Software and Security
Engineering

Lecture 5
Martin Kleppmann
martin.kleppmann@cst.cam.ac.uk

With many thanks to Ross Anderson and Alastair Beresford

105

Symmetric key cryptography
requires careful sharing of keys

Geheime Kommandosache! b simetne Tages(dtaffel it ocheim. Milnc’ s im Flugjeug neebolen’
Nr. nn1e
\uftmnﬁnu Mafdyinen- Scliffel Nr. 649 e
Achrung! Sdlifelmittel dicfen nidyt unoeefehet in Feindeshand follen. Hrnﬁe[uhrn[lln,nnh[mlunhg pecnidyten.
b ' 2 L lvi A g, . V&Y, L} T B BROSTSRT S s Silis
v : sz o7 DV KU FO MY EW JN Ix LQ[wny dgy | exb rzg
! 1 1S EV MX RW DT UZ JQ A0 CH NY| ktl acw [zsi wao
1 KM AX PZ 00.p; a7 cv 10 ER QS LW P2 FN BH| doc =2cn | ovw wvd
I v DI CN BR PV . CR PV Al DK OT MQ EU BX LP GJ| irb cld ude rzh
w I 03 o7|ur EQ ms uwipY IN BV OR AM Lo PP HP EX UW | iwod fbhi vet jufs
v |7 219 vz AL RT KO €@ EI BJ DU FS KP| xle gbo | uev rxm
m 1 |08 25 12 {OR PV AD IT PK HJ Lz NS EQ CW| ouc uhgq | uew uit
1 w |05 18 14 by As oW KV, 3 DRUNX oL oz nu||kprirwa Sy ciREcT o
n 1|24 12 04 jQV PR AK EO DH CJ Nz SX GN LT | ebn rwm wdf tlo
w v o o 2|1y As pv o |FI ES IM RX LV AY OU BG WZ ON| jqc acx | mwe wve
v 1 |48005° 19| em: doxt =z ion | RUAHLIPY MOST oz DM EAYRICERTVERCH IR del | mwf wvf
W v 2200 100 gy g Pw}bp 4O QI AU RY SV JL OX 5 T | jad cef | nve ysh
m 1 |17 25 20 OX .PR Fil WY DL CM AE 7z 1S GI| idf fpx | jwg tlg
n v |15 23 2 EJ oY IV AQ KW FX W PS'LU BD [1sa gbw | vej Txn
v oo |20 1008 IR Kz LS EM OV OY QX AP JP °BU[mae hzi’| sog ysi
o fos 16 13 WM JO DI NR BY Xz 0S PU PQ CT [tdp dnb | fkd uiv
no_w 1 |on 03 o7 DS HY MR OW LX AJ BQ €O IP NT [1dw hzj | soh wvg
v 1 Ve |50 05l a e (Al v of| O MEVRSICSETY MH TSR LBAGREICR NV | imz noa | tiv xtk
bt a ok ol e I LY RAC MBI S JU KV SW ET CX| zgr dgz | gio rve
v TRV (158 Tolior) [l S8 SIS ST BP CY RZ KX AN JT DG IL PW| 2dy rkf | tjw xtl
T Ve | (0202615 KN UY HR PW PM BO EZ QT DX JV| zea rjy | soi wvh
Ty SRy |23k o1o) {LR 1K MS QU H¥ PT 00 VX Pz EN| 1rc zbx [vbm Txo
9| v 1 ur |16 04 2 QY BS LN KT AP IU DW HO RV JZ| edj eyr | vby tih
T [e S [e L S I DL 7X DO KP| yiz dha | eke tli
Wl v n |09 03 22 _UX 1z HN BK 0Q CP FT JY MW AR| lan dgb | zsJ wbi
6| 1 v |18 Do GU BW NP HK Az CI PO JX VY| lao cft | zsk wbj
Sl i v |meras)| R AR EU RO UgvEer ek oo pYSEU S REXEING R BICN cdr | ive waj
a| u v 1 loa 21 09)| OF W2 KV HGH FXc AL 07 EX QW' P ESUSDHEIM 7x | 1sb zdy [vey uid
3| v 1 i 19 11 06 |BF NR DX CS ‘KR MP CN BP EH Dz IW AV GJ LO|[lap owd iwu wak
5By v b aTaNo2 BN HU EG PY KQ CP 0S Jw AL vz | aqd bdy [iyf xtd 106
il ou w 123 12 10 DP BM Nz CK OV _HQ AF UY sw Jol kgl 'cdf | gia wuv

Photo source: https: //commons wikimedia.org/wiki/File:Enigma kevlist 3 rotor.ipg

A list of keys for a German Enigma cipher machine.

English translation of text along the top (from Wikipedia):
Secret Command Document! Every individual key setting is secret. Forbidden to

bring on aircraft.
Luftwaffe Machine Key No.649

Attention! Key material must not fall into enemy hands intact. In case of danger

destroy thoroughly and early.”

106

https://commons.wikimedia.org/wiki/File:Enigma_keylist_3_rotor.jpg

Public key cryptography

Allows two parties with no prior knowledge of each
other to jointly establish a shared secret key over
an insecure channel

Examples include Diffie-Hellman and RSA

107

Diffie Hellman revision
Alice and Bob publicly agreetouse p=23,g=5

1. Alice chooses secret integer a = 4, then
A —B:g2mod p=5*mod23=4

2. Bob chooses secret integer b = 3, then
B— A:g>mod p=53mod 23 =10

3. Alice computes 10* mod 23 =18
4. Bob computes 43 mod 23 =18

Alice and Bob now agree the secret integer is 18

Example derived from https://en.wikipedia.org/wiki/Diffie-Hellman key exchan,c,IS8

You saw Diffie Hellman in Discrete Maths. This simple version uses a multiplicative
group of integers modulo p, where p is prime and g is a primitive root modulo p The
values of p and g are chosen in this way to ensure that the resulting shared secret can
take on any value from 1 to p-1.

This protocol has a significant limitation: it is susceptible to a person-in-the-middle
attack.

108

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Physical public key crypto with
locks

* Anthony sends a message in a box to Brutus. Since
the messenger is loyal to Caesar, Anthony puts a
padlock on it

* Brutus adds his own padlock and sends it back to
Anthony

* Anthony removes his padlock and sends it to
Brutus, who can now unlock it

Is this secure?

Anthony wants to kill Caesar, but needs Brutus' help to do so. How can Anthony send
a message to Brutus yet not let the messenger read the message? This proposal is
insecure: it is vulnerable to a MITM attack, as is Diffie Hellman.

Here Anthony has shared the secret message with someone, but Anthony doesn’t
know who it is!

109

Asymmetric public-key crypto

* Separate keys for encryption and decryption

* Publish encryption key widely (the “public key”)
allowing anyone to create an encrypted message;
only holder of decryption key (“private key”) can
decode the message and read it

* Digital signatures are the other way around: only
you can sign but anyone can verify

* Example: RSA

More on this in the Part IB Security course and Part Il Cryptography course. Require
knowledge at this point is as stated above and expanded on in the lecture.

Note that asymmetric public-key crypto has the same problem as Diffie-Hellman: how

do you know that you have the right public key for Alice and you are not subject to a
MITM attack?

110

Public-key Needham-Shroeder

* Proposed in 1978:

A — B: {NA, A}KB
B — A: {Na, Ngja
A — B: {NB}KB

* N, and Ng are nonces generated by A and B respectively
* Ky and Kz are public keys for A and B respectively
* The idea is to use N,®Ng as a shared key

Is this okay?

Once public key crypto is discovered, people then looked for ways to use it.
Background: Needham went to California every summer to work at Xerox Parc. He got
a preprint of the RSA paper and decided to apply it to the problem on the Xerox
network computer project. Kerberos, discussed earlier, was derived from the
Needham-Shroeder protocol, and in 1978 Needham proposed the following public-
key variant of the protocol.

This version does not require an online server, Sam. Instead the nodes now need the
long-term public keys of each other. Here, KA and KB are the public keys of A and B
respectively, and the aim is to use these in order to derive a symmetric session key
between A and B (symmetric cryptography is computationally cheaper).

111

MITM attack found 18 years later

A: C: B:
A— C: {Np, Alkc
C — B: {Np, Als
B—C: {Na, Nglka
C—oA: {Na, Ngla
A— C {Ng}c
C—B: {Ngke

The fix is explicitness. Put all names in all messages.

Here Charlie can pretend to be Alice when talking to Bob (line 2). Doing so means
that Charlie gets N, (line 1) as well as N; (line 5). Now Alice correctly believes she’s
talking to Charlie, but Bob believes he’s talking to Alice, when in fact he is talking to
Charlie. Bob may therefore subsequently share some information that was intended
only for Alice, but Charlie can intercept it.

Don't beat yourself up with if you didn't spot the problem in the protocol. It took 18
years before someone noticed the problem as shown on this slide.

(Gavin Lowe: Breaking and fixing the Needham-Schroeder Public-Key Protocol using
FDR. TACAS 1996)

112

Binding keys to principals is hard

* Physically install binding on machines
* IPSEC, SSH
* Trust on first use; optionally verify later
* SSH, Signal, simple Bluetooth pairing
» Use certificates with trusted certificate authority
* Sam signs certificate to bind Alice’s key with her name
* Certificate = sig{A, K5, Timestamp, Length}
* Basis of Transport Layer Security (TLS) as used in HTTPS
» Use certificate pinning inside an app
* Used by some smartphone apps

113

Transport Layer Security (TLS)

» Uses public key cryptography and certificates to
establish a secure channel between two machines

* Various efforts to prove correctness
* Core of TLS 1.0 verified by Larry Paulson, 1999
* TLS 1.3 (2018) designed alongside formal verification

* Nevertheless, many flaws have been found

* Interactions between protocol extensions,
implementation bugs, side-channel (timing) attacks,
downgrade to old protocol versions, ...

» Often a large number of root certificate authorities.
Are these all trustworthy?

Earlier versions of this protocol were called Secure Sockets Layer (SSL). There's been
around one bug every year in TLS since 1999. The first series of attacks were timing
attacks: look at how long it takes a server to respond and use this to determine
certain bits of the key. The challenge here is that compilers and security engineers
fight. Compilers attempt to make code as fast as possible, and may optimise away
“make work” inserted by security engineers who are attempting to ensure constant-
time execution for critical operations. There are many more technical hacks here, but
these are for later courses.

Another major problem is that it's really hard to fix bugs when found. In order to
change the protocol you need to make changes to both the client and the server. This
is hard for the Web since you have to upgrade both all web browsers and all web
servers and no single party is in control of the overall ecosystem. There are poor
incentives. There are 187 root certificates installed on my Mac. Web browsers
typically trust all of them, and any of these certificates may be used to license other
providers with the power to create further certificates for arbitrary domains.

114

DigiNotar went bust after issuing
bogus certificates (2011)

 Dutch certificate authority

* More than 300,000 Iranian Gmail users targeted

* More than 500 fake certificates issued

* Major web browsers blacklisted all DigiNotar certs

 Today: Certificate Transparency to detect
incorrectly issued certificates

Iranian Gmail users were found to have been given fake certificates for Gmail,
allowing a MITM attack to take place. Further investigation revealed that over 500
fake certificates were issued. No public investigation provides conclusive proof of all
steps in the process, but the Iranian Government and the NSA have both been
suggested as potential attackers. The behaviour of governments here has a significant
influence on the security of everyone else. The cryptowars of the 1990s, where
governments attempted to mandate exceptional access to encrypted key material,
are being revisited. See: Ableson et al. Keys Under Doormats: mandating insecurity by
requiring government access to all

data and communications. https://www.schneier.com/academic/paperfiles/paper-
keys-under-doormats-CSAIL.pdf

Further reading: https://en.wikipedia.org/wiki/DigiNotar

115

https://en.wikipedia.org/wiki/DigiNotar

TLS security landscape is complex

Home Projects Qualys Free Trial Contact

@ Qualys. ssi Labs

You are here: Home > Projects > SSL Server Test > www.cst.cam.ac.uk

SSL Report: www.cst.cam.ac.uk (128.232.132.21)

Assessed on: Tue, 30 Apr 2024 21:04:18 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Certificate

| |
0 20 40 60 80 100

Key Exchange

Cipher Strength

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

This site works only in browsers with SNI support.

‘ Certificate #1: RSA 2048 bits (SHA256withRSA) ‘

Look at the security rating site OpenSSL Labs for the Department’s certificate. The
landscape here is very complex. You need a detailed tool to check whether your
certificate and setup has all the appropriate defences deployed for the various flaws
found in the protocol over the years. Note the provision of client compatibility too.

116

Chosen protocol attack

The Mafia asks people to sign a random
challenge as proof of age for porn sites!

Picture 143! Buy 10 gold coins
7 »
Prove your age Sign X’
< . y. g’ < 8
by signing ‘X
L. 4 »
SigK &3 " SigK X3 " BANK

Customer Mafia porn
site

117

Even if a protocol is secure in isolation, it might fall down if the same key can be
reused in multiple protocols. For example, say you have a challenge-response
protocol where a service can send a user a random string X and ask them to produce
a digital signature over X to authenticate the user. If the same key can be used for
both age verification and authorising a purchase, a challenge for a purchase may be
replayed in an age verification context. This problem can be prevented by not using
the same key for multiple purposes, or by including an indication of the purpose as
part of the signed data (e.g. signing the string “age verification response for challenge
X" rather than just “X”), so that the signature cannot be reused for another purpose.

117

Bugs are found in and around code

* Bugs in the code
* Arithmetic

Syntactic

* Logic

* Concurrency

* Memory safety

* Bugs around the code
* Code injection
* Usability traps

118

Maurice Wilkes: "It suddenly occurred to me when | was at the corner of the stairs,
that | would spend a large part of my life discovering bugs in my own programs.”

The first documented use of the term "bug" for a technical malfunction was by
Thomas Edison; In the year 1878 he mentioned the term in a private letter. This
counters an oft-mentioned view that the term bug is derived from a moth getting
trapped in a computer, although perhaps this latter event popularised the term. For
further information, see https://en.wikipedia.org/wiki/Software bug

118

https://en.wikipedia.org/wiki/Software_bug

German Air Force; CC-BY-SA, Darkone, Wikipedia

* Failed to intercept an Iragi Scud missile in first Gulf
War on 25% February 1991

* Scud struck US barracks in Dhahran; 28 dead
* Other Scuds hit Saudi Arabia, Israel

119

The MIM-104 Patriot is a surface-to-air missile (SAM) system, the primary of its kind
used by the United States Army and several allied nations. The picture on the left is a
Patriot system used by the German Air Force, August 2005
(https://en.wikipedia.org/wiki/MIM-104_Patriot). The picture on the right is of a Scud
missile and launcher in use by the Afgan National Army.

119

https://en.wikipedia.org/wiki/MIM-104_Patriot

Caused by arithmetic bug

* System measured time in 1/10 sec, truncated from
0.0001100110011...,

» Accuracy upgraded as system upgraded from air-
defence to anti-ballistic-missile defence

» Code not upgraded everywhere (assembly)
* Modules out by 1/3rd sec after 100h operation
* Not found in testing as spec only called for 4h tests

Lesson: Critical system failures are typically
multifactorial

2020: Boeing 787 must be rebooted every 51 days

As you will know from the Numerical Analysis course, not all decimal fractions are
precisely representable as binary floating-point numbers.

System was upgraded from anti-aircraft to anti-ballistic missile. This required an
increase in accuracy since ballistic missiles such as the Scud travel much faster than
aircraft. Unfortunately the code was not updated everywhere. This meant that
different modules (some with upgraded accuracy, some not) then fell out of sync with
each other, resulting in the failure of the Patriot system to effectively target Scud
missiles. This problem was not caught by static analysis tools since the code was
written in assembly, and therefore there was no high-level language features such as
a strong type system which could have helped. Testing was also inadequate — missile
defence systems are often operated continuously for hundreds of hours, yet the
testing regime only called for testing over a 4-hour period. Short-term solution was to
reboot Patriot every 4 hours until the underlying cause was determined.

120

Syntactic bugs arise from features
of the specific language

For example, in Java:

1 + 2 + "" evaluatesto"3"
" 4+ 1 + 2 evaluatesto"12"

This is due to coercion from primitive integers to
java.lang.String

121

Java supports implicit type conversion or coercion from primitive integers to Strings.
This is typically helpful, however implicit type conversion interacts with implicit
operator precedence in the above example, leading to different outcomes for what
initially appear to be quite similar expressions. Removing all implicit type conversion
may also result in (different) errors since programmers may then insert explicit type
conversions which themselves might be problematic.

Further reading: Joshua Bloch and Neal Gafter, Java Puzzlers: Traps, Pitfalls, and
Corner Cases, Addison-Wesley. http://www.javapuzzlers.com/

121

http://www.javapuzzlers.com/

Apple’s goto fail bug (2014)

static OSStatus SSLVerifySignedServerKeyExchange (SSLContext *ctx,
bool isRsa, SSLBuffer signedParams,
uint8 t *signature, UIntl6 signaturelen)

OSStatus err;

((err = SSLHashSHAIl.update (&hashCtx, &serverRandom)) != 0)

goto fail;

((err = SSLHashSHAl.update (&hashCtx, &signedParams)) != 0)
goto fail;

goto fail; //error: this line should not exist

((err = SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)

goto fail;

fail:
SSLFreeBuffer (&signedHashes) ;

SSLFreeBuffer (&hashCtx) ;
return err;
} 122

This is a control-flow (logic) bug. Note the two consecutive lines containing “goto
fail”; the second is erroneous and the control flow therefore unconditionally executes
the code at the “fail” label. It's not clear how this failure was introduced. Perhaps it
was an erroneous merge on a commit, either automated or manual by a user. Better
unit tests might have helped.

Further reading: https://www.imperialviolet.org/2014/02/22/applebug.html

122

https://www.imperialviolet.org/2014/02/22/applebug.html

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (b LETTERS).

)

ser Meg wants these 6 letters: POTATO.

ser Meg wants these 6 letters: POTATO.

o)
OO

Credit: https://xkcd.com/1354/

This is another logic bug. The heartbeat feature allowed either the client or the server
to ask the other party to reply with a specified message of a given length after a

period of time, allowing the requesting party to know that the other was still online
and available.

123

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "HAT" (500 LETTERS).

ser Meg wants these 500 letters: HAT.

ser Meg wants these 500 letters: HAT.

P HAT. Lucas requests the "missed conne
cuons page Eve (adm_mstrator) wan
server’s master key to "148
35038534 Isabel wants pages about '
snalmbutmttoolmg User Karen
wants to change acccxmt password to:!
LoRaCE" TI

Credit: https://xkcd.com/1354/

Unfortunately the requesting party could claim the provided message was much
larger than reality. This led to a buffer over-read vulnerability: the requesting party
would receive their message appended with any additional contents found in the
server or clients memory. The bug's name derives from heartbeat. NB: In the
absence of malice, the code worked just fine.

Further reading: https://en.wikipedia.org/wiki/Heartbleed

124

https://en.wikipedia.org/wiki/Heartbleed

Heartbleed allows clients to read
the contents of server memory

Therefore a malicious client could read:

* Secret keys of any TLS certificates used by server
 User creds such as email address and passwords
* Confidential business documents

* Personal data

The attack left no trace of use in server logs

The potential impact of this vulnerability is huge. Potentially the entire contents of
the server’s process address space were accessible.

One significant risk was for webservers connected to the public Internet. Since the
attack left no trace of use in server logs, this meant that all servers needed to not
only upgrade their software to fix the vulnerability, but to replace all important key
material. TLS certificates in use by the server are an important example, since the
private keys may have been compromised. Ideally all user passwords should have
been replaced too as these may have been compromised, but the risk of this type of
failure depends on details of any implementation.

125

Notification and clean-up difficult

12th March 2012 Bug introduced (OpenSSL 1.0.1)
15t April 2014 Google secretly reports vuln

3rd April 2014 Codenomicon reports vuln
7t April 2014 Fix released
7t April 2014 Public announcement

9th May 2014 57% of website still using old
TLS certificates

20th May 2014 1.5% of 800,000 most popular
websites still vulnerable

The original flaw was introduced into the source code repository for OpenSSL on 315t
December 2011, and was released in OpenSSL in version 1.0.1 on 12t March 2012.
The bug appears to have been found by multiple people, including members of the
security team at Google who produced a fix which appeared on RedHat’s issue
tracker on 21 March 2014. Codenomicon also discovered the problem
independently and reported on 3™ April 2014. [Dates sourced from
https://en.wikipedia.org/wiki/Heartbleed]

A significant issue with notification is it was essentially impossible to do so quietly:
the number of servers and clients which needed fixing is simply too large. Another
problem is that many server operators did not realise that they may have been
compromised and therefore did not replace their certificates (potentially allowing a
MITM attack on all connections, and in the absence of a version of the protocol with
forward secrecy, a passive data capture followed by later processing).

A surprising outcome was that may firms decided to outsource certificates to
companies like CloudFlare. This is great for the CEO who no longer gets woken up in
the middle of the night with things like Heartbleed; now it's CloudFlare’s problem.
Unfortunately data may be less secure: encryption now runs from customer to
CloudFlare, but not necessarily from CloudFlare to company actual servers unless a
premium option is purchased. Of course companies don't pay the premium. So now
data is backhauled across the Internet where it can be read with passive taps.

126

https://en.wikipedia.org/wiki/Heartbleed

Intel AMT Bug (2017)

* AMT allows sysadmins remote access to a machine,
even when turned off (but mains power on)

* Provides full access to machine, independent of OS

* A sketch of the protocol for authentication
between machine and remote party is as follows:

C — S: “Hi. I'd like to connect”
S — C: “Please encrypt X with our secret key”
C — S: “Here are the first x bytes of {X}xcs”

127

This is a logic bug in the implementation of the protocol. The failure here occurs
because the client (not the server) gets to choose how many bytes (x) to return, so a
malicious client can choose to return zero bytes. Further reading:
https://en.wikipedia.org/wiki/Intel_Active_Management_Technology

127

https://en.wikipedia.org/wiki/Intel_Active_Management_Technology

Concurrency bug: time of check
to time of use failure (TOCTOU)

S5 file = new File(args[0]);

Y if(!file.canWrite())

o return;

g fp = new

- RandomAccessFile(file,)
fp.writeChars (i

fp.close () ;

Adapted example from https://en.wikipedia.org/wiki/Time of check to time of use
128

In this example, a programmer is writing a program which has the setuid bit set (see
Operating Systems course from last term). Therefore the programmer first checks
whether the user has access to a particular file, then if true, uses the file by writing
some data to it.

The bug occurs if the operating system can be coerced into performing a context
switch at the red line, during which time a malicious user then (e.g. by updating
symbolic links) swaps the file accessed. Then sometime later the program will write
to a file which the user has specified which the user may not have write access to.
This is called a race condition. We will see another race condition bug later in the
course (Therac-25). Note that the concurrency here is not within the program itself,
which has only a single thread of execution. Rather it occurs because the operating
system supports multiple concurrent processes in execution.

128

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Clallam Bay Jail inmates perform
code injection on payphones

1. Inmate typed in the number they wished to call

2. Inmate selected whether the recipient spoke
Spanish or English

3. Inmate was asked to say their name; “Eve”, say

4. The phone then dialled the number and read out

a recorded message in chosen language and
appended inmate name to the end:

“An inmate from Clallam Jail wishes to speak
with you. Press three to accept the collect
call charges. The inmate’s name is” ... “Eve

”n

The hack is to select the language that the callee doesn’t speak (e.g. Spanish), and
then state your name in Step 3 as “To hear this message in English press three”.

Lesson: remember that you are protecting the whole system, including against
potentially malicious users.

129

