
Software and Security
Engineering

Lecture 7
Anil Madhavapeddy
avsm2@cam.ac.uk

With many thanks to Ross Anderson and Alastair R. Beresford

31

Warm up: What mistakes were
made in the LAS system?

• Specification
• Project management
• Operational

32

Specification mistakes

• LAS ignored advice on cost and timescale
• Procurers insufficiently qualified and experienced
• No systems view
• Specification was inflexible but incomplete: it was

drawn up without adequate consultation with staff
• Attempt to change organisation through technical

system
• Ignored established work practices and staff skills

33

Project management mistakes

• Confusion over who was managing it all
• Poor change control, no independent QA, suppliers

misled on progress
• Inadequate software development tools
• Ditto data comms, with effects not foreseen
• Poor interface for ambulance crews
• Poor control room interface

34

Operational mistakes

• System went live with known serious faults
• slow response times
• workstation lockup
• loss of voice comms

• Software not tested under realistic loads or as an
integrated system

• Inadequate staff training
• No effective back-up system in place

35

NHS National Programme for IT

Idea: computerise and centralise all record keeping
for every visit to every NHS establishment

• Like LAS, an attempt to centralise power and change
working practices

• Earlier failed attempt in the 1990s
• The February 2002 Blair meeting
• Five LSPs plus national contracts: £12bn
• Most systems years late or never worked
• By 2012 & coalition government: NPfIT ‘abolished’

36

Universal Credit: fix poverty trap

Idea: Hundreds of welfare benefits which means there is
often little incentive to get a job.

• Initial plan was to go live in October 2013
• A significant problem: big systems take seven years not

three; doesn’t align with political cycle
• Complexity was huge, e.g. depended on real-time feed

of tax data from HMRC, which in turn depended on firms
• See https://cpag.org.uk/news/digital-universal-credit-

system-breaches-principles-law-and-stops-claimants-
accessing-support in 2023, a decade on

37

https://cpag.org.uk/news/digital-universal-credit-system-breaches-principles-law-and-stops-claimants-accessing-support
https://cpag.org.uk/news/digital-universal-credit-system-breaches-principles-law-and-stops-claimants-accessing-support
https://cpag.org.uk/news/digital-universal-credit-system-breaches-principles-law-and-stops-claimants-accessing-support
https://cpag.org.uk/news/digital-universal-credit-system-breaches-principles-law-and-stops-claimants-accessing-support

NAO: poor value for money, not
paying 1 in 5 on time

38
https://www.youtube.com/watch?v=qE2fpNSrrpc

https://www.youtube.com/watch?v=qE2fpNSrrpc

Smart meters: more centralisation
Idea: expose consumers to market prices, get peak demand
shaving, make use salient

• 2009: EU Electricity Directive for 80% by 2020
• 2009: Labour £10bn centralised project to save the planet and

help fix supply crunch in 2017
• 2010: Experts said we just can’t change 47m meters in 6 years.

So excluded from spec
• Coalition government: wanted deployment by 2015 election!

Planned to build central system Mar–Sep 2013 (then: Sep 2014
…)

• Spec still fluid, tech getting obsolete, despair …
• 2023: https://publications.parliament.uk/pa/cm5803/

cmselect/cmpubacc/1332/summary.html
39

https://publications.parliament.uk/pa/cm5803/cmselect/cmpubacc/1332/summary.html
https://publications.parliament.uk/pa/cm5803/cmselect/cmpubacc/1332/summary.html
https://publications.parliament.uk/pa/cm5803/cmselect/cmpubacc/1332/summary.html

Software engineering is about
managing complexity at many levels
• Bugs arise at micro level in challenging components
• As programs get bigger, interactions between

components grow at O(n2) or even O(2n)
• The ‘system’ isn’t just the code: complex socio-

technical interactions mean we can’t predict
reactions to new functionality

Most failures of really large systems are due to wrong,
changing, or contested requirements

40

Project failure, circa 1500 BCE

41

On contriving machinery
“It can never be too strongly impressed upon the minds of
those who are devising new machines, that to make the most
perfect drawings of every part tends essentially both to the
success of the trial, and to economy in arriving at the result”

Charles Babbage

42

[The AnalyJcal Engine] might act upon other things besides number, were
objects found whose mutual fundamental relaJons could be expressed by
those of the abstract science of operaJons, and which should be also
suscepJble of adaptaJons to the acJon of the operaJng notaJon and
mechanism of the engine...Supposing, for instance, that the fundamental
relaJons of pitched sounds in the science of harmony and of musical
composiJon were suscepJble of such expression and adaptaJons, the
engine might compose elaborate and scienJfic pieces of music of any
degree of complexity or extent.

Ada Lovelace (1842)

Bank of England, 1870

43

Dun, Barlow & Co, 1876

44

Sears, Roebuck and Company, 1906

• Continental-scale mail order meant specialization
• Big departments for single bookkeeping functions
• Beginnings of automation

45

First National Bank of Chicago, 1940

46

The software crisis, 1960s

• Large, powerful mainframes made complex systems
possible

• People started asking why project overruns and
failures were so much more common than in
mechanical engineering, shipbuilding, etc.

• The term software engineering coined in 1968
• The hope was that we could things under control by

using disciplines such as project planning,
documentation and testing

47

Those things which make writing
software fun also make it complex
• Joy of solving puzzles and building things from

interlocking parts
• Stimulation of a non-repeating task with continuous

learning
• Pleasure of working with a tractable medium, ‘pure

thought stuff’
• Complete flexibility – you can base the output on

the inputs in any way you can imagine
• Satisfaction of making stuff that’s useful to others

48

How is software different?

• Large computer systems become qualitatively more
complex, unlike big ships or long bridges

• The tractability of software leads customers to demand
flexibility and frequent changes

• This makes systems more complex to use over time as
features accumulate, and interactions have odd effects

• The structure can be hard to visualise or model
• The hard slog of debugging and testing piles up at the end,

when the excitement’s past, the budget’s spent and the
deadline’s looming

49

Software economics can be nasty

• Consumers buy on sticker price
• Businesses buy based on total cost of ownership
• Vendors use lock-in tactics
• Complex outsourcing

50

Cost of software: development 10%,
maintenance 90%

cost

development operations legacy time

51

Measuring cost of code is hard
First IBM measures (1960s)
• 1.5 KLOC per developer-year (operating system)
• 5 KLOC per developer-year (compiler)
• 10 KLOC per developer-year (app)

AT&T measures
• 0.6 KLOC per developer-year (compiler)
• 2.2 KLOC per developer-year (switch)

52

KLOC is a poor measure

Alternatives:
• Halstead (entropy of operators/operands)
• McCabe (graph entropy of control structures)
• Function point analysis

//Print out hello
for (int i = 0; i < 4; i++) {
 System.out.println(“Hello, world”);
}

for (int i = 0; i < 4; i++) { System.out.println(“Hello, world”);}

System.out.println(“Hello, world”);
System.out.println(“Hello, world”);
System.out.println(“Hello, world”);
System.out.println(“Hello, world”);

1.

2.

3.

53

Early lessons: productivity varies,
use a high-level language
• Huge variations in productivity between individuals
• The main systematic gains come from using an

appropriate high-level language since they reduce
accidental complexity; programmer focuses on
intrinsic complexity

• Get the specification right: it more than pays for
itself by reducing the time spent on coding and
testing

54

Barry Boehm surveyed relative costs
of software development (1975)

Spec Code Test
C3I 46% 20% 34%
Space 34% 20% 46%
Scientific 44% 26% 30%
Business 44% 28% 28%

• All stages of software development require
good tools

55

Mythical Man-Month: “adding manpower
to a late project makes it later”

Example project with 3 developers and 9 months.
Initial estimate is 9 person-months each for spec,
code and test.

• But spec ends up taking 12 PMs. What do you do?

3 3 3 3 3 3 3 3 3

Specification Code Test

56

Mythical Man-Month: “adding manpower
to a late project makes it later”

We try to catch up:
• Train 3 more developers in the first month, then use

all 6 developers in the next month
• But: work of 3 developers in 2 months can’t be done

by 6 developers in 1 – interaction costs maybe O(n2)

3 3 3 3 3 6 3 3 3

Specification Code Test

Train

57

Time to first shipment is cube root of
developer-months (Boehm, 1984)

where is time to first shipment and is developer
months

• With more time, costs rise slowly
• With less time, costs rise sharply
• Hardly any projects succeed at
• Some projects still fail

𝑇 = 2.5 3 d

𝑇 d

¾𝑇

58

The Software Tar Pit

59

Take a structured, modular approach

• Only practical way forward is modularisation
• Divide a complex system into small components
• Define clear APIs between them
• Lots of methodologies based on this idea:

• SSDM
• Jackson
• Yourdon,
• UML,
• …

60

The Waterfall Model (1970)

Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

61

The Waterfall Model (1970)

Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

validate

validate

verify

verify

62

Waterfall Model has advantages

• Compels early clarification of system goals
• Supports charging for changes to the requirements
• Works well with many management and tech tools
• Where it’s viable it’s usually the best approach
• The really critical factor is whether you can define

the requirements in detail in advance. Sometimes
you can (Y2K bugfix); sometimes you can’t (HCI)

63

Waterfall fails where iteration is
required, such as:
• Requirements not yet understood by developers
• Not yet understood by the customer
• The technology is changing
• The environment (legal, competitive) is changing
• …

64

Iterative development

Develop
outline spec

Build system Use system

Deliver system

OK?
No

Problem: this algorithm
might not terminate!

65

Spiral Model
1. Determine objectives

2. Identify and
resolve risks

3. Development and test

4. Plan next
iteration

66

• Decide in advance on a fixed number of iterations
• Each iteration is done top-down
• Driven by risk management (i.e. prototype bits you

don’t yet understand)

Spiral model invariants

67

Docker: Transformed the Development Landscape

68

Loosely
Coupled

Many Small
Servers/
VMs/containers

~2000 Today

Monolithic

Big Iron

Change
Slowly Rapidly

Updated

