y = ref 0 in
fun z:int ref → if z = x then y else x

&\\
g = let x = ref 0 in

let y = ref 0 in
fun z:int ref → if z = y then y else x

f
?≃ g

256

The last two examples are taken from A.M. Pitts, Operational Semantics and Program Equivalence. In:
G. Barthe, P. Dybjer and J. Saraiva (Eds), Applied Semantics. Lecture Notes in Computer Science, Tuto-
rial, Volume 2395 (Springer-Verlag, 2002), pages 378-412. http://www.cl.cam.ac.uk/~amp12/papers/
opespe/opespe-lncs.pdf

With a ‘good’ notion of semantic equivalence, we might:
1. understand what a program is
2. prove that some particular expression (say an efficient algorithm) is equivalent to

another (say a clear specification)
3. prove the soundness of general laws for equational reasoning about programs
4. prove some compiler optimizations are sound (source/IL/TAL)
5. understand the differences between languages

257

What does it mean for ≃ to be ‘good’?
1. programs that result in observably-different values (in some initial store) must not

be equivalent
(∃ s, s1, s2, v1, v2.⟨e1, s⟩ −→∗ ⟨v1, s1⟩ ∧ ⟨e2, s⟩ −→∗ ⟨v2, s2⟩ ∧ v1 ̸= v2)⇒ e1 ̸≃ e2

2. programs that terminate must not be equivalent to programs that don’t
3. ≃ must be an equivalence relation

e ≃ e, e1 ≃ e2 ⇒ e2 ≃ e1, e1 ≃ e2 ≃ e3 =⇒ e1 ≃ e3
4. ≃ must be a congruence

if e1 ≃ e2 then for any context C we must have C [e1] ≃ C [e2]
5. ≃ should relate as many programs as possible subject to the above.

258

Semantic Equivalence for L1
Consider Typed L1 again.
Define e1 ≃T

Γ e2 to hold iff forall s such that dom(Γ) ⊆ dom(s), we have Γ ⊢ e1:T ,
Γ ⊢ e2:T , and either
(a) ⟨e1, s⟩ −→ω and ⟨e2, s⟩ −→ω, or
(b) for some v , s ′ we have ⟨e1, s⟩ −→∗ ⟨v , s ′⟩ and ⟨e2, s⟩ −→∗ ⟨v , s ′⟩.

259

In this definition, part (b), we require that e1 and e2 result in the same value and moreover the same
store. This is because, if we were to equate two programs e1 and e2 that result in different stores — say
s1(l)̸= s2(l) — then we could distinguish them using the following contexts, and the semantic equivalence

98

would not be a congruence.

If T = unit then C = ; !l .
If T = bool then C = if then !l else !l .
If T = int then C = l1 := ; !l .

260

Congruence for Typed L1
The L1 contexts are:

C ::= op e2 | e1 op |
if then e2 else e3 | if e1 then else e3 |
if e1 then e2 else |
ℓ := |
; e2 | e1; |
while do e2 done | while e1 do done

Say ≃T
Γ has the congruence property if whenever e1 ≃T

Γ e2 we have, for all C and T ′,

if Γ ⊢ C [e1]:T
′ and Γ ⊢ C [e2]:T

′ then C [e1] ≃T ′

Γ C [e2].

261

Theorem 29 (Congruence for L1) ≃T
Γ has the congruence property.

Proof Outline By case analysis, looking at each L1 context C in turn.
For each C (and for arbitrary e and s), consider the possible reduction sequences
⟨C [e], s⟩ −→ ⟨e1, s1⟩ −→ ⟨e2, s2⟩ −→ ...
For each such reduction sequence, deduce what behaviour of e was involved
⟨e, s⟩ −→ ⟨ê1, ŝ1⟩ −→ ...
Using e ≃T

Γ e ′ find a similar reduction sequence of e ′.
Using the reduction rules construct a sequence of C [e ′].

262

Theorem 29 (Congruence for L1) ≃T
Γ has the congruence property.

Proof. By case analysis, looking at each L1 context in turn. We give only one case here, leaving the
others for the reader.

Case C = (ℓ :=). Suppose e ≃T
Γ e ′, Γ ⊢ ℓ := e:T ′ and Γ ⊢ ℓ := e ′:T ′. By examining the typing rules

we have T = int and T ′ = unit.

To show ℓ := e ≃T ′

Γ ℓ := e ′ we have to show for all s such that dom(Γ) ⊆ dom(s), then
Γ ⊢ ℓ := e:T ′ (

√
), Γ ⊢ ℓ := e ′:T ′ (

√
), and either

1. ⟨ℓ := e, s⟩ −→ω and ⟨ℓ := e ′, s⟩ −→ω, or

2. for some v , s ′ we have ⟨ℓ := e, s⟩ −→∗ ⟨v , s ′⟩ and ⟨ℓ := e ′, s⟩ −→∗ ⟨v , s ′⟩.

Consider the possible reduction sequences of a state ⟨ℓ := e, s⟩. Recall that (by examining the
reduction rules), if ⟨ℓ := e, s⟩ −→ ⟨e1, s1⟩ then either that is an instance of (assign1), with ∃ n.e =
n ∧ ℓ ∈ dom(s) ∧ e1 = skip ∧ s ′ = s + {ℓ 7→ n}, or it is an instance of (assign2), with ∃ ê1.⟨e, s⟩ −→
⟨ê1, s1⟩ ∧ e1 = (ℓ := ê1). We know also that ⟨skip, s⟩ does not reduce.

Now (using Determinacy), for any e and s we have either

Case: ⟨ℓ := e, s⟩ −→ω, i.e.

⟨ℓ := e, s⟩ −→ ⟨e1, s1⟩ −→ ⟨e2, s2⟩ −→ ...

hence all these must be instances of (assign2), with

⟨e, s⟩ −→ ⟨ê1, s1⟩ −→ ⟨ê2, s2⟩ −→ ...

and e1 = (ℓ := ê1), e2 = (ℓ := ê2),...

Case: ¬(⟨ℓ := e, s⟩ −→ω), i.e.

⟨ℓ := e, s⟩ −→ ⟨e1, s1⟩ −→ ⟨e2, s2⟩... −→ ⟨ek, sk⟩ ̸−→

99

hence all these must be instances of (assign2) except the last, which must be an instance of
(assign1), with

⟨e, s⟩ −→ ⟨ê1, s1⟩ −→ ⟨ê2, s2⟩ −→ ... −→ ⟨êk−1, sk−1⟩

and e1 = (ℓ := ê1), e2 = (ℓ := ê2),..., ek−1 = (ℓ := êk−1) and for some n we have êk−1 = n,
ek = skip, and sk = sk−1 + {ℓ 7→ n}.

(the other possibility, of zero or more (assign1) reductions ending in a stuck state, is excluded
by Theorems 2 and 3 (type preservation and progress))

Now, if ⟨ℓ := e, s⟩ −→ω, by the above there is an infinite reduction sequence for ⟨e, s⟩, so by
e ≃T

Γ e ′ there is an infinite reduction sequence of ⟨e ′, s⟩, so (using (assign2)) there is an infinite
reduction sequence of ⟨ℓ := e ′, s⟩.

On the other hand, if ¬(⟨ℓ := e, s⟩ −→ω) then by the above there is some n and sk−1 such that
⟨e, s⟩ −→∗ ⟨n, sk−1⟩ and ⟨ℓ := e, s⟩ −→ ⟨skip, sk−1 + {ℓ 7→ n}⟩. By e ≃T

Γ e ′ we have ⟨e ′, s⟩ −→∗

⟨n, sk−1⟩. Then using (assign1) ⟨ℓ := e ′, s⟩ −→∗ ⟨ℓ := n, sk−1⟩ −→ ⟨skip, sk−1 + {ℓ 7→ n} = ⟨ek, sk⟩
as required.

Back to the Examples
We defined e1 ≃T

Γ e2 iff for all s such that dom(Γ) ⊆ dom(s), we have Γ ⊢ e1:T ,
Γ ⊢ e2:T , and either

1. ⟨e1, s⟩ −→ω and ⟨e2, s⟩ −→ω, or
2. for some v , s ′ we have ⟨e1, s⟩ −→∗ ⟨v , s ′⟩ and ⟨e2, s⟩ −→∗ ⟨v , s ′⟩.

So:
2 + 2 ≃int

Γ 4 for any Γ
(l := 0; 4) ̸≃int

Γ (l := 1; 3+!l) for any Γ
(l :=!l + 1); (l :=!l − 1) ≃unit

Γ (l :=!l) for any Γ including l :intref

263

And the general laws?

Conjecture 30e1; (e2; e3) ≃T
Γ (e1; e2); e3 for any Γ, T , e1, e2 and e3 such that Γ ⊢

e1:unit, Γ ⊢ e2:unit, and Γ ⊢ e3:T

Conjecture 31((if e1 then e2 else e3); e) ≃T
Γ (if e1 then e2; e else e3; e) for any

Γ, T , e, e1, e2 and e3 such that Γ ⊢ e1:bool, Γ ⊢ e2:unit, Γ ⊢ e3:unit, and Γ ⊢ e:T

Conjecture 32(e; (if e1 then e2 else e3)) ≃T
Γ (if e1 then e; e2 else e; e3) for any

Γ, T , e, e1, e2 and e3 such that Γ ⊢ e:unit, Γ ⊢ e1:bool, Γ ⊢ e2:T , and Γ ⊢ e3:T

264

Q: Is a typed expression Γ ⊢ e:T , e.g. l :intref ⊢ if !l ≥ 0 then skip else (skip; l :=
0):unit:

1. a list of tokens [IF, DEREF, LOC "l", GTEQ, ..];
2. an abstract syntax tree if then else

≥ skip ;

!l 0 skip l :=

0

;

3. the function taking store s to the reduction sequence ⟨e, s⟩ −→ ⟨e1, s1⟩ −→
⟨e2, s2⟩ −→ ...; or

4. • the equivalence class {e ′ | e ≃T
Γ e ′}

• the partial function [[e]]Γ that takes any store s with dom(s) = dom(Γ) and
either is undefined, if ⟨e, s⟩ −→ω, or is ⟨v , s ′⟩, if ⟨e, s⟩ −→∗ ⟨v , s ′⟩

265

(the Determinacy theorem tells us that this is a definition of a function).

Suppose Γ ⊢ e1:unit and Γ ⊢ e2:unit.
When is e1; e2 ≃unit

Γ e2; e1 ?
266

A sufficient condition: they don’t mention any locations (but not necessary... e.g. if e1 does but e2
doesn’t)

100

8.1 Contextual equivalence

The definition of semantic equivalence works fine for L1. However, when we come to L2 and L3, the
simple notion does not give a congruence.

Here is a basic definition of an equivalence for L3.

Contextual equivalence for L3

Definition 33Consider typed L3 programs, Γ ⊢ e1:T and Γ ⊢ e2:T . We say that
they are contextually equivalent if, for every context C such that {} ⊢ C [e1]:unit and
{} ⊢ C [e2]:unit, we have either
(a) ⟨C [e1], {}⟩ −→ω and ⟨C [e2], {}⟩ −→ω, or
(b) for some s1 and s2 we have ⟨C [e1], {}⟩ −→∗ ⟨skip, s1⟩ and ⟨C [e2], {}⟩ −→∗

⟨skip, s2⟩.

267

Notice that contextual equivalence is a congruence by definition.

Contextual equivalence is undecidable in general. An important research topic is finding techniques for
proving contextual equivalence.

8.2 Exercises

Exercise 41. ⋆⋆Prove some of the other cases of the Congruence theorem for semantic equivalence in
L1.

Exercise 42. ⋆⋆Prove that if Γ1 ⊢ e1:unit and Γ2 ⊢ e2:unit in L1, and Γ1 is disjoint from Γ2 , then
e1; e2 ≃unit

Γ e2; e1 where Γ = Γ1 ∪ Γ2

Exercise 43. ⋆⋆Prove that the programs l :int ref ⊢ l := 0:unit and l :int ref ⊢ l := 1:unit, considered as
L3 programs, are not contextually equivalent. Hint: find a context that will diverge for one of them, but
not for the other.

9 Semantics in practice

Semantics in practice 268

A Little History
Formal logic 1880–
Untyped lambda calculus 1930s
Simply-typed lambda calculus 1940s
Fortran 1950s
Curry-Howard, Algol 60, Algol 68, SECD machine (64) 1960s
Pascal, Polymorphism, ML, PLC 1970s
Structured Operational Semantics 1981–
Standard ML definition 1985
Haskell 1987
Subtyping 1980s
Module systems 1980–
Object calculus 1990–
Typed assembly and intermediate languages 1990–

269

101

Low-level semantics 270

10 Epilogue

Epilogue 271

Lecture Feedback
Please do fill in the lecture feedback form – we need to know how the course could be
improved / what should stay the same.

272

Good language design?
Need:

• precise definition of what the language is (so can communicate among the designers)
• technical properties (determinacy, decidability of type checking, etc.)
• pragmatic properties (usability in-the-large, implementability)

273

What can you use semantics for?
1. to understand a particular language — what you can depend on as a programmer;

what you must provide as a compiler writer
2. as a tool for language design:

(a) for clean design
(b) for expressing design choices, understanding language features and how they

interact.
(c) for proving properties of a language, eg type safety, decidability of type infer-

ence.
3. as a foundation for proving properties of particular programs

274

102

103

A Interpreter and type checker for L1 (OCaml)

(* 2015-10-13 -*-ocaml-*- *)

(* Peter Sewell *)

(* This file contains an interpreter, pretty-printer and type-checker

for the language L1. To make it go interactively, copy it into a working

directory, ensure OCaml is available, and either use it in the OCaml

interactive top-level, by:

ocaml

#use "l1_ocaml.ml";;

or compile it, with:

ocamlc l1_ocaml.ml

That will build an executable a.out, and typing

./a.out

will show the reduction sequence of < l1:=3;!l1 , {l1=0 } >.

You can edit the file and recompile to run

doit2 ();

to run the type-checker on the same simple example; you can try

other examples analogously. This file doesn’t have a parser for

l1, so you’ll have to enter the abstract syntax directly, eg

prettyreduce (Seq(Assign ("l1",Integer 3), Deref "l1"), [("l1",0)]);

*)

(* *********************)

(* the abstract syntax *)

(* *********************)

type loc = string

type oper = Plus | GTEQ

type expr =

| Integer of int

| Boolean of bool

| Op of expr * oper * expr

| If of expr * expr * expr

| Assign of loc * expr

| Deref of loc

| Skip

| Seq of expr * expr

| While of expr * expr

(* **********************************)

(* an interpreter for the semantics *)

(* **********************************)

let is_value v =

match v with

| Integer n -> true

| Boolean b -> true

104

| Skip -> true

| _ -> false

(* In the semantics, a store is a finite partial function from

locations to integers. In the implementation, we represent a store

as a list of loc*int pairs containing, for each l in the domain of

the store, exactly one element of the form (l,n). The operations

lookup : store -> loc -> int option

update : store -> (loc * int) -> store option

both return NONE if given a location that is not in the domain of

the store. This is not a very efficient implementation, but it is

simple. *)

type store = (loc * int) list

let rec lookup s l =

match s with

| [] -> None

| (l’,n’)::s’ ->

if l=l’ then Some n’ else lookup s’ l

let rec update’ front s (l,n) =

match s with

| [] -> None

| (l’,n’)::s’ ->

if l=l’ then

Some(front @ ((l,n)::s’))

else

update’ ((l’,n’)::front) s’ (l,n)

let update s (l,n) = update’ [] s (l,n)

(* now define the single-step function

reduce : expr * store -> (expr * store) option

which takes a configuration (e,s) and returns either None, if it has

no transitions, or Some (e’,s’), if it has a transition (e,s) -->

(e’,s’).

Note that the code depends on global properties of the semantics,

including the fact that it defines a deterministic transition

system, so the comments indicating that particular lines of code

implement particular semantic rules are not the whole story. *)

let rec reduce (e,s) =

match e with

| Integer n -> None

| Boolean b -> None

| Op (e1,opr,e2) ->

(match (e1,opr,e2) with

| (Integer n1, Plus, Integer n2) -> Some(Integer (n1+n2), s) (*op + *)

| (Integer n1, GTEQ, Integer n2) -> Some(Boolean (n1 >= n2), s)(*op >=*)

| (e1,opr,e2) -> (

if (is_value e1) then

(match reduce (e2,s) with

| Some (e2’,s’) -> Some (Op(e1,opr,e2’),s’) (* (op2) *)

| None -> None)

else

(match reduce (e1,s) with

105

| Some (e1’,s’) -> Some(Op(e1’,opr,e2),s’) (* (op1) *)

| None -> None)))

| If (e1,e2,e3) ->

(match e1 with

| Boolean(true) -> Some(e2,s) (* (if1) *)

| Boolean(false) -> Some(e3,s) (* (if2) *)

| _ ->

(match reduce (e1,s) with

| Some(e1’,s’) -> Some(If(e1’,e2,e3),s’) (* (if3) *)

| None -> None))

| Deref l ->

(match lookup s l with

| Some n -> Some(Integer n,s) (* (deref) *)

| None -> None)

| Assign (l,e) ->

(match e with

| Integer n ->

(match update s (l,n) with

| Some s’ -> Some(Skip, s’) (* (assign1) *)

| None -> None)

| _ ->

(match reduce (e,s) with

| Some (e’,s’) -> Some(Assign (l,e’), s’) (* (assign2) *)

| None -> None))

| While (e1,e2) -> Some(If(e1,Seq(e2,While(e1,e2)),Skip),s) (* (while) *)

| Skip -> None

| Seq (e1,e2) ->

(match e1 with

| Skip -> Some(e2,s) (* (seq1) *)

| _ ->

(match reduce (e1,s) with

| Some (e1’,s’) -> Some(Seq (e1’,e2), s’) (* (seq2) *)

| None -> None))

(* now define the many-step evaluation function

evaluate : expr * store -> (expr * store) option

which takes a configuration (e,s) and returns the unique (e’,s’)

such that (e,s) -->* (e’,s’) -/->. *)

let rec evaluate (e,s) =

match reduce (e,s) with

| None -> (e,s)

| Some (e’,s’) -> evaluate (e’,s’)

(* **********************************)

(* typing *)

(* **********************************)

(* types *)

type type_L1 =

| Ty_int

| Ty_unit

| Ty_bool

type type_loc =

| Ty_intref

type typeEnv = (loc*type_loc) list

106

(* in the semantics, type environments gamma are partial functions

from locations to the singleton set {intref}. Here, just as we did for

stores, we represent them as a list of loc*type_loc pairs containing,

for each l in the domain of the type environment, exactly one element

of the form (l,intref). *)

(* ****************)

(* type inference *)

(* ****************)

(* infertype : typeEnv -> expr -> type_L1 option *)

(* again, we depend on a uniqueness property, without which we would

have to have infertype return a type_L1 list of all the possible types *)

let rec infertype gamma e =

match e with

| Integer n -> Some Ty_int

| Boolean b -> Some Ty_bool

| Op (e1,opr,e2) ->

(match (infertype gamma e1, opr, infertype gamma e2) with

| (Some Ty_int, Plus, Some Ty_int) -> Some Ty_int

| (Some Ty_int, GTEQ, Some Ty_int) -> Some Ty_bool

| _ -> None)

| If (e1,e2,e3) ->

(match (infertype gamma e1, infertype gamma e2, infertype gamma e3) with

| (Some Ty_bool, Some t2, Some t3) ->

(if t2=t3 then Some t2 else None)

| _ -> None)

| Deref l ->

(match lookup gamma l with

| Some Ty_intref -> Some Ty_int

| None -> None)

| Assign (l,e) ->

(match (lookup gamma l, infertype gamma e) with

| (Some Ty_intref,Some Ty_int) -> Some Ty_unit

| _ -> None)

| Skip -> Some Ty_unit

| Seq (e1,e2) ->

(match (infertype gamma e1, infertype gamma e2) with

| (Some Ty_unit, Some t2) -> Some t2

| _ -> None)

| While (e1,e2) ->

(match (infertype gamma e1, infertype gamma e2) with

| (Some Ty_bool, Some Ty_unit) -> Some Ty_unit

| _ -> None)

(* ****************** *)

(* testing machinery *)

(* ****************** *)

(*;

load "Listsort";

load "Int";

load "Bool";

*)

(* pretty print expressions *)

let prettyprintop op =

107

match op with

| Plus -> "+"

| GTEQ ->">="

let rec prettyprintexpr e =

match e with

| Integer n -> string_of_int n

| Boolean b -> string_of_bool b

| Op (e1,opr,e2) ->

"(" ^ (prettyprintexpr e1) ^ (prettyprintop opr)

^ (prettyprintexpr e2) ^ ")"

| If (e1,e2,e3) ->

"if " ^ (prettyprintexpr e1) ^ " then " ^ (prettyprintexpr e2)

^ " else " ^ (prettyprintexpr e3)

| Deref l -> "!" ^ l

| Assign (l,e) -> l ^ ":=" ^ (prettyprintexpr e)

| Skip -> "skip"

| Seq (e1,e2) -> (prettyprintexpr e1) ^ ";" ^ (prettyprintexpr e2)

| While (e1,e2) ->

"while " ^ (prettyprintexpr e1)

^ " do " ^ (prettyprintexpr e2)

^ " done"

(* pretty print stores, first sorting by location names for readability *)

let rec rawprintstore s =

match s with

| [] -> ""

| ((l,n)::pairs) ->

l ^ "=" ^ (string_of_int n)

^ " " ^ (rawprintstore pairs)

let prettyprintstore pairs =

let pairs’ = List.sort

(function (l,n) -> function (l’,n’) -> compare l l’)

pairs

in

"{" ^ rawprintstore pairs’ ^ "}"

(* pretty print configurations *)

let prettyprintconfig (e,s) =

"< " ^ (prettyprintexpr e)

^ " , " ^ (prettyprintstore s) ^ " >"

(* do a reduction sequence, printing the initial state and the state

after each reduction step *)

let rec prettyreduce’ (e,s) =

match reduce (e,s) with

| Some (e’,s’) ->

(Printf.printf "%s" ("\n --> " ^ prettyprintconfig (e’,s’)) ;

prettyreduce’ (e’,s’))

| None -> (Printf.printf "%s" "\n -/-> " ;

if is_value e then

Printf.printf "(a value)\n"

else

Printf.printf "(stuck - not a value)")

let rec prettyreduce (e,s) = (Printf.printf "%s" (" "^(prettyprintconfig (e,s))) ;

prettyreduce’ (e,s))

(* **************)

108

(* simple tests *)

(* **************)

(* l1:=3;!l1 *)

let e = Seq(Assign ("l1",Integer 3), Deref "l1")

(* {l1=0 } *)

let s = [("l1",0)]

let doit () =

prettyreduce (e, s)

(*

infertype [("l1",intref)] (Seq(Assign ("l1",Integer 3), Deref "l1"));;

*)

let doit2 () = infertype [("l1",Ty_intref)] (Seq(Assign ("l1",Integer 3), Deref "l1"))

let _ = doit ()

B Interpreter and type checker for L1 (SML)

Here is an interpreter and type checker for L1, in SML. You can download the source code from the
course website.

(* 2002-11-08 -- Time-stamp: <2017-10-12 16:39:41 pes20> -*-SML-*- *)

(* Peter Sewell *)

(* This file contains an interpreter, pretty-printer and type-checker

for the language L1. To make it go, copy it into a working

directory, ensure Moscow ML is available, and type

mosml -P full l1.ml

That will give you a MoscowML top level in which these definitions

are present. You can then type

doit ();

to show the reduction sequence of < l1:=3;!l1 , {l1=0 } >, and

doit2 ();

to run the type-checker on the same simple example; you can try

other examples analogously. This file doesn’t have a parser for

l1, so you’ll have to enter the abstract syntax directly, eg

prettyreduce (Seq(Assign ("l1",Integer 3), Deref "l1"), [("l1",0)]);

This has been tested with Moscow ML version 2.00 (June 2000), but

the main code should work with any other implementation of Standard ML

(the "load" is a mosml extension). *)

(* *********************)

(* the abstract syntax *)

(* *********************)

type loc = string

datatype oper = Plus | GTEQ

109

datatype expr =

Integer of int

| Boolean of bool

| Op of expr * oper * expr

| If of expr * expr * expr

| Assign of loc * expr

| Deref of loc

| Skip

| Seq of expr * expr

| While of expr * expr

(* **********************************)

(* an interpreter for the semantics *)

(* **********************************)

fun is_value (Integer n) = true

| is_value (Boolean b) = true

| is_value (Skip) = true

| is_value _ = false

(* In the semantics, a store is a finite partial function from

locations to integers. In the implementation, we represent a store

as a list of loc*int pairs containing, for each l in the domain of

the store, exactly one element of the form (l,n). The operations

lookup : store * loc -> int option

update : store * (loc * int) -> store option

both return NONE if given a location that is not in the domain of

the store. This is not a very efficient implementation, but it is

simple. *)

type store = (loc * int) list

fun lookup ([], l) = NONE

| lookup ((l’,n’)::pairs, l) =

if l=l’ then SOME n’ else lookup (pairs,l)

fun update’ front [] (l,n) = NONE

| update’ front ((l’,n’)::pairs) (l,n) =

if l=l’ then

SOME(front @ ((l,n)::pairs))

else

update’ ((l’,n’)::front) pairs (l,n)

fun update (s, (l,n)) = update’ [] s (l,n)

(* now define the single-step function

reduce : expr * store -> (expr * store) option

which takes a configuration (e,s) and returns either NONE, if it has

no transitions, or SOME (e’,s’), if it has a transition (e,s) -->

(e’,s’).

Note that the code depends on global properties of the semantics,

including the fact that it defines a deterministic transition

system, so the comments indicating that particular lines of code

implement particular semantic rules are not the whole story. *)

fun reduce (Integer n,s) = NONE

110

| reduce (Boolean b,s) = NONE

| reduce (Op (e1,opr,e2),s) =

(case (e1,opr,e2) of

(Integer n1, Plus, Integer n2) => SOME(Integer (n1+n2), s) (*op + *)

| (Integer n1, GTEQ, Integer n2) => SOME(Boolean (n1 >= n2), s)(*op >=*)

| (e1,opr,e2) => (

if (is_value e1) then (

case reduce (e2,s) of

SOME (e2’,s’) => SOME (Op(e1,opr,e2’),s’) (* (op2) *)

| NONE => NONE)

else (

case reduce (e1,s) of

SOME (e1’,s’) => SOME(Op(e1’,opr,e2),s’) (* (op1) *)

| NONE => NONE)))

| reduce (If (e1,e2,e3),s) =

(case e1 of

Boolean(true) => SOME(e2,s) (* (if1) *)

| Boolean(false) => SOME(e3,s) (* (if2) *)

| _ => (case reduce (e1,s) of

SOME(e1’,s’) => SOME(If(e1’,e2,e3),s’) (* (if3) *)

| NONE => NONE))

| reduce (Deref l,s) =

(case lookup (s,l) of

SOME n => SOME(Integer n,s) (* (deref) *)

| NONE => NONE)

| reduce (Assign (l,e),s) =

(case e of

Integer n => (case update (s,(l,n)) of

SOME s’ => SOME(Skip, s’) (* (assign1) *)

| NONE => NONE)

| _ => (case reduce (e,s) of

SOME (e’,s’) => SOME(Assign (l,e’), s’) (* (assign2) *)

| NONE => NONE))

| reduce (While (e1,e2),s) = SOME(If(e1,Seq(e2,While(e1,e2)),Skip),s) (* (while) *)

| reduce (Skip,s) = NONE

| reduce (Seq (e1,e2),s) =

(case e1 of

Skip => SOME(e2,s) (* (seq1) *)

| _ => (case reduce (e1,s) of

SOME (e1’,s’) => SOME(Seq (e1’,e2), s’) (* (seq2) *)

| NONE => NONE))

(* now define the many-step evaluation function

evaluate : expr * store -> (expr * store) option

which takes a configuration (e,s) and returns the unique (e’,s’)

such that (e,s) -->* (e’,s’) -/->. *)

fun evaluate (e,s) = case reduce (e,s) of

NONE => (e,s)

| SOME (e’,s’) => evaluate (e’,s’)

(* **********************************)

(* typing *)

(* **********************************)

(* types *)

datatype type_L1 =

int

111

| unit

| bool

datatype type_loc =

intref

type typeEnv = (loc*type_loc) list

(* in the semantics, type environments gamma are partial functions

from locations to the singleton set {intref}. Here, just as we did for

stores, we represent them as a list of loc*type_loc pairs containing,

for each l in the domain of the type environment, exactly one element

of the form (l,intref). *)

(* ****************)

(* type inference *)

(* ****************)

(* infertype : typeEnv -> expr -> type_L1 option *)

(* again, we depend on a uniqueness property, without which we would

have to have infertype return a type_L1 list of all the possible types *)

fun infertype gamma (Integer n) = SOME int

| infertype gamma (Boolean b) = SOME bool

| infertype gamma (Op (e1,opr,e2))

= (case (infertype gamma e1, opr, infertype gamma e2) of

(SOME int, Plus, SOME int) => SOME int

| (SOME int, GTEQ, SOME int) => SOME bool

| _ => NONE)

| infertype gamma (If (e1,e2,e3))

= (case (infertype gamma e1, infertype gamma e2, infertype gamma e3) of

(SOME bool, SOME t2, SOME t3) =>

(if t2=t3 then SOME t2 else NONE)

| _ => NONE)

| infertype gamma (Deref l)

= (case lookup (gamma,l) of

SOME intref => SOME int

| NONE => NONE)

| infertype gamma (Assign (l,e))

= (case (lookup (gamma,l), infertype gamma e) of

(SOME intref,SOME int) => SOME unit

| _ => NONE)

| infertype gamma (Skip) = SOME unit

| infertype gamma (Seq (e1,e2))

= (case (infertype gamma e1, infertype gamma e2) of

(SOME unit, SOME t2) => SOME t2

| _ => NONE)

| infertype gamma (While (e1,e2))

= (case (infertype gamma e1, infertype gamma e2) of

(SOME bool, SOME unit) => SOME unit

| _ => NONE)

(* ****************** *)

(* testing machinery *)

(* ****************** *)

;

load "Listsort";

load "Int";

load "Bool";

112

(* pretty print expressions *)

fun prettyprintop Plus = "+"

| prettyprintop GTEQ = ">="

fun prettyprintexpr (Integer n) = Int.toString n

| prettyprintexpr (Boolean b) = Bool.toString b

| prettyprintexpr (Op (e1,opr,e2))

= "(" ^ (prettyprintexpr e1) ^ (prettyprintop opr)

^ (prettyprintexpr e2) ^ ")"

| prettyprintexpr (If (e1,e2,e3))

= "if " ^ (prettyprintexpr e1) ^ " then " ^ (prettyprintexpr e2)

^ " else " ^ (prettyprintexpr e3)

| prettyprintexpr (Deref l) = "!" ^ l

| prettyprintexpr (Assign (l,e)) = l ^ ":=" ^ (prettyprintexpr e)

| prettyprintexpr (Skip) = "skip"

| prettyprintexpr (Seq (e1,e2)) = (prettyprintexpr e1) ^ ";"

^ (prettyprintexpr e2)

| prettyprintexpr (While (e1,e2)) = "while " ^ (prettyprintexpr e1)

^ " do " ^ (prettyprintexpr e2)

^ " done"

(* pretty print stores, first sorting by location names for readability *)

fun rawprintstore [] = ""

| rawprintstore ((l,n)::pairs) = l ^ "=" ^ (Int.toString n)

^ " " ^ (rawprintstore pairs)

fun prettyprintstore pairs =

let val pairs’ = Listsort.sort

(fn ((l,n),(l’,n’)) => String.compare (l,l’))

pairs

in

"{" ^ rawprintstore pairs’ ^ "}" end

(* pretty print configurations *)

fun prettyprintconfig (e,s) = "< " ^ (prettyprintexpr e)

^ " , " ^ (prettyprintstore s) ^ " >"

(* do a reduction sequence, printing the initial state and the state

after each reduction step *)

fun prettyreduce’ (e,s) =

case reduce (e,s) of

SOME (e’,s’) =>

(TextIO.print ("\n --> " ^ prettyprintconfig (e’,s’)) ;

prettyreduce’ (e’,s’))

| NONE => (TextIO.print "\n -/-> " ;

if is_value e then

TextIO.print "(a value)\n"

else

TextIO.print "(stuck - not a value)")

fun prettyreduce (e,s) = (TextIO.print (" "^(prettyprintconfig (e,s))) ;

prettyreduce’ (e,s))

(* **************)

(* simple tests *)

(* **************)

fun doit () = prettyreduce (Seq(Assign ("l1",Integer 3), Deref "l1"), [("l1",0)])

113

(*

infertype [("l1",intref)] (Seq(Assign ("l1",Integer 3), Deref "l1"));;

*)

fun doit2 () = infertype [("l1",intref)] (Seq(Assign ("l1",Integer 3), Deref "l1"));

114

C Interpreter and type checker for L1 (Java)

Here is an interpreter and type checker for L1, written in Java by Matthew Parkinson.

Note the different code organization between the ML and Java versions: the ML has a datatype with
a constructor for each clause of the abstract syntax grammar, and reduce and infertype function
definitions that each have a case for each of those constructors; the Java has a subclass of Expression
for each clause of the abstract syntax, each of which defines smallStep and typecheck methods.

//Matthew Parkinson, 1/2004

public class L1 {

public static void main(String [] args) {

//test code

Location l1 = new Location ("l1");

Location l2 = new Location ("l2");

Location l3 = new Location ("l3");

State s1 = new State()

.add(l1,new Int(1))

.add(l2,new Int(5))

.add(l3,new Int(0));

Environment env = new Environment()

.add(l1).add(l2).add(l3);

Expression e =

new Seq(new While(new GTeq(new Deref(l2),new Deref(l1)),

new Seq(new Assign(l3, new Plus(new Deref(l1),new Deref(l3))),

new Assign(l1,new Plus(new Deref(l1),new Int(1))))

),

new Deref(l3))

;

try{

//Type check

Type t= e.typeCheck(env);

System.out.println("Program has type: " + t);

//Evaluate program

System.out.println(e + "\n \n");

while(!(e instanceof Value)){

e = e.smallStep(s1);

//Display each step of reduction

System.out.println(e + "\n \n");

}

//Give some output

System.out.println("Program has type: " + t);

System.out.println("Result has type: " + e.typeCheck(env));

System.out.println("Result: " + e);

System.out.println("Terminating State: " + s1);

} catch (TypeError te) {

System.out.println("Error:\n" + te);

System.out.println("From code:\n" + e);

} catch (CanNotReduce cnr) {

System.out.println("Caught Following exception" + cnr);

System.out.println("While trying to execute:\n " + e);

System.out.println("In state: \n " + s1);

}

}

}

class Location {

String name;

115

Location(String n) {

this.name = n;

}

public String toString() {return name;}

}

class State {

java.util.HashMap store = new java.util.HashMap();

//Used for setting the initial store for testing not used by

//semantics of L1

State add(Location l, Value v) {

store.put(l,v);

return this;

}

void update(Location l, Value v) throws CanNotReduce {

if(store.containsKey(l)) {

if(v instanceof Int) {

store.put(l,v);

}

else throw new CanNotReduce("Can only store integers");

}

else throw new CanNotReduce("Unknown location!");

}

Value lookup(Location l) throws CanNotReduce {

if(store.containsKey(l)) {

return (Int)store.get(l);

}

else throw new CanNotReduce("Unknown location!");

}

public String toString() {

String ret = "[";

java.util.Iterator iter = store.entrySet().iterator();

while(iter.hasNext()) {

java.util.Map.Entry e = (java.util.Map.Entry)iter.next();

ret += "(" + e.getKey() + " |-> " + e.getValue() + ")";

if(iter.hasNext()) ret +=", ";

}

return ret + "]";

}

}

class Environment {

java.util.HashSet env = new java.util.HashSet();

//Used to initially setup environment, not used by type checker.

Environment add(Location l) {

env.add(l); return this;

}

boolean contains(Location l) {

return env.contains(l);

}

}

class Type {

int type;

Type(int t) {type = t;}

public static final Type BOOL = new Type(1);

public static final Type INT = new Type(2);

public static final Type UNIT = new Type(3);

public String toString() {

116

switch(type) {

case 1: return "BOOL";

case 2: return "INT";

case 3: return "UNIT";

}

return "???";

}

}

abstract class Expression {

abstract Expression smallStep(State state) throws CanNotReduce;

abstract Type typeCheck(Environment env) throws TypeError;

}

abstract class Value extends Expression {

final Expression smallStep(State state) throws CanNotReduce{

throw new CanNotReduce("I’m a value");

}

}

class CanNotReduce extends Exception{

CanNotReduce(String reason) {super(reason);}

}

class TypeError extends Exception { TypeError(String reason) {super(reason);}}

class Bool extends Value {

boolean value;

Bool(boolean b) {

value = b;

}

public String toString() {

return value ? "TRUE" : "FALSE";

}

Type typeCheck(Environment env) throws TypeError {

return Type.BOOL;

}

}

class Int extends Value {

int value;

Int(int i) {

value = i;

}

public String toString(){return ""+ value;}

Type typeCheck(Environment env) throws TypeError {

return Type.INT;

}

}

class Skip extends Value {

public String toString(){return "SKIP";}

Type typeCheck(Environment env) throws TypeError {

return Type.UNIT;

}

}

class Seq extends Expression {

117

Expression exp1,exp2;

Seq(Expression e1, Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

if(exp1 instanceof Skip) {

return exp2;

} else {

return new Seq(exp1.smallStep(state),exp2);

}

}

public String toString() {return exp1 + "; " + exp2;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.UNIT) {

return exp2.typeCheck(env);

}

else throw new TypeError("Not a unit before ’;’.");

}

}

class GTeq extends Expression {

Expression exp1, exp2;

GTeq(Expression e1,Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

if(!(exp1 instanceof Value)) {

return new GTeq(exp1.smallStep(state),exp2);

} else if (!(exp2 instanceof Value)) {

return new GTeq(exp1, exp2.smallStep(state));

} else {

if(exp1 instanceof Int && exp2 instanceof Int) {

return new Bool(((Int)exp1).value >= ((Int)exp2).value);

}

else throw new CanNotReduce("Operands are not both integers.");

}

}

public String toString(){return exp1 + " >= " + exp2;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.INT && exp2.typeCheck(env) == Type.INT) {

return Type.BOOL;

}

else throw new TypeError("Arguments not both integers.");

}

}

class Plus extends Expression {

Expression exp1, exp2;

Plus(Expression e1,Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

if(!(exp1 instanceof Value)) {

return new Plus(exp1.smallStep(state),exp2);

} else if (!(exp2 instanceof Value)) {

118

return new Plus(exp1, exp2.smallStep(state));

} else {

if(exp1 instanceof Int && exp2 instanceof Int) {

return new Int(((Int)exp1).value + ((Int)exp2).value);

}

else throw new CanNotReduce("Operands are not both integers.");

}

}

public String toString(){return exp1 + " + " + exp2;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.INT && exp2.typeCheck(env) == Type.INT) {

return Type.INT;

}

else throw new TypeError("Arguments not both integers.");

}

}

class IfThenElse extends Expression {

Expression exp1,exp2,exp3;

IfThenElse (Expression e1, Expression e2,Expression e3) {

exp1 = e1;

exp2 = e2;

exp3 = e3;

}

Expression smallStep(State state) throws CanNotReduce {

if(exp1 instanceof Value) {

if(exp1 instanceof Bool) {

if(((Bool)exp1).value)

return exp2;

else

return exp3;

}

else throw new CanNotReduce("Not a boolean in test.");

}

else {

return new IfThenElse(exp1.smallStep(state),exp2,exp3);

}

}

public String toString() {return "IF " + exp1 + " THEN " + exp2 + " ELSE " + exp3;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.BOOL) {

Type t = exp2.typeCheck(env);

if(exp3.typeCheck(env) == t)

return t;

else throw new TypeError("If branchs not the same type.");

}

else throw new TypeError("If test is not bool.");

}

}

class Assign extends Expression {

Location l;

Expression exp1;

Assign(Location l, Expression exp1) {

this.l = l;

this.exp1 = exp1;

}

119

Expression smallStep(State state) throws CanNotReduce{

if(exp1 instanceof Value) {

state.update(l,(Value)exp1);

return new Skip();

}

else {

return new Assign(l,exp1.smallStep(state));

}

}

public String toString() {return l + " = " + exp1;}

Type typeCheck(Environment env) throws TypeError {

if(env.contains(l) && exp1.typeCheck(env) == Type.INT) {

return Type.UNIT;

}

else throw new TypeError("Invalid assignment");

}

}

class Deref extends Expression {

Location l;

Deref(Location l) {

this.l = l;

}

Expression smallStep(State state) throws CanNotReduce {

return state.lookup(l);

}

public String toString() {return "!" + l;}

Type typeCheck(Environment env) throws TypeError {

if(env.contains(l)) return Type.INT;

else throw new TypeError("Location not known about!");

}

}

class While extends Expression {

Expression exp1,exp2;

While(Expression e1, Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

return new IfThenElse(exp1,new Seq(exp2, this), new Skip());

}

public String toString(){return "WHILE " + exp1 + " DO {" + exp2 +"}";}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.BOOL && exp2.typeCheck(env) == Type.UNIT)

return Type.UNIT;

else throw new TypeError("Error in while loop");

}

}

public class L1 {

public static void main(String [] args) {

Location l1 = new Location ("l1");

Location l2 = new Location ("l2");

120

Location l3 = new Location ("l3");

State s1 = new State()

.add(l1,new Int(1))

.add(l2,new Int(5))

.add(l3,new Int(0));

Environment env = new Environment()

.add(l1).add(l2).add(l3);

Expression e =

new Seq(new While(new GTeq(new Deref(l2),new Deref(l1)),

new Seq(new Assign(l3, new Plus(new Deref(l1),new Deref(l3))),

new Assign(l1,new Plus(new Deref(l1),new Int(1))))

),

new Deref(l3))

;

try{

//Type check

Type t= e.typeCheck(env);

System.out.println("Program has type: " + t);

//Evaluate program

System.out.println(e + "\n \n");

while(!(e instanceof Value)){

e = e.smallStep(s1);

//Display each step of reduction

System.out.println(e + "\n \n");

}

//Give some output

System.out.println("Program has type: " + t);

System.out.println("Result has type: " + e.typeCheck(env));

System.out.println("Result: " + e);

System.out.println("Terminating State: " + s1);

} catch (TypeError te) {

System.out.println("Error:\n" + te);

System.out.println("From code:\n" + e);

} catch (CanNotReduce cnr) {

System.out.println("Caught Following exception" + cnr);

System.out.println("While trying to execute:\n " + e);

System.out.println("In state: \n " + s1);

}

}

}

class Location {

String name;

Location(String n) {

this.name = n;

}

public String toString() {return name;}

}

class State {

java.util.HashMap store = new java.util.HashMap();

//Used for setting the initial store for testing not used by

//semantics of L1

State add(Location l, Value v) {

store.put(l,v);

return this;

}

121

void update(Location l, Value v) throws CanNotReduce {

if(store.containsKey(l)) {

if(v instanceof Int) {

store.put(l,v);

}

else throw new CanNotReduce("Can only store integers");

}

else throw new CanNotReduce("Unknown location!");

}

Value lookup(Location l) throws CanNotReduce {

if(store.containsKey(l)) {

return (Int)store.get(l);

}

else throw new CanNotReduce("Unknown location!");

}

public String toString() {

String ret = "[";

java.util.Iterator iter = store.entrySet().iterator();

while(iter.hasNext()) {

java.util.Map.Entry e = (java.util.Map.Entry)iter.next();

ret += "(" + e.getKey() + " |-> " + e.getValue() + ")";

if(iter.hasNext()) ret +=", ";

}

return ret + "]";

}

}

class Environment {

java.util.HashSet env = new java.util.HashSet();

//Used to initially setup environment, not used by type checker.

Environment add(Location l) {

env.add(l); return this;

}

boolean contains(Location l) {

return env.contains(l);

}

}

class Type {

int type;

Type(int t) {type = t;}

public static final Type BOOL = new Type(1);

public static final Type INT = new Type(2);

public static final Type UNIT = new Type(3);

public String toString() {

switch(type) {

case 1: return "BOOL";

case 2: return "INT";

case 3: return "UNIT";

}

return "???";

}

}

abstract class Expression {

abstract Expression smallStep(State state) throws CanNotReduce;

abstract Type typeCheck(Environment env) throws TypeError;

}

abstract class Value extends Expression {

122

final Expression smallStep(State state) throws CanNotReduce{

throw new CanNotReduce("I’m a value");

}

}

class CanNotReduce extends Exception{

CanNotReduce(String reason) {super(reason);}

}

class TypeError extends Exception { TypeError(String reason) {super(reason);}}

class Bool extends Value {

boolean value;

Bool(boolean b) {

value = b;

}

public String toString() {

return value ? "TRUE" : "FALSE";

}

Type typeCheck(Environment env) throws TypeError {

return Type.BOOL;

}

}

class Int extends Value {

int value;

Int(int i) {

value = i;

}

public String toString(){return ""+ value;}

Type typeCheck(Environment env) throws TypeError {

return Type.INT;

}

}

class Skip extends Value {

public String toString(){return "SKIP";}

Type typeCheck(Environment env) throws TypeError {

return Type.UNIT;

}

}

class Seq extends Expression {

Expression exp1,exp2;

Seq(Expression e1, Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

if(exp1 instanceof Skip) {

return exp2;

} else {

return new Seq(exp1.smallStep(state),exp2);

}

}

public String toString() {return exp1 + "; " + exp2;}

Type typeCheck(Environment env) throws TypeError {

123

if(exp1.typeCheck(env) == Type.UNIT) {

return exp2.typeCheck(env);

}

else throw new TypeError("Not a unit before ’;’.");

}

}

class GTeq extends Expression {

Expression exp1, exp2;

GTeq(Expression e1,Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

if(!(exp1 instanceof Value)) {

return new GTeq(exp1.smallStep(state),exp2);

} else if (!(exp2 instanceof Value)) {

return new GTeq(exp1, exp2.smallStep(state));

} else {

if(exp1 instanceof Int && exp2 instanceof Int) {

return new Bool(((Int)exp1).value >= ((Int)exp2).value);

}

else throw new CanNotReduce("Operands are not both integers.");

}

}

public String toString(){return exp1 + " >= " + exp2;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.INT && exp2.typeCheck(env) == Type.INT) {

return Type.BOOL;

}

else throw new TypeError("Arguments not both integers.");

}

}

class Plus extends Expression {

Expression exp1, exp2;

Plus(Expression e1,Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

if(!(exp1 instanceof Value)) {

return new Plus(exp1.smallStep(state),exp2);

} else if (!(exp2 instanceof Value)) {

return new Plus(exp1, exp2.smallStep(state));

} else {

if(exp1 instanceof Int && exp2 instanceof Int) {

return new Int(((Int)exp1).value + ((Int)exp2).value);

}

else throw new CanNotReduce("Operands are not both integers.");

}

}

public String toString(){return exp1 + " + " + exp2;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.INT && exp2.typeCheck(env) == Type.INT) {

return Type.INT;

}

else throw new TypeError("Arguments not both integers.");

}

124

}

class IfThenElse extends Expression {

Expression exp1,exp2,exp3;

IfThenElse (Expression e1, Expression e2,Expression e3) {

exp1 = e1;

exp2 = e2;

exp3 = e3;

}

Expression smallStep(State state) throws CanNotReduce {

if(exp1 instanceof Value) {

if(exp1 instanceof Bool) {

if(((Bool)exp1).value)

return exp2;

else

return exp3;

}

else throw new CanNotReduce("Not a boolean in test.");

}

else {

return new IfThenElse(exp1.smallStep(state),exp2,exp3);

}

}

public String toString() {return "IF " + exp1 + " THEN " + exp2 + " ELSE " + exp3;}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.BOOL) {

Type t = exp2.typeCheck(env);

if(exp3.typeCheck(env) == t)

return t;

else throw new TypeError("If branchs not the same type.");

}

else throw new TypeError("If test is not bool.");

}

}

class Assign extends Expression {

Location l;

Expression exp1;

Assign(Location l, Expression exp1) {

this.l = l;

this.exp1 = exp1;

}

Expression smallStep(State state) throws CanNotReduce{

if(exp1 instanceof Value) {

state.update(l,(Value)exp1);

return new Skip();

}

else {

return new Assign(l,exp1.smallStep(state));

}

}

public String toString() {return l + " = " + exp1;}

Type typeCheck(Environment env) throws TypeError {

if(env.contains(l) && exp1.typeCheck(env) == Type.INT) {

return Type.UNIT;

}

125

else throw new TypeError("Invalid assignment");

}

}

class Deref extends Expression {

Location l;

Deref(Location l) {

this.l = l;

}

Expression smallStep(State state) throws CanNotReduce {

return state.lookup(l);

}

public String toString() {return "!" + l;}

Type typeCheck(Environment env) throws TypeError {

if(env.contains(l)) return Type.INT;

else throw new TypeError("Location not known about!");

}

}

class While extends Expression {

Expression exp1,exp2;

While(Expression e1, Expression e2) {

exp1 = e1;

exp2 = e2;

}

Expression smallStep(State state) throws CanNotReduce {

return new IfThenElse(exp1,new Seq(exp2, this), new Skip());

}

public String toString(){return "WHILE " + exp1 + " DO {" + exp2 +"} DONE";}

Type typeCheck(Environment env) throws TypeError {

if(exp1.typeCheck(env) == Type.BOOL && exp2.typeCheck(env) == Type.UNIT)

return Type.UNIT;

else throw new TypeError("Error in while loop");

}

}

D How to do Proofs

The purpose of this handout is give a general guide as to how to prove theorems. This should give you
some help in answering questions that begin with “Show that the following is true . . . ”. It is based on
notes by Myra VanInwegen, with additional text added by Peter Sewell in §D.1. Many thanks to Myra
for making her original notes available.

The focus here is on doing informal but rigorous proofs. These are rather different from the formal proofs,
in Natural Deduction or Sequent Calculus, that were introduced in the Logic and Proof course. Formal
proofs are derivations in one of those proof systems – they are in a completely well-defined form, but are
often far too verbose to deal with by hand (although they can be machine-checked). Informal proofs, on
the other hand, are the usual mathematical notion of proof: written arguments to persuade the reader
that you could, if pushed, write a fully formal proof.

This is important for two reasons. Most obviously, you should learn how to do these proofs. More subtly,
but more importantly, only by working with the mathematical definitions in some way can you develop
a good intuition for what they mean — trying to do some proofs is the best way of understanding the
definitions.

126

D.1 How to go about it

Proofs differ, but for many of those you meet the following steps should be helpful.

1. Make sure the statement of the conjecture is precisely defined. In particular, make sure you un-
derstand any strange notation, and find the definitions of all the auxiliary gadgets involved (e.g.
definitions of any typing or reduction relations mentioned in the statement, or any other predicates
or functions).

2. Try to understand at an intuitive level what the conjecture is saying – verbalize out loud the basic
point. For example, for a Type Preservation conjecture, the basic point might be something like “if
a well-typed configuration reduces, the result is still well-typed (with the same type)”.

3. Try to understand intuitively why it is true (or false...). Identify what the most interesting cases
might be — the cases that you think are most likely to be suspicious, or hard to prove. Sometimes
it’s good to start with the easy cases (if the setting is unfamiliar to you); sometimes it’s good to
start with the hard cases (to find any interesting problems as soon as possible).

4. Think of a good basic strategy. This might be:

(a) simple logic manipulations;

(b) collecting together earlier results, again by simple logic; or

(c) some kind of induction.

5. Try it! (remembering you might have to backtrack if you discover you picked a strategy that doesn’t
work well for this conjecture). This might involve any of the following:

(a) Expanding definitions, inlining them. Sometimes you can just blindly expand all definitions,
but more often it’s important to expand only the definitions which you want to work with the
internal structure of — otherwise things just get too verbose.

(b) Making abbreviations — defining a new variable to stand for some complex gadget you’re
working with, saying e.g.

where e = (let x:int = 7+2 in x+x)

Take care with choosing variable names.

(c) Doing equational reasoning, e.g.

e = e1 by ...

= e2 by ...

= e3 as ...

Here the e might be any mathematical object — arithmetic expressions, or expressions of some
grammar, or formulae. Some handy equations over formulae are given in §D.2.2.

(d) Proving a formula based on its structure. For example, to prove a formula ∀x ∈ S.P (x) you
would often assume you have an arbitrary x and then try to prove P (x).

Take an arbitrary x ∈ S.
We now have to show P (x):

This is covered in detail in §D.2.3. Much proof is of this form, automatically driven by the
structure of the formula.

(e) Using an assumption you’ve made above.

(f) Induction. As covered in the 1B Semantics notes, there are various kinds of induction you
might want to use: mathematical induction over the natural numbers, structural induction
over the elements of some grammar, or rule induction over the rules defining some relation
(especially a reduction or typing relation). For each, you should:

i. Decide (and state!) what kind of induction you’re using. This may need some thought
and experience, and you might have to backtrack.

ii. Remind yourself what the induction principle is exactly.

127

iii. Decide on the induction hypothesis you’re going to use, writing down a predicate Φ which
is such that the conclusion of the induction principle implies the thing you’re trying to
prove. Again, this might need some thought. Take care with the quantifiers here — it’s
suspicious if your definition of Φ has any globally-free variables...

iv. Go through each of the premises of the induction principle and prove each one (using
any of these techniques as appropriate). Many of those premises will be implications, e.g.
∀x ∈ N.Φ(x) ⇒ Φ(x + 1), for which you can do a proof based on the structure of the
formula — taking an arbitrary x, assuming Φ(x), and trying to prove Φ(x + 1). Usually
at some point in the latter you’d make use of the assumption Φ(x).

6. In all of the above, remember: the point of doing a proof on paper is to use the formalism to help
you think — to help you cover all cases, precisely — and also to communicate with the reader. For
both, you need to write clearly:

(a) Use enough words! “Assume”, “We have to show”, “By such-and-such we know”, “Hence”,...

(b) Don’t use random squiggles. It’s good to have formulae properly nested within text, with and
no “⇒” or “∴” between lines of text.

7. If it hasn’t worked yet... either

(a) you’ve make some local mistake, e.g. mis-instantiated something, or used the same variable
for two different things, or not noticed that you have a definition you should have expanded
or an assumption you should have used. Fix it and continue.

(b) you’ve discovered that the conjecture is really false. Usually at this point it’s a good idea to
construct a counterexample that is as simple as possible, and to check carefully that it really
is a counterexample.

(c) you need to try a different strategy — often, to use a different induction principle or to
strengthen your induction hypothesis.

(d) you didn’t really understand intuitively what the conjecture is saying, or what the definitions
it uses mean. Go back to them again.

8. If it has worked: read through it, skeptically, and check. Maybe you’ll need to re-write it to make
it comprehensible: proof discovery is not the same as proof exposition. See the example proofs in
the Semantics notes.

9. Finally, give it to someone else, as skeptical and careful as you can find, to see if they believe it
— to see if they believe that what you’ve written down is a proof, not that they believe that the
conjecture is true.

D.2 And in More Detail...

First, I’ll explain informal proof intuitively, giving a couple of examples. Then I’ll explain how this
intuition is reflected in the sequent rules from Logic and Proof.

In the following, I’ll call any logic statement a formula. In general, what we’ll be trying to do is prove a
formula, using a collection of formulas that we know to be true or are assuming to be true. There’s a big
difference between using a formula and proving a formula. In fact, what you do is in many ways opposite.
So, I’ll start by explaining how to prove a formula.

D.2.1 Meet the Connectives

Here are the logical connectives and a very brief decription of what each means.

P ∧Q P and Q are both true
P ∨Q P is true, or Q is true, or both are true
¬P P is not true (P is false)

P ⇒ Q if P is true then Q is true
P ⇔ Q P is true exactly when Q is true

∀x ∈ S.P (x) for all x in S, P is true of x
∃x ∈ S.P (x) there exists an x in S such that P holds of x

128

D.2.2 Equivalences

These are formulas that mean the same thing, and this is indicated by a ≃ between them. The fact that
they are equivalent to each other is justified by the truth tables of the connectives.

definition of ⇒ P ⇒ Q ≃ ¬P ∨Q
definition of ⇔ P ⇔ Q ≃ (P ⇒ Q) ∧ (Q⇒ P)
definition of ¬ ¬P ≃ P ⇒ false

de Morgan’s Laws ¬(P ∧Q) ≃ ¬P ∨ ¬Q
¬(P ∨Q) ≃ ¬P ∧ ¬Q

extension to quantifiers ¬(∀x.P (x)) ≃ ∃x.¬P (x)
¬(∃x.P (x)) ≃ ∀x.¬P (x)

distributive laws P ∨ (Q ∧R) ≃ (P ∨Q) ∧ (P ∨R)
P ∧ (Q ∨R) ≃ (P ∧Q) ∨ (P ∧R)

coalescing quantifiers (∀x.P (x)) ∧ (∀x.Q(x)) ≃ ∀x.(P (x) ∧Q(x))
(∃x.P (x)) ∨ (∃x.Q(x)) ≃ ∃x.(P (x) ∨Q(x))

these ones apply if (∀x.P (x)) ∧Q ≃ (∀x.P (x) ∧Q)
x is not free in Q (∀x.P (x)) ∨Q ≃ (∀x.P (x) ∨Q)

(∃x.P (x)) ∧Q ≃ (∃x.P (x) ∧Q)
(∃x.P (x)) ∨Q ≃ (∃x.P (x) ∨Q)

D.2.3 How to Prove a Formula

For each of the logical connectives, I’ll explain how to handle them.

∀x ∈ S.P (x) This means “For all x in S, P is true of x.” Such a formula is called a universally quantified

formula. The goal is to prove that the property P , which has some xs somewhere in it, is true no matter
what value in S x takes on. Often the “∈ S” is left out. For example, in a discussion of lists, you might be
asked to prove ∀l.length l > 0⇒ ∃x. member(x, l). Obviously, l is a list, even if it isn’t explicitly stated
as such.

There are several choices as to how to prove a formula beginning with ∀x. The standard thing to do is
to just prove P (x), not assuming anything about x. Thus, in doing the proof you sort of just mentally
strip off the ∀x. What you would write when doing this is “Let x be any S”. However, there are some
subtleties—if you’re already using an x for something else, you can’t use the same x, because then you
would be assuming something about x, namely that it equals the x you’re already using. In this case,
you need to use alpha-conversion1 to change the formula you want to prove to ∀y ∈ S.P (y), where y is
some variable you’re not already using, and then prove P (y). What you could write in this case is “Since
x is already in use, we’ll prove the property of y”.

An alternative is induction, if S is a set that is defined with a structural definition. Many objects you’re
likely to be proving properties of are defined with a structural definition. This includes natural numbers,
lists, trees, and terms of a computer language. Sometimes you can use induction over the natural numbers
to prove things about other objects, such as graphs, by inducting over the number of nodes (or edges) in
a graph.

You use induction when you see that during the course of the proof you would need to use the property
P for the subparts of x in order to prove it for x. This usually ends up being the case if P involves
functions defined recursively (i.e., the return value for the function depends on the function value on the
subparts of the argument).

A special case of induction is case analysis. It’s basically induction where you don’t use the inductive
hypothesis: you just prove the property for each possible form that x could have. Case analysis can be
used to prove the theorem about lists above.

A final possibility (which you can use for all formulas, not just for universally quantified ones) is to assume
the contrary, and then derive a contradiction.

1Alpha-equivalence says that the name of a bound variable doesn’t matter, so you can change it at will (this is called
alpha-conversion). You’ll get to know the exact meaning of this soon enough so I won’t explain this here.

129

∃x ∈ S.P (x) This says “There exists an x in S such that P holds of x.” Such a formula is called an

existentially quantified formula. The main way to prove this is to figure out what x has to be (that is, to
find a concrete representation of it), and then prove that P holds of that value. Sometimes you can’t give
a completely specified value, since the value you pick for x has to depend on the values of other things
you have floating around. For example, say you want to prove

∀x, y ∈ R.x < y ∧ sinx < 0 ∧ sin y > 0⇒ ∃z.x < z ∧ z < y ∧ sin z = 0

where R is the set of real numbers. By the time you get to dealing with the ∃z.x < z ∧ z < y ∧ sin z = 0,
you will have already assumed that x and y were any real numbers. Thus the value you choose for z has
to depend on whatever x and y are.

An alternative way to prove ∃x ∈ S.P (x) is, of course, to assume that no such x exists, and derive a
contradiction.

To summarize what I’ve gone over so far: to prove a universally quantified formula, you must prove it for
a generic variable, one that you haven’t used before. To prove an existentially quantified formula, you
get to choose a value that you want to prove the property of.

P ⇒ Q This says “If P is true, then Q is true”. Such a formula is called an implication, and it is often

pronounced “P implies Q”. The part before the ⇒ sign (here P) is called the antecedent, and the part
after the ⇒ sign (here Q) is called the consequent. P ⇒ Q is equivalent to ¬P ∨Q, and so if P is false,
or if Q is true, then P ⇒ Q is true.

The standard way to prove this is to assume P , then use it to help you prove Q. Note that I said that
you will be using P . Thus you will need to follow the rules in Section D.2.4 to deal with the logical
connectives in P .

Other ways to prove P ⇒ Q involve the fact that it is equivalent to ¬P ∨ Q. Thus, you can prove ¬P
without bothering with Q, or you can just prove Q without bothering with P . To reason by contradiction
you assume that P is true and that Q is not true, and derive a contradiction.

Another alternative is to prove the contrapositive: ¬Q⇒ ¬P , which is equivalent to it.

P ⇔ Q This says “P is true if and only if Q is true”. The phrase “if and only if” is usually abbreviated

“iff”. Basically, this means that P and Q are either both true, or both false.

Iff is usually used in two main ways: one is where the equivalence is due to one formula being a definition
of another. For example, A ⊆ B ⇔ (∀x.x ∈ A⇒ x ∈ B) is the standard definition of subset. For these iff
statements, you don’t have to prove them. The other use of iff is to state the equivalence of two different
things. For example, you could define an SML function fact:

fun fact 0 = 1

| fact n = n * fact (n - 1)

Since in SML whole numbers are integers (both positive and negative) you may be asked to prove:
fact x terminates ⇔ x ≥ 0. The standard way to do this is us the equivalence P ⇔ Q is equivalent to
P ⇒ Q ∧Q⇒ P . And so you’d prove that (fact x terminates⇒ x ≥ 0) ∧ (x ≥ 0⇒ fact x terminates).

¬P This says “P is not true”. It is equivalent to P ⇒ false, thus this is one of the ways you prove it:
you assume that P is true, and derive a contradiction (that is, you prove false). Here’s an example of
this, which you’ll run into later this year: the undecidability of the halting problem can be rephrased
as ¬∃x ∈ RM. x solves the halting problem, where RM is the set of register machines. The proof of this
in your Computation Theory notes follows exactly the pattern I described—it assumes there is such a
machine and derives a contradiction.

The other major way to prove ¬P is to figure out what the negation of P is, using equivalences like De
Morgan’s Law, and then prove that. For example, to prove ¬∀x ∈ N . ∃y ∈ N . x = y2, where N is the
set of natural numbers, you could push in the negation to get: ∃x ∈ N . ∀y ∈ N . x ̸= y2, and then you
could prove that.

P ∧Q This says “P is true and Q is true”. Such a formula is called a conjunction. To prove this, you

have to prove P , and you have to prove Q.

130

P ∨Q This says “P is true or Q is true”. This is inclusive or: if P and Q are both true, then P ∨Q is

still true. Such a formula is called a disjunction. To prove this, you can prove P or you can prove Q. You
have to choose which one to prove. For example, if you need to prove (5 mod 2 = 0) ∨ (5 mod 2 = 1),
then you’ll choose the second one and prove that.

However, as with existentials, the choice of which one to prove will often depend on the values of other
things, like universally quantified variables. For example, when you are studying the theory of program-
ming languages (you will get a bit of this in Semantics), you might be asked to prove

∀P ∈ ML. P is properly typed⇒
(the evaluation of P runs forever) ∨ (P evaluates to a value)

where ML is the set of all ML programs. You don’t know in advance which of these will be the case, since
some programs do run forever, and some do evaluate to a value. Generally, the best way to prove the
disjunction in this case (when you don’t know in advance which will hold) is to use the equivalence with
implication. For example, you can use the fact that P ∨ Q is equivalent to ¬P ⇒ Q, then assume ¬P ,
then use this to prove Q. For example, your best bet to proving this programming languages theorem is
to assume that the evaluation of P doesn’t run forever, and use this to prove that P evaluates to a value.

D.2.4 How to Use a Formula

You often end up using a formula to prove other formulas. You can use a formula if someone has already
proved that it’s true, or you are assuming it because it was in an implication, namely, the A in A⇒ B.
For each logical connective, I’ll tell you how to use it.

∀x ∈ S.P (x) This formula says that something is true of all elements of S. Thus, when you use it, you

can pick any value at all to use instead of x (call it v), and then you can use P (v).

∃x ∈ S.P (x) This formula says that there is some x that satisfies P . However, you do not know what

it is, so you can not assume anything about it. The usual approach it to just say that the thing that
is being said to exist is just x, and use the fact that P holds of x to prove something else. However, if
you’re already using an x for something else, you have to pick another variable to represent the thing
that exists.

To summarize this: to use a universally quantified formula, you can choose any value, and use that the
formula holds for that variable. To use an existentially quantified formula, you must not assume anything
about the value that is said to exists, so you just use a variable (one that you haven’t used before) to
represent it. Note that this is more or less opposite of what you do when you prove a universally or
existentially quantified formula.

¬P Usually, the main use of this formula is to prove the negation of something else. An example is the
use of reduction to prove the unsolvability of various problems in the Computation Theory (you’ll learn
all about this in Lent term). You want to prove ¬Q, where Q states that a certain problem (Problem 1)
is decidable (in other words, you want to prove that Problem 1 is not decidable). You know ¬P , where
P states that another problem (Problem 2) is decidable (i.e. ¬P says that Problem 2 is not decidable).
What you do basically is this. You first prove Q⇒ P , which says that if Problem 1 is decidable, then so
is Problem 2. Since Q ⇒ P ≃ ¬P ⇒ ¬Q, you have now proved ¬P ⇒ ¬Q. You already know ¬P , so
you use modus ponens2 to get that ¬Q.

P ⇒ Q The main way to use this is that you prove P , and then you use modus ponens to get Q, which

you can then use.

P ⇔ Q The main use of this is to replace an occurrence of P in a formula with Q, and vise versa.

P ∧Q Here you can use both P and Q. Note, you’re not required to use both of them, but they are

both true and are waiting to be used by you if you need them.

2Modus ponens says that if A ⇒ B and A are both true, then B is true.

131

P ∨Q Here, you know that one of P or Q is true, but you do not know which one. To use this to prove

something else, you have to do a split: first you prove the thing using P , then you prove it using Q.

Note that in each of the above, there is again a difference in the way you use a formula, verses the way
you prove it. They are in a way almost opposites. For example, in proving P ∧Q, you have to prove both
P and Q, but when you are using the formula, you don’t have to use both of them.

D.3 An Example

There are several exercises in the Semantics notes that ask you to prove something. Here, we’ll go back
to Regular Languages and Finite Automata. (If they’ve faded, it’s time to remind yourself of them.) The
Pumping Lemma for regular sets (PL for short) is an astonishingly good example of the use of quantifiers.
We’ll go over the proof and use of the PL, paying special attention to the logic of what’s happening.

D.3.1 Proving the PL

My favorite book on regular languages, finite automata, and their friends is the Hopcroft and Ullman
book Introduction to Automata Theory, Languages, and Computation. You should locate this book in
your college library, and if it isn’t there, insist that your DoS order it for you.

In the Automata Theory book, the Pumping Lemma is stated as: “Let L be a regular set. Then there
is a constant n such that if z is any word in L, and |z| ≥ n, we may write z = uvw in such a way that
|uv| ≤ n, |v| ≥ 1, and for all i ≥ 0, uviw is in L.” The Pumping Lemma is, in my experience, one of the
most difficult things about learning automata theory. It is difficult because people don’t know what to
do with all those logical connectives. Let’s write it as a logical formula.

∀L ∈ RegularLanguages.
∃n. ∀z ∈ L. |z| ≥ n⇒
∃u v w. z = uvw ∧ |uv| ≤ n ∧ |v| ≥ 1 ∧
∀i ≥ 0. uviw ∈ L

Complicated, eh? Well, let’s prove it, using the facts that Hopcroft and Ullman have established in the
chapters previous to the one wih the PL. I’ll give the proof and put in square brackets comments about
what I’m doing.

Let L be any regular language. [Here I’m dealing with the ∀L ∈ RegularLanguages by stating that I’m
not assuming anything about L.] Let M be a minimal-state deterministic finite state machine accepting
L. [Here I’m using a fact that Hopcroft and Ullman have already proved about the equivalence of regular
languages and finite automata.] Let n be the number of states in this finite state machine. [I’m dealing
with the ∃n by giving a very specific value of what it will be, based on the arbitrary L.] Let z be any
word in L. [Thus I deal with ∀z ∈ L.] Assume that |z| ≥ n. [Thus I’m taking care of the ⇒ by assuming
the antecedent.]

Say z is written a1a2 . . . am, where m ≥ n. Consider the states that M is in during the processing of
the first n symbols of z, a1a2 . . . an. There are n + 1 of these states. Since there are only n states in
M , there must be a duplicate. Say that after symbols aj and ak we are in the same state, state s (i.e.
there’s a loop from this state that the machine goes through as it accepts z), and say that j < k. Now,
let u = a1a2 . . . aj . This represents the part of the string that gets you to state s the first time. Let
v = aj+1 . . . ak. This represents the loop that takes you from s and back to it again. Let w = ak+1 . . . am,
the rest of word z. [We have chosen definite values for u, v, and w.] Then clearly z = uvw, since u, v,
and w are just different sections of z. |uv| ≤ n since u and v occur within the first n symbols of z. |v| ≥ 1
since j < k. [Note that we’re dealing with the formulas connected with ∧ by proving each of them.]

Now, let i be a natural number (i.e. ≥ 0). [This deals with ∀i ≥ 0.] Then uviw ∈ L. [Finally our
conclusion, but we have to explain why this is true.] This is because we can repeat the loop from s to s
(represented by v) as many times as we like, and the resulting word will still be accepted by M .

D.3.2 Using the PL

Now we use the PL to prove that a language is not regular. This is a rewording of Example 3.1 from
Hopcroft and Ullman. I’ll show that L = {0i2 |i is an integer, i ≥ 1} is not regular. Note that L consists of
all strings of 0’s whose length is a perfect square. I will use the PL. I want to prove that L is not regular.

132

I’ll assume the negation (i.e., that L is regular) and derive a contradiction. So here we go. Remember
that what I’m emphasizing here is not the finite automata stuff itself, but how to use a complicated
theorem to prove something else.

Assume L is regular. We will use the PL to get a contradiction. Since L is regular, the PL applies to it.
[We note that we’re using the ∀ part of the PL for this particular L.] Let n be as described in the PL.
[This takes care of using the ∃n. Note that we are not assuming anything about its actual value, just that

it’s a natural number.] Let z = 0n
2

. [Since the PL says that something is true of all zs, we can choose
the one we want to use it for.] So by the PL there exist u, v, and w such that z = uvw, |uv| ≤ n, |v| ≥ 1.
[Note that we don’t assume anything about what the u, v, and w actually are; the only thing we know
about them is what the PL tells us about them. This is where people trying to use the PL usually screw
up.] The PL then says that for any i, then uviw ∈ L. Well, then uv2w ∈ L. [This is using the ∀i ≥ 0
bit.] However, n2 < |uv2w| ≤ n2+n, since 1 ≤ |v| ≤ n. But n2+n < (n+1)2. Thus |uv2w| lies properly
between n2 and (n+1)2 and is thus not a perfect square. Thus uv2w is not in L. This is a contradiction.
Thus our assumption (that L was regular) was incorrect. Thus L is not a regular language.

D.4 Sequent Calculus Rules

In this section, I will show how the intuitive approach to things that I’ve described above is reflected in
the sequent calculus rules. A sequent is Γ ⊢ ∆, where Γ and ∆ are sets of formulas.3 Technically, this
means that

A1 ∧A2 ∧ . . . An ⇒ B1 ∨B2 ∨ . . . Bm (1)

where A1, A2, . . . An are the formulas in Γ , and B1, B2, . . . Bn are the formulas in ∆. Less formally, this
means “using the formulas in Γ we can prove that one of the formula in ∆ is true.” This is just the
intuition I described above about using vs proving formulas, except that I only talked about proving that
one formula is true, rather than proving that one of several formulas is true. In order to handle the ∨
connective, there can be any number of formulas on the right hand side of the ⊢.

For each logic connective,4 I’ll give the rules for it, and explain how it relates to the intuitive way of using
or proving formulas. For each connective there are at least two rules for it: one for the left side of the
⊢, and one for the right side. This corresponds to having different ways to treat a formula depending on
whether you’re using it (for formulas on the left hand side of the ⊢) or proving it (for formulas on the
right side of the ⊢).

It’s easiest to understand these rules from the bottom up. The conclusion of the rule (the sequent
below the horizontal line) is what we want to prove. The hypotheses of the rule (the sequents above the
horizontal line) are how we go about proving it. We’ll have to use more rules, adding to the top, to build
up the proof of the hypothesis, but this at least tells us how to get going.

You can stop when the formula you have on the top is a basic sequent. This is Γ ⊢ ∆ where there’s at
least one formula (say P) that’s in both Γ and ∆. You can see why this is the basic true formula: it says
that if P and the other formulas in Γ are true, then P or one of the other formula in ∆ is true.

In building proofs from these rules, there are several ways that you end up with formulas to the left of
the ⊢, where you can use them rather than proving them. One is that you’ve already proved it before.
This is shown with the cut rule:

Γ ⊢ ∆, P P,Γ ⊢ ∆

Γ ⊢ ∆
(cut)

The ∆, P in the first sequent in the hypotheses means that to the right of the ⊢ we have the set consisting
of the formula P plus all the formulas in ∆, i.e., if all formulas in Γ are true, then P or one of the formulas
in ∆ is true. Similarly P,Γ to the left of the ⊢ in the second sequent means the set consisting of the
formula P plus all the formulas in Γ.

We read this rule from the bottom up to make sense of it. Say we want to prove one of the formulas
in ∆ from the formulas in Γ, and we want to make use of a formula P that we’ve already proved. The
fact that we’ve proved P is shown by the left hypothesis (of course, unless the left hypothesis is itself a
basic sequent, then in a completed proof there will be more lines on top of the left hypothesis, showing

3In your Logic and Proof notes, the symbol that divides Γ from ∆ is ⇒. However, that conflicts with the use of ⇒ as
implication. Thus I will use ⊢. You will see something similar in Semantics, where it separates assumptions (of the types
of variables) from something that they allow you to prove.

4I won’t mention iff here: as P ⇔ Q is equivalent to P ⇒ Q ∧Q ⇒ P , we don’t need separate rules for it.

133

the actual proof of the sequent). The fact that we are allowed to use P in the proof of ∆ is shown in the
right hand hypothesis. We continue to build the proof up from there, using P .

Some other ways of getting formulas to the left of the ⊢ are shown in the rules (¬r) and (⇒ r) below.

∀x ∈ S.P (x) The two rules for universally quantified formulas are:

P (v),Γ ⊢ ∆

∀x.P (x),Γ ⊢ ∆
(∀l)

Γ ⊢ ∆, P (x)

Γ ⊢ ∆,∀x.P (x)
(∀r)

In the (∀r) rule, x must not be free in the conclusion.

Now, what’s going on here? In the (∀l) rule, the ∀x.P (x) is on the left side of the ⊢. Thus, we are using
it (along with some other formula, those in Γ) to prove something (∆). According to the intuition above,
in order to use ∀x.P (x), you can use it with any value, where v is used to represent that value. In the
hypothesis, you see the formula P (v) to the left of the ⊢. This is just P with v substituted for x. The use
of this corresponds exactly to using the fact that P is true of any value whatsoever, since we are using it
with v, which is any value of our choice.

In the (∀r) rule, the ∀x.P (x) is on the right side of the ⊢. Thus, we are proving it. Thus, we need to
prove it for a generic x. This is why the ∀x is gone in the hypothesis. The x is still sitting somewhere
in the P , but we’re just using it as a plain variable, not assuming anything about it. And this explains
the side condition too: “In the (∀r) rule, x must not be free in the conclusion.” If x is not free in the
conclusion, this means that x is not free in the formulas in Γ or ∆. That means the only place the x
occurs free in the hypothesis is in P itself. This corresponds exactly with the requirement that we’re
proving that P is true of a generic x: if x were free in Γ or ∆, we would be assuming something about x,
namely that value of x is the same as the x used in those formulas.

Note that induction is not mentioned in the rules. This is because the sequent calculus used here just
deals with pure logic. In more complicated presentations of logic, it is explained how to define new types
via structural induction, and from there you get mechanisms to allow you to do induction.

∃x ∈ S.P (x) The two rules for existentially quantified formulas are:

P (x),Γ ⊢ ∆

∃x.P (x),Γ ⊢ ∆
(∃l)

Γ ⊢ ∆, P (v)

Γ ⊢ ∆,∃x.P (x)
(∃r)

In the (∃l) rule, x must not be free in the conclusion.

In (∃l), we are using ∃x.P (x). Thus we cannot assume anything about the value that the formula says
exists, so we just use it as x in the hypothesis. The side condition about x not being free in the conclusions
comes from the requirement not to assume anything about x (since we don’t know what it is). If x isn’t
free in the conclusion, then it’s not free in Γ or ∆. If it were free in Γ or ∆, then we would be assuming
that the x used there is the same as the x we’re assuming exists, and this isn’t allowed.

In (∃r), we are proving ∃x.P (x). Thus we must pick a particular value (call it v) and prove P for that
value. The value v is allowed to contain variables that are free in Γ or ∆, since you can set it to anything
you want.

¬P The rules for negation are:

Γ ⊢ ∆, P

¬P,Γ ⊢ ∆
(¬l)

P,Γ ⊢ ∆

Γ ⊢ ∆,¬P (¬r)

Let’s start with the right rule first. I said that the way to prove ¬P is to assume P and derive a
contradiction. If ∆ is the empty set, then this is exactly what this rule says: If there are no formulas to
the right hand side of the ⊢, then this means that the formulas in Γ are inconsistent (that means, they
cannot all be true at the same time). This means that you have derived a contradiction. So if ∆ is the
empty set, the hypothesis of the rule says that, assuming P , you have obtained a contradiction. Thus, if
you are absolutely certain about all your other hypotheses, then you can be sure that P is not true. The
best way to understand the rule if ∆ is not empty is to write out the meaning of the sequents in terms

134

of the meaning of the sequent given by Equation 1 and work out the equivalence of the top and bottom
of the rule using the equivalences in your Logic and Proof notes.

The easiest way to understand (¬l) is again by using equivalences.

P ⇒ Q The two rules for implication are:

Γ ⊢ ∆, P Q,Γ ⊢ ∆

P ⇒ Q,Γ ⊢ ∆
(⇒ l)

P,Γ ⊢ ∆, Q

Γ ⊢ ∆, P ⇒ Q
(⇒ r)

The rule (⇒ l) easily understood using the intuitive explanation of how to use P ⇒ Q given above. First,
we have to prove P . This is the left hypothesis. Then we can use Q, which is what the right hypothesis
says.

The right rule (⇒ r) is also easily understood. In order to prove P ⇒ Q, we assume P , then use this to
prove Q. This is exactly what the hypothesis says.

P ∧Q The rules for conjunction are:

P,Q,Γ ⊢ ∆

P ∧Q,Γ ⊢ ∆
(∧l)

Γ ⊢ ∆, P Γ ⊢ ∆, Q

Γ ⊢ ∆, P ∧Q
(∧r)

Both of these rules are easily explained by the intuition above. The left rule (∧l) says that when you use
P ∧Q, you can use P and Q. The right rule says that to prove P ∧Q you must prove P , and you must
prove Q. You may wonder why we need separate hypotheses for the two different proofs. We can’t just
put P,Q to the right of the ⊢ in a single hypothesis, because that would mean that we’re proving one of
the other of them (see the meaning of the sequent given in Equation 1). So we need separate hypotheses
to make sure that each of P and Q has actually been proved.

P ∨Q The rules for disjunction are:

P,Γ ⊢ ∆ Q,Γ ⊢ ∆

P ∨Q,Γ ⊢ ∆
(∨l)

Γ ⊢ ∆, P,Q

Γ ⊢ ∆, P ∨Q
(∨r)

These are also easily understood by the intuitive explanations above. The left rule says that to prove
something (namely, one of the formulas in ∆) using P ∨ Q, you need to prove it using P , then prove it
using Q. The right rule says that in order to prove P ∨Q, you can prove one or the other. The hypothesis
says that you can prove one or the other, because in order to show a sequent Γ ⊢ ∆ true, you only need
to show that one of the formulas in ∆ is true.

135

