
Advanced topics in programming languages Michaelmas 2023

Program synthesis

Γ ⊢ ? : τ
Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

The program synthesis problem

What is the synthesis problem?

The problem

Challenges

Reading

Program Synthesis (Gulwani et al, 2017):

…is the task of automatically finding a program in the underly-
ing programming language that satisfies the user intent ex-
pressed in the form of some specification.

(emphasis mine)

That is, it’s a search for a constructive proof of a quantified formula:

∃f.∀ input.Specification

When is program synthesis useful?

The problem

Challenges

Reading

Efficiency in
programming

(low-level code from
high-level specifications)

Effective compilation

(e.g.superoptimization)

Program repair

(updating buggy programs
to fit a specification)

Deobfuscation

(restoring readability)

End-user programming

(e.g. interactive
programming-by-examples)

Program
transformation

(updating programs as
specifications evolve)

What is a specification?

The problem

Challenges

Reading

“…the user intent expressed in the form of some specification …”

A logical specification

f(x, y) ≥ x ∧ f(x, y) ≥ y

A type

x : Z → y : Z →
{z : Z | z = max(x, y)}

An existing program

slow_max(x,y)

Input-output examples

f(2, 4) = 4, f(5, 2) = 5, . . .

Natural language

“The larger of x and y”

One approach: Syntax-Guided Synthesis (SyGuS)

The problem

Challenges

Reading

SyGuS

T ::= x | y | 0 | 1 | ITE(C,T,T)
C ::= T ≤ T | ¬ T | C ∧ C

f : Z× Z → Z
f (x, y) = f (y, x) ∧ f (x, y) ≥ x

f(x,y) = ITE((x≤y),y,x)

grammar (search space)

logical formula

Example from Search-based Program Synthesis, Alur et al (2018)

Why is program synthesis hard?

Challenge: big search space

The problem

Challenges

Reading

Synthesis is often based on some form of enumeration of programs.

However, the search space is extremely large (exponential in program length).

Some form of pruning or guidance is necessary, e.g. by using

abstract interpretation grammar refinement syntactic templates
domain equations component-based construction

stochastic search constraint solving precise types

Challenges 2: determining correctness

The problem

Challenges

Reading

How can we tell when we’ve found a solution?

SMT solving Type checking

Γ ⊢ e : τ

Human inspection Testing

✓

Success in limited domains

The problem

Challenges

Reading

Spreadsheet
formulas

Regular
expressions

Trigonometric
functions

Loop-free
programs

SQL
queries

Bit
twiddling

a(b|c)*d

from t select *
where

x & 0xBEEF << y

Reading

Background reading: Program Synthesis

The problem

Challenges

Reading

Program Synthesis

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Oleksandr Polozov
University of Washington

polozov@cs.washington.edu

Rishabh Singh
Microsoft Research

risin@microsoft.com

Boston — Delft

“This survey is a general overview of the state-of-the-art
approaches to program synthesis, its applications, and sub-
fields. We discuss the general principles common to all
modern synthesis approaches such as syntactic bias, oracle-
guided inductive search, and optimization techniques.”

Program Synthesis.
S. Gulwani, O. Polozov and R. Singh.
Foundations and Trends in Programming Languages,
vol. 4, no. 1-2, pp. 1–119, 2017.

Online:
https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

Paper 1: oracle-guided component-based (2010)

The problem

Challenges

Reading

Oracle-Guided Component-Based Program Synthesis

Susmit Jha
UC Berkeley

jha@eecs.berkeley.edu

Sumit Gulwani
Microsoft Research
sumitg@microsoft.com

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Ashish Tiwari
SRI International
tiwari@csl.sri.com

ABSTRACT
We present a novel approach to automatic synthesis of loop-
free programs. The approach is based on a combination of
oracle-guided learning from examples, and constraint-based
synthesis from components using satisfiability modulo theo-
ries (SMT) solvers. Our approach is suitable for many appli-
cations, including as an aid to program understanding tasks
such as deobfuscating malware. We demonstrate the effi-
ciency and effectiveness of our approach by synthesizing bit-
manipulating programs and by deobfuscating programs.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; I.2.2 [Artificial Intelligence]: Program Synthesis;
K.3.2 [Learning]: Concept Learning

Keywords
Program synthesis, Oracle-based learning, SMT, SAT

1. INTRODUCTION
Automatic synthesis of programs has long been one of the

holy grails of software engineering. It has found many prac-
tical applications: generating optimal code sequences [20,
11], optimizing performance-critical inner loops, generat-
ing general-purpose peephole optimizers [2, 3], automating
repetitive programming tasks [15], and filling in low-level
details after the higher-level intent has been expressed [24].
Two applications of synthesis are of particular interest in
this paper. The first is that of automating the discovery
of non-intuitive algorithms (e.g., [8]). The second applica-
tion, as we show in this paper, is program understanding,
and more specifically, program deobfuscation. The need for
deobfuscation techniques has arisen in recent years, espe-
cially due to an increase in the amount of malicious, and
mostly obfuscated, code (malware) [28]. Currently, human
experts use decompilers and manually deobfuscate the re-
sulting code (see, e.g., [22]). Clearly, this is a tedious task
that could benefit from automated tool support.

A traditional view of program synthesis is that of synthe-
sis from complete specifications. One approach is to give
a specification as a formula in a suitable logic [19, 26, 10,
8]. Another is to write the specification as a simpler, but
possibly far less efficient program [20, 11, 24]. While these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

approaches have the advantage of completeness of specifi-
cation, such specifications are often unavailable, difficult to
write, or expensive to check against using automated verifi-
cation techniques. In this paper, we propose a novel oracle-
guided approach to program synthesis, where an I/O oracle
that maps a given program input to the desired output is
used as an alternative to having a complete specification.
The key idea of our algorithm is to query the I/O oracle on
an input that can distinguish between non-equivalent pro-
grams that are consistent with the past interaction with the
I/O oracle. The process is repeated until a semantically
unique program is obtained. Our experimental results show
that only few rounds of interaction are needed.

We apply the oracle-guided approach to automated syn-
thesis of loop-free programs, those that compute functions of
their input and terminate. Such programs arise in a variety
of application contexts, such as low-level bit-manipulating
code, scientific computing kernels, parts of control software
in graphical languages such as LabVIEW, and even appli-
cations in high-level scripting languages such as Javascript
and Ruby that are formed by chaining multiple high-level
operators. A key characteristic of our method is that it is
component-based, meaning that we synthesize a program by
performing a circuit-style, loop-free composition of compo-
nents drawn from a given component library. We can also
address the challenge of identifying whether the given set
of components is insufficient to synthesize the desired pro-
gram. For this purpose, we additionally require making only
one query to a more expensive validation oracle that checks
whether the program is correct or not.

Our synthesis algorithm is based on a novel constraint-
based approach that reduces the synthesis problem to that
of solving two kinds of constraints: the I/O-behavioral con-
straint whose solution yields a candidate program consistent
with the interaction with the I/O oracle, and the distinguish-
ing constraint whose solution provides the input that distin-
guishes between non-equivalent candidate programs. These
constraints can be solved using off-the-shelf SMT (Satisfia-
bility Modulo Theory) solvers. Traditional synthesis algo-
rithms perform a expensive combinatorial search over the
space of all possible programs. In contrast, our technique
leaves the inherent exponential nature of the problem to the
underlying SMT solver, whose engineering advances over the
years allow them to effectively deal with problem instances
that arise in practice, which are usually not hard, and hence
end up not requiring exponential reasoning.

Contributions and Organization.
• We propose a novel oracle-guided approach to synthesis,

where an I/O oracle obviates the need for complete spec-
ifications. Our approach has interesting connections to
results from computational learning theory (Section 5).

• We present an instantiation of the oracle-guided approach
to synthesis of loop-free programs over a given set of com-
ponents (see problem definition in Section 3). This is en-
abled by a novel constraint-based technique that involves

“We present a novel approach to automatic
synthesis of loop-free programs. The approach
is based on a combination of oracle-guided
learning from examples, and constraint-based
synthesis from components using satisfiability
modulo theories (SMT) solvers.[…]

“We demonstrate the efficiency and effec-
tiveness of our approach by synthesizing bit-
manipulating programs and by deobfuscating
programs.”

Paper 2: refinement types (2016)

The problem

Challenges

Reading

Program Synthesis from Polymorphic Refinement Types

Nadia Polikarpova Ivan Kuraj Armando Solar-Lezama
MIT CSAIL, USA

{polikarn,ivanko,asolar}@csail.mit.edu

Abstract
We present a method for synthesizing recursive functions that
provably satisfy a given specification in the form of a poly-
morphic refinement type. We observe that such specifications
are particularly suitable for program synthesis for two reasons.
First, they offer a unique combination of expressive power and
decidability, which enables automatic verification—and hence
synthesis—of nontrivial programs. Second, a type-based spec-
ification for a program can often be effectively decomposed into
independent specifications for its components, causing the syn-
thesizer to consider fewer component combinations and leading
to a combinatorial reduction in the size of the search space. At the
core of our synthesis procedure is a new algorithm for refinement
type checking, which supports specification decomposition.

We have evaluated our prototype implementation on a large
set of synthesis problems and found that it exceeds the state of the
art in terms of both scalability and usability. The tool was able to
synthesize more complex programs than those reported in prior
work (several sorting algorithms and operations on balanced
search trees), as well as most of the benchmarks tackled by
existing synthesizers, often starting from a more concise and
intuitive user input.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; I.2.2 [Automatic Programming]: Program
Synthesis

General Terms Languages, Verification

Keywords Program Synthesis, Functional Programming, Re-
finement Types, Predicate Abstraction

1. Introduction
The key to scalable program synthesis is modular verification.
Modularity enables the synthesizer to prune candidates for
different subprograms independently, whereby combinatori-
ally reducing the size of the search space it has to consider.
This explains the recent success of type-directed approaches to
synthesis of functional programs [12, 14, 15, 27]: not only do
ill-typed programs vastly outnumber well-typed ones, but more
importantly, a type error can be detected long before the whole
program is put together.

Simple, coarse-grained types alone are, however, rarely
sufficient to precisely describe a synthesis goal. Therefore, ex-
isting approaches supplement type information with other kinds
of specifications, such as input-output examples [1, 12, 27],
or pre- and post-conditions [20, 21]. Alas, the corresponding
verification procedures rarely enjoy the same level of modularity
as type checking, thus fundamentally limiting the scalability of
these techniques.

In this work we present a novel system that pushes the idea
of type-directed synthesis one step further by taking advantage
of refinement types [13, 33]: types decorated with predicates
from a decidable logic. For example, imagine that a user intends
to synthesize the function replicate, which, given a natural
number n and a value x, produces a list that contains n copies
of x. In our system, the user can express this intent by providing
the following signature:

replicate :: n :Nat →x :α→{ν : List α |len ν=n}

Here, the return type is refined with the predicate len ν = n,
which restricts the length of the output list to be equal to the
argument n; Nat is a shortcut for {ν : Int |ν≥0}, the type of
integers that are greater or equal to zero1. Given this signature,
together with the definition of List and a standard set of integer
components (which include zero, decrement function, and in-
equalities), our system produces a provably correct implementa-
tion of replicate, shown in Fig. 1, within fractions of a second.

We argue that refinement types offer the user a convenient
interface to a program synthesizer: the signature above is only
marginally more complex than a conventional ML or Haskell
type. Contrast that with example-based synthesis, which would

1 Hereafter the bound variable of the refinement is always called ν and the
binding is omitted.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4261-2/16/06...$15.00
http://dx.doi.org/10.1145/2908080.2908093

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

522

“We present a method for synthesizing re-
cursive functions that provably satisfy a
given specification in the form of a poly-
morphic refinement type.

“a unique combination of expressive power
and decidability […] a type-based specifi-
cation for a program can often be effec-
tively decomposed into independent spec-
ifications for its components […] leading to
a combinatorial reduction in the size of the
search space.

“The tool was able to synthesize more com-
plex programs than those reported in prior
work (several sorting algorithms and oper-
ations on balanced search trees) […] often
starting from a more concise and intuitive
user input.”

Paper 3: abstract interpretation (2023)

The problem

Challenges

Reading
174

Inductive Program Synthesis via Iterative Forward-Backward

Abstract Interpretation

YONGHO YOON, Seoul National University, Korea

WOOSUK LEE∗, Hanyang University, Korea

KWANGKEUN YI, Seoul National University, Korea

A key challenge in example-based program synthesis is the gigantic search space of programs. To address this

challenge, various work proposed to use abstract interpretation to prune the search space. However, most of

existing approaches have focused only on forward abstract interpretation, and thus cannot fully exploit the

power of abstract interpretation. In this paper, we propose a novel approach to inductive program synthesis

via iterative forward-backward abstract interpretation. The forward abstract interpretation computes possible

outputs of a program given inputs, while the backward abstract interpretation computes possible inputs of a

program given outputs. By iteratively performing the two abstract interpretations in an alternating fashion,

we can effectively determine if any completion of each partial program as a candidate can satisfy the input-

output examples. We apply our approach to a standard formulation, syntax-guided synthesis (SyGuS), thereby

supporting a wide range of inductive synthesis tasks. We have implemented our approach and evaluated it

on a set of benchmarks from the prior work. The experimental results show that our approach significantly

outperforms the state-of-the-art approaches thanks to the sophisticated abstract interpretation techniques.

CCS Concepts: • Software and its engineering→ Programming by example; Automatic programming;

• Theory of computation→ Abstraction; Program analysis.

Additional Key Words and Phrases: Program Synthesis, Programming by Example, Abstract Interpretation

ACM Reference Format:

Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive Program Synthesis via Iterative Forward-

Backward Abstract Interpretation. Proc. ACM Program. Lang. 7, PLDI, Article 174 (June 2023), 25 pages.

https://doi.org/10.1145/3591288

1 PROBLEM AND OUR APPROACH

Inductive program synthesis aims to synthesize a program that satisfies a given set of input-output
examples. The popular top-down search strategy is to enumerate partial programs with missing
parts and then complete them to a full program.
Though such a strategy is effective for synthesizing small programs, it hardly scales to large

programs without being able to rapidly reject spurious candidates due to the exponential size of
the search space.
Therefore, various techniques have been proposed to prune the search space [Feng et al. 2017;

Gulwani 2011; Lee 2021; Polikarpova et al. 2016; Wang et al. 2017a]. In particular, abstract inter-
pretation [Cousot 2021; Rival and Yi 2020] has been widely used for pruning the search space

∗Corresponding author

Authors’ addresses: Yongho Yoon, yhyoon@ropas.snu.ac.kr, Seoul National University, Dept. of Computer Science &

Engineering, Korea; Woosuk Lee, woosuk@hanyang.ac.kr, Hanyang University, Dept. of Computer Science & Engineering,

Korea; Kwangkeun Yi, kwang@ropas.snu.ac.kr, Seoul National University, Dept. of Computer Science & Engineering, Korea.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART174

https://doi.org/10.1145/3591288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

“A key challenge in example-based program syn-
thesis is the gigantic search space of programs.
To address this challenge, various work pro-
posed to use abstract interpretation to prune
the search space.[…]

“The forward abstract interpretation computes
possible outputs of a program given inputs,
while the backward abstract interpretation com-
putes possible inputs of a program given out-
puts.[…]

“We apply our approach to a standard formula-
tion, syntax-guided synthesis (SyGuS), thereby
supporting a wide range of inductive synthesis
tasks.”

Paper 4: MegaLibm (2024)

The problem

Challenges

Reading

Implementation and Synthesis of Math Library Functions
IAN BRIGGS, University of Utah, USA

YASH LAD, University of Utah, USA

PAVEL PANCHEKHA, University of Utah, USA

Achieving speed and accuracy for math library functions like exp, sin, and log is difficult. This is because

low-level implementation languages like C do not help math library developers catch mathematical errors,

build implementations incrementally, or separate high-level and low-level decision making. This ultimately

puts development of such functions out of reach for all but the most experienced experts. To address this,

we introduce MegaLibm, a domain-specific language for implementing, testing, and tuning math library

implementations. MegaLibm is safe, modular, and tunable. Implementations in MegaLibm can automatically

detect mathematical mistakes like sign flips via semantic wellformedness checks, and components like range

reductions can be implemented in a modular, composable way, simplifying implementations. Once the high-

level algorithm is done, tuning parameters like working precisions and evaluation schemes can be adjusted

through orthogonal tuning parameters to achieve the desired speed and accuracy. MegaLibm also enables math

library developers to work interactively, compiling, testing, and tuning their implementations and invoking

tools like Sollya and type-directed synthesis to complete components and synthesize entire implementations.

MegaLibm can express 8 state-of-the-art math library implementations with comparable speed and accuracy

to the original C code, and can synthesize 5 variations and 3 from-scratch implementations with minimal

guidance.

CCS Concepts: • Mathematics of computing→ Numerical analysis.

Additional Key Words and Phrases: Function approximation, libm, DSL, type-directed synthesis, e-graphs

ACM Reference Format:
Ian Briggs, Yash Lad, and Pavel Panchekha. 2023. Implementation and Synthesis of Math Library Functions. 1,

1 (November 2023), 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Mathematical computations in tasks as diverse as aeronautics, banking, scientific simulations,

and data analysis are typically implemented as operations on floating-point numbers. The basic

operators—addition, subtraction, multiplication, and possibly division, square roots, and fused

multiply-adds—are typically provided by the hardware, but higher-level mathematical functions

such as trigonometric or exponential functions are implemented in software in libraries such as

libm. The speed and accuracy of these software libraries can have a dramatic impact on applications

such as 3D graphics [Briggs and Panchekha 2022].

To maximize performance, math libraries are written in low-level languages like C; Figure 1

shows one example. Ensuring correctness and accuracy is thus challenging. These implementa-

tion languages cannot prevent mathematical errors such as mixing up signs or using the wrong

Authors’ addresses: Ian Briggs, ibriggs@cs.utah.edu, University of Utah, Salt Lake City, UT, USA; Yash Lad, yash.lad@utah.

edu, University of Utah, Salt Lake City, UT, USA; Pavel Panchekha, pavpan@cs.utah.edu, University of Utah, Salt Lake City,

UT, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/11-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: November 2023.

ar
X

iv
:2

31
1.

01
51

5v
1

 [
cs

.P
L

]
 2

 N
ov

 2
02

3
“Achieving speed and accuracy for math library func-
tions like exp, sin, and log is difficult […]

“[W]e introduce MegaLibm, a domain-specific lan-
guage for implementing, testing, and tuning math
library implementations.

“MegaLibm can express 8 state-of-the-art math li-
brary implementations with comparable speed and
accuracy to the original C code, and can synthe-
size 5 variations and 3 from-scratch implementa-
tions with minimal guidance.[…]

“Unfortunately, determining equality for arbitrary
real-valued expressions is known to be hard —
dependent on unproven mathematical conjectures,
and possibly undecidable.”

Writing suggestions

The problem

Challenges

Reading

Decidability
How does the system determine when a solution is valid?

Scalability
How complex can specifications be?
How large can generated programs be?
What subset of the language is targeted?
How long does synthesis take?

Practicability
How easy is it for users to express specifications?

Applicability
What range of problems might the system apply to?

