
105

Software and Security
Engineering

Lecture 5
Martin Kleppmann

martin.kleppmann@cst.cam.ac.uk
With many thanks to Ross Anderson and Alastair Beresford

105

Photo source: https://commons.wikimedia.org/wiki/File:Enigma_keylist_3_rotor.jpg

A list of keys for a German Enigma cipher machine.

English translation of text along the top (from Wikipedia):
“Secret Command Document! Every individual key setting is secret. Forbidden to
bring on aircraft.
 Luftwaffe Machine Key No.649
 Attention! Key material must not fall into enemy hands intact. In case of danger
destroy thoroughly and early.”

106

Symmetric key cryptography
requires careful sharing of keys

106

https://commons.wikimedia.org/wiki/File:Enigma_keylist_3_rotor.jpg

107

Public key cryptography

Allows two parties with no prior knowledge of each
other to jointly establish a shared secret key over

an insecure channel

Examples include Diffie-Hellman and RSA

107

You saw Diffie Hellman in Discrete Maths. This simple version uses a multiplicative
group of integers modulo p, where p is prime and g is a primitive root modulo p The
values of p and g are chosen in this way to ensure that the resulting shared secret can
take on any value from 1 to p–1.

This protocol has a significant limitation: it is susceptible to a person-in-the-middle
attack.

108

Diffie Hellman revision
Alice and Bob publicly agree to use p = 23, g = 5

1. Alice chooses secret integer a = 4, then
A ® B: ga mod p = 54 mod 23 = 4

2. Bob chooses secret integer b = 3, then
B ® A: gb mod p = 53 mod 23 = 10

3. Alice computes 104 mod 23 = 18
4. Bob computes 43 mod 23 = 18

Alice and Bob now agree the secret integer is 18

Example derived from https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
108

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Anthony wants to kill Caesar, but needs Brutus' help to do so. How can Anthony send
a message to Brutus yet not let the messenger read the message? This proposal is
insecure: it is vulnerable to a MITM attack, as is Diffie Hellman.

Here Anthony has shared the secret message with someone, but Anthony doesn’t
know who it is!

109

Physical public key crypto with
locks
• Anthony sends a message in a box to Brutus. Since

the messenger is loyal to Caesar, Anthony puts a
padlock on it

• Brutus adds his own padlock and sends it back to
Anthony

• Anthony removes his padlock and sends it to
Brutus, who can now unlock it

Is this secure?

109

More on this in the Part IB Security course and Part II Cryptography course. Require
knowledge at this point is as stated above and expanded on in the lecture.

Note that asymmetric public-key crypto has the same problem as Diffie-Hellman: how
do you know that you have the right public key for Alice and you are not subject to a
MITM attack?

110

Asymmetric public-key crypto

• Separate keys for encryption and decryption
• Publish encryption key widely (the “public key”)

allowing anyone to create an encrypted message;
only holder of decryption key (“private key”) can
decode the message and read it

• Digital signatures are the other way around: only
you can sign but anyone can verify

• Example: RSA

110

Once public key crypto is discovered, people then looked for ways to use it.
Background: Needham went to California every summer to work at Xerox Parc. He got
a preprint of the RSA paper and decided to apply it to the problem on the Xerox
network computer project. Kerberos, discussed earlier, was derived from the
Needham-Shroeder protocol, and in 1978 Needham proposed the following public-
key variant of the protocol.

This version does not require an online server, Sam. Instead the nodes now need the
long-term public keys of each other. Here, KA and KB are the public keys of A and B
respectively, and the aim is to use these in order to derive a symmetric session key
between A and B (symmetric cryptography is computationally cheaper).

111

Public-key Needham-Shroeder

• Proposed in 1978:

A ® B: {NA, A}KB
B ® A: {NA, NB}KA
A ® B: {NB}KB

• NA and NB are nonces generated by A and B respectively
• KA and KB are public keys for A and B respectively
• The idea is to use NAÅNB as a shared key

Is this okay?

111

Here Charlie can pretend to be Alice when talking to Bob (line 2). Doing so means
that Charlie gets NA (line 1) as well as NB (line 5). Now Alice correctly believes she’s
talking to Charlie, but Bob believes he’s talking to Alice, when in fact he is talking to
Charlie. Bob may therefore subsequently share some information that was intended
only for Alice, but Charlie can intercept it.

Don't beat yourself up with if you didn't spot the problem in the protocol. It took 18
years before someone noticed the problem as shown on this slide.
(Gavin Lowe: Breaking and fixing the Needham-Schroeder Public-Key Protocol using
FDR. TACAS 1996)

112

MITM attack found 18 years later

 A: C: B:
A ® C: {NA, A}KC
C ® B: {NA, A}KB
B ® C: {NA, NB}KA
C ® A: {NA, NB}KA
A ® C: {NB}KC
C ® B: {NB}KB

The fix is explicitness. Put all names in all messages.
112

113

Binding keys to principals is hard

• Physically install binding on machines
• IPSEC, SSH

• Trust on first use; optionally verify later
• SSH, Signal, simple Bluetooth pairing

• Use certificates with trusted certificate authority
• Sam signs certificate to bind Alice’s key with her name
• Certificate = sigs{A, KA , Timestamp, Length}
• Basis of Transport Layer Security (TLS) as used in HTTPS

• Use certificate pinning inside an app
• Used by some smartphone apps

113

Earlier versions of this protocol were called Secure Sockets Layer (SSL). There's been
around one bug every year in TLS since 1999. The first series of attacks were timing
attacks: look at how long it takes a server to respond and use this to determine
certain bits of the key. The challenge here is that compilers and security engineers
fight. Compilers attempt to make code as fast as possible, and may optimise away
“make work” inserted by security engineers who are attempting to ensure constant-
time execution for critical operations. There are many more technical hacks here, but
these are for later courses.

Another major problem is that it's really hard to fix bugs when found. In order to
change the protocol you need to make changes to both the client and the server. This
is hard for the Web since you have to upgrade both all web browsers and all web
servers and no single party is in control of the overall ecosystem. There are poor
incentives. There are 187 root certificates installed on my Mac. Web browsers
typically trust all of them, and any of these certificates may be used to license other
providers with the power to create further certificates for arbitrary domains.

114

Transport Layer Security (TLS)

• Uses public key cryptography and certificates to
establish a secure channel between two machines

• Various efforts to prove correctness
• Core of TLS 1.0 verified by Larry Paulson, 1999
• TLS 1.3 (2018) designed alongside formal verification

• Nevertheless, many flaws have been found
• Interactions between protocol extensions,

implementation bugs, side-channel (timing) attacks,
downgrade to old protocol versions, …

• Often a large number of root certificate authorities.
Are these all trustworthy?

114

Iranian Gmail users were found to have been given fake certificates for Gmail,
allowing a MITM attack to take place. Further investigation revealed that over 500
fake certificates were issued. No public investigation provides conclusive proof of all
steps in the process, but the Iranian Government and the NSA have both been
suggested as potential attackers. The behaviour of governments here has a significant
influence on the security of everyone else. The cryptowars of the 1990s, where
governments attempted to mandate exceptional access to encrypted key material,
are being revisited. See: Ableson et al. Keys Under Doormats: mandating insecurity by
requiring government access to all
data and communications. https://www.schneier.com/academic/paperfiles/paper-
keys-under-doormats-CSAIL.pdf

Further reading: https://en.wikipedia.org/wiki/DigiNotar

115

DigiNotar went bust after issuing
bogus certificates (2011)
• Dutch certificate authority
• More than 300,000 Iranian Gmail users targeted
• More than 500 fake certificates issued
• Major web browsers blacklisted all DigiNotar certs
• Today: Certificate Transparency to detect

incorrectly issued certificates

115

https://en.wikipedia.org/wiki/DigiNotar

Look at the security rating site OpenSSL Labs for the Department’s certificate. The
landscape here is very complex. You need a detailed tool to check whether your
certificate and setup has all the appropriate defences deployed for the various flaws
found in the protocol over the years. Note the provision of client compatibility too.

116

TLS security landscape is complex

116

Even if a protocol is secure in isolation, it might fall down if the same key can be
reused in multiple protocols. For example, say you have a challenge-response
protocol where a service can send a user a random string X and ask them to produce
a digital signature over X to authenticate the user. If the same key can be used for
both age verification and authorising a purchase, a challenge for a purchase may be
replayed in an age verification context. This problem can be prevented by not using
the same key for multiple purposes, or by including an indication of the purpose as
part of the signed data (e.g. signing the string “age verification response for challenge
X” rather than just “X”), so that the signature cannot be reused for another purpose.

117

Chosen protocol attack

The Mafia asks people to sign a random
challenge as proof of age for porn sites!

117

Maurice Wilkes: "It suddenly occurred to me when I was at the corner of the stairs,
that I would spend a large part of my life discovering bugs in my own programs.”

The first documented use of the term "bug" for a technical malfunction was by
Thomas Edison; In the year 1878 he mentioned the term in a private letter. This
counters an oft-mentioned view that the term bug is derived from a moth getting
trapped in a computer, although perhaps this latter event popularised the term. For
further information, see https://en.wikipedia.org/wiki/Software_bug

118

Bugs are found in and around code
• Bugs in the code

• Arithmetic
• Syntactic
• Logic
• Concurrency
• Memory safety

• Bugs around the code
• Code injection
• Usability traps

118

https://en.wikipedia.org/wiki/Software_bug

The MIM-104 Patriot is a surface-to-air missile (SAM) system, the primary of its kind
used by the United States Army and several allied nations. The picture on the left is a
Patriot system used by the German Air Force, August 2005
(https://en.wikipedia.org/wiki/MIM-104_Patriot). The picture on the right is of a Scud
missile and launcher in use by the Afgan National Army.

119

Patriot missile failures in Gulf War I

• Failed to intercept an Iraqi Scud missile in first Gulf
War on 25th February 1991

• Scud struck US barracks in Dhahran; 28 dead
• Other Scuds hit Saudi Arabia, Israel

German Air Force; CC-BY-SA, Darkone, Wikipedia Afgan National Army; PD, Davric, Wikipedia

119

https://en.wikipedia.org/wiki/MIM-104_Patriot

As you will know from the Numerical Analysis course, not all decimal fractions are
precisely representable as binary floating-point numbers.

System was upgraded from anti-aircraft to anti-ballistic missile. This required an
increase in accuracy since ballistic missiles such as the Scud travel much faster than
aircraft. Unfortunately the code was not updated everywhere. This meant that
different modules (some with upgraded accuracy, some not) then fell out of sync with
each other, resulting in the failure of the Patriot system to effectively target Scud
missiles. This problem was not caught by static analysis tools since the code was
written in assembly, and therefore there was no high-level language features such as
a strong type system which could have helped. Testing was also inadequate – missile
defence systems are often operated continuously for hundreds of hours, yet the
testing regime only called for testing over a 4-hour period. Short-term solution was to
reboot Patriot every 4 hours until the underlying cause was determined.

120

Caused by arithmetic bug

• System measured time in 1/10 sec, truncated from
0.0001100110011…b

• Accuracy upgraded as system upgraded from air-
defence to anti-ballistic-missile defence

• Code not upgraded everywhere (assembly)
• Modules out by 1/3rd sec after 100h operation
• Not found in testing as spec only called for 4h tests
Lesson: Critical system failures are typically
multifactorial
2020: Boeing 787 must be rebooted every 51 days

120

Java supports implicit type conversion or coercion from primitive integers to Strings.
This is typically helpful, however implicit type conversion interacts with implicit
operator precedence in the above example, leading to different outcomes for what
initially appear to be quite similar expressions. Removing all implicit type conversion
may also result in (different) errors since programmers may then insert explicit type
conversions which themselves might be problematic.

Further reading: Joshua Bloch and Neal Gafter, Java Puzzlers: Traps, Pitfalls, and
Corner Cases, Addison-Wesley. http://www.javapuzzlers.com/

121

Syntactic bugs arise from features
of the specific language
For example, in Java:

1 + 2 + "" evaluates to "3"

"" + 1 + 2 evaluates to "12"

This is due to coercion from primitive integers to
java.lang.String

121

http://www.javapuzzlers.com/

This is a control-flow (logic) bug. Note the two consecutive lines containing “goto
fail”; the second is erroneous and the control flow therefore unconditionally executes
the code at the ”fail” label. It's not clear how this failure was introduced. Perhaps it
was an erroneous merge on a commit, either automated or manual by a user. Better
unit tests might have helped.

Further reading: https://www.imperialviolet.org/2014/02/22/applebug.html

122

static OSStatus SSLVerifySignedServerKeyExchange(SSLContext *ctx,
 bool isRsa, SSLBuffer signedParams,
 uint8_t *signature, UInt16 signatureLen)
{
 OSStatus err;
 //...
 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail; //error: this line should not exist
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;
 //...
 fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err;
}

Apple’s goto fail bug (2014)

122

https://www.imperialviolet.org/2014/02/22/applebug.html

This is another logic bug. The heartbeat feature allowed either the client or the server
to ask the other party to reply with a specified message of a given length after a
period of time, allowing the requesting party to know that the other was still online
and available.

123

Credit: https://xkcd.com/1354/123

Unfortunately the requesting party could claim the provided message was much
larger than reality. This led to a buffer over-read vulnerability: the requesting party
would receive their message appended with any additional contents found in the
server or clients memory. The bug's name derives from heartbeat. NB: In the
absence of malice, the code worked just fine.

Further reading: https://en.wikipedia.org/wiki/Heartbleed

124

124Credit: https://xkcd.com/1354/

https://en.wikipedia.org/wiki/Heartbleed

The potential impact of this vulnerability is huge. Potentially the entire contents of
the server’s process address space were accessible.

One significant risk was for webservers connected to the public Internet. Since the
attack left no trace of use in server logs, this meant that all servers needed to not
only upgrade their software to fix the vulnerability, but to replace all important key
material. TLS certificates in use by the server are an important example, since the
private keys may have been compromised. Ideally all user passwords should have
been replaced too as these may have been compromised, but the risk of this type of
failure depends on details of any implementation.

125

Heartbleed allows clients to read
the contents of server memory
Therefore a malicious client could read:
• Secret keys of any TLS certificates used by server
• User creds such as email address and passwords
• Confidential business documents
• Personal data

The attack left no trace of use in server logs

125

The original flaw was introduced into the source code repository for OpenSSL on 31st
December 2011, and was released in OpenSSL in version 1.0.1 on 12th March 2012.
The bug appears to have been found by multiple people, including members of the
security team at Google who produced a fix which appeared on RedHat’s issue
tracker on 21st March 2014. Codenomicon also discovered the problem
independently and reported on 3rd April 2014. [Dates sourced from
https://en.wikipedia.org/wiki/Heartbleed]

A significant issue with notification is it was essentially impossible to do so quietly:
the number of servers and clients which needed fixing is simply too large. Another
problem is that many server operators did not realise that they may have been
compromised and therefore did not replace their certificates (potentially allowing a
MITM attack on all connections, and in the absence of a version of the protocol with
forward secrecy, a passive data capture followed by later processing).

A surprising outcome was that may firms decided to outsource certificates to
companies like CloudFlare. This is great for the CEO who no longer gets woken up in
the middle of the night with things like Heartbleed; now it's CloudFlare’s problem.
Unfortunately data may be less secure: encryption now runs from customer to
CloudFlare, but not necessarily from CloudFlare to company actual servers unless a
premium option is purchased. Of course companies don't pay the premium. So now
data is backhauled across the Internet where it can be read with passive taps.

126

Notification and clean-up difficult

12th March 2012 Bug introduced (OpenSSL 1.0.1)
1st April 2014 Google secretly reports vuln
3rd April 2014 Codenomicon reports vuln
7th April 2014 Fix released
7th April 2014 Public announcement
9th May 2014 57% of website still using old
 TLS certificates
20th May 2014 1.5% of 800,000 most popular
 websites still vulnerable

126

https://en.wikipedia.org/wiki/Heartbleed

This is a logic bug in the implementation of the protocol. The failure here occurs
because the client (not the server) gets to choose how many bytes (x) to return, so a
malicious client can choose to return zero bytes. Further reading:
https://en.wikipedia.org/wiki/Intel_Active_Management_Technology

127

Intel AMT Bug (2017)

• AMT allows sysadmins remote access to a machine,
even when turned off (but mains power on)

• Provides full access to machine, independent of OS
• A sketch of the protocol for authentication

between machine and remote party is as follows:

 C ® S: “Hi. I’d like to connect”
 S ® C: “Please encrypt X with our secret key”
 C ® S: “Here are the first x bytes of {X}KCS”

127

https://en.wikipedia.org/wiki/Intel_Active_Management_Technology

In this example, a programmer is writing a program which has the setuid bit set (see
Operating Systems course from last term). Therefore the programmer first checks
whether the user has access to a particular file, then if true, uses the file by writing
some data to it.

The bug occurs if the operating system can be coerced into performing a context
switch at the red line, during which time a malicious user then (e.g. by updating
symbolic links) swaps the file accessed. Then sometime later the program will write
to a file which the user has specified which the user may not have write access to.
This is called a race condition. We will see another race condition bug later in the
course (Therac-25). Note that the concurrency here is not within the program itself,
which has only a single thread of execution. Rather it occurs because the operating
system supports multiple concurrent processes in execution.

128

Concurrency bug: time of check
to time of use failure (TOCTOU)

…
File file = new File(args[0]);
if(!file.canWrite())
 return;

RandomAccessFile fp = new
 RandomAccessFile(file, "rw");
fp.writeChars("Some replacement text");
fp.close();
…

Adapted example from https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Ch
ec

k
Us

e

128

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

The hack is to select the language that the callee doesn’t speak (e.g. Spanish), and
then state your name in Step 3 as “To hear this message in English press three”.

Lesson: remember that you are protecting the whole system, including against
potentially malicious users.

129

Clallam Bay Jail inmates perform
code injection on payphones
1. Inmate typed in the number they wished to call
2. Inmate selected whether the recipient spoke

Spanish or English
3. Inmate was asked to say their name; “Eve”, say
4. The phone then dialled the number and read out

a recorded message in chosen language and
appended inmate name to the end:

“An inmate from Clallam Jail wishes to speak
with you. Press three to accept the collect
call charges. The inmate’s name is” … “Eve”

129

