- Advanced topics in programming languages

Program synthesis

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2024 -

The program synthesis problem

What is the synthesis problem?

The problem
Program Synthesis (Gulwani et al, 2017):

..is the task of automatically finding a program in the underly-

ing programming language that satisfies the user intent ex-

pressed in the form of some specification.
(emphasis mine)

That is, it's a search for a constructive proof of a quantified formula:

3.V input.Specification

When is program synthesis useful?

The problem Efficiency in

. Effective compilation Program repair
programming

(low-level code from
high-level specifications)

(updating buggy programs

(CEapsepiieion) to fit a specification)

Program

Deobfuscation End-user programming .
transformation

(e.g. interactive (updating programs as

(esizating ezeeliiy) programming-by-examples) specifications evolve)

What is a specification?

“..the user intent expressed in the form of some specification ...”
The problem

A logical specification A type An existing program

xX:L—=y:7Z—

{z:Z | z= max(x,y)} slow_max(x,y)

fix,y) 2 xNfixy) >y

Input-output examples Natural language

f2,4) = 4,f(5,2) =5,... “The larger of x and y”

One approach: Syntax-Guided Synthesis (SyGuS)

The problem .
logical formula

f:Zx7—7
f(x, y) =1f(y, x) A f(x, y) > x

SyGuS F{f 0,y = TTE((x<y),y, 0 |

grammar (search space) /)

x| y|e | 1]ITE(C,T,T)
T<T|=T|CAC

Example from Search-based Program Synthesis, Alur et al (2018)

Why is program synthesis hard?

Challenge: big search space

Synthesis is often based on some form of enumeration of programs.

However, the search space is extremely large (exponential in program length).

Sl Some form of pruning or guidance is necessary, e.g. by using
abstract interpretation grammar refinement syntactic templates
domain equations component-based construction

stochastic search constraint solving precise types

Challenges 2: determining correctness

How can we tell when we've found a solution?

SMT solving Type checking

ZB I'ke:r

Challenges

L Human inspection

Success in limited domains

Spreadsheet Regular Trigonometric
formulas expressions functions

t a(b|c)*d %

Challenges

oo Loop-free SQL Bit

programs queries twiddling

(O~ Momrselect ™ x g oxBEEF << y

where

Reading

Reading

Background reading: Program Synthesis

“This survey is a general overview of the state-of-the-art
approaches to program synthesis, its applications, and sub-
Program Synthesis fields. We discuss the general principles common to all

Sumit Gubwani modern synthesis approaches such as syntactic bias, oracle-

Microsoft Research

smitganicrosoft.con guided inductive search, and optimization techniques.”

Rishabh Singh
Microsoft Research
risinemicrosoft.com

Program Synthesis.

S. Gulwani, O. Polozov and R. Singh.

Foundations and Trends in Programming Languages,
vol. 4, no. 1-2, pp. 1-119, 2017.

Online:
https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

Reading

Paper 1: types and examples (20

Type-and-Example-Directed Program Synthesis

Peter-Michael Osera Steve Zdancewic
University of Pennsylania, USA
{posera, stevez)@cis.upenn.edu

Abstract
This

s procedure in

“It is founded on proof-theoretic tech-
niques that exploit both type information
and input—output examples to prune the
search space.

[.]

The goal is [..] partially specified by a se-
ries of input—output examples given after
the |> marker, evocative of a refinement
of the goal type.

[.]

Our algorithm [..] uses the proof-theoretic
idea of searching only for programs in (-
normal, n-long form

Reading

Program Synthesis from Polymorphic Refinement Types

Nadia Polikarpova Ivan Kuraj

Armando Solar-Lezama

MIT CSAIL, USA
{polikarn,ivanko,asolar}@csail.mit.edu

Abstract
‘We present a method for synthesizing recursive functions that
provably satisfy a given specification in the form of a poly-

1. Introduction

‘The key to scalable program synthesis is modular verification.
Modularity enables the synthesizer to prune candidates for

morphic refinement type. We observe that such
are particularly suitable for program synthesis for two reasons.
First, they offer a unique combination of expressive power and
decidability, which enables automatic verification—and hence
synthesis—of nontrivial programs. Second, a type-based spec-
ification for a program can often be effectively decomposed into
independent specifications for its components, causing the syn-
thesizer to consider fewer component combinations and leading

the size of tthe

ore of our synthesis procedure is anew algorithm for refinement

different Whereby combi
ally reducing the size of the search space it has to consider.
‘This explains the recent success of type-directed approaches to
synthesis of functional programs [12, 14, 15, 27]: not only do
ill-typed programs vastly outnumber well-typed ones, but more
importantly, a type error can be detected long before the whole
programispu together

ple. coarse-grained types alone are, however, rarely
sufficient to prec\\e!y describe a synthesis goal. Therefore, ex-
isting approaches supplement type information with other kinds

which supports
" We have evalusted our prototype implementaion on orge
setofsy found thatit exceeds the state of the

of such as input-output examples [1. 12, 27],
or pre- and post-conditions 20, 21]. Alas, the corresponding
verification proced: Iy enjoy the same level of modularity

artin terms of both scalability and usability. The tool was able to
synthesize more complex programs than those reported in prior
work (several sorting algorithms and operations on balanced
search trees). as well as most of the benchmarks tackled by
existing synthesizers, often starting from a more concise and
intwitive user input

Categories and Subject Descriptors F3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; 122 [Automatic Programming): Program
Synthesis

as 2, thus y limiting the scalability of
these lnhmquex
In this work we present a novel system that pushes the idea

of refinement types [13, 33]: types decorated with predicates
from a decidable logic. For example, imagine that a user intends
10 synthesize the function replicate, which, given a natural
number n and a value x, produces a list that cor

of . In our system, the user can express this intent by providing
the followi iture:

replicate s niNat —z:a - {v: Lista|lenv=n}

refinement types (2016

“We present a method for synthesizing re-
cursive functions that provably satisfy a
given specification in the form of a poly-
morphic refinement type.

"a unique combination of expressive power
and decidability [..] a type-based specifi-
cation for a program can often be effec-
tively decomposed into independent spec-
ifications for its components [..] leading to
a combinatorial reduction in the size of the
search space.

“The tool was able to synthesize more com-
plex programs than those reported in prior
work (several sorting algorithms and oper-
ations on balanced search trees) [..] often
starting from a more concise and intuitive
user input.”

Reading

Recursive Program Synthesis using Paramorphisms

QIANTAN HONG, Stanford University, USA
ALEX AIKEN, Stanford University, USA

We show that synthesizing recursive functional programs using a class of primitive recursive combinators

is both simpler and solves more benchmarks from the literature than previously proposed approaches. Our
thod synth class

patterns on algebraic data types. The erux of our approach is to split the synthesis problem into two parts: a

multi-hole template that fixes the recursive structure, and a search for non-recursive program fragments to fill

the template holes.

— General prog g languages, Programming by example;
Search-based software engineering; Automatic programming.

Additional Key Words and Phrases: Program Synthesis, Examples, Stochastic Synthesis, Recursion Schemes
ACM Reference Format:

Qiantan Hong and Alex Aiken. 2024. Recursive Program Synthesis using Paramorphisms. Proc. ACM Program.
Lang. 8, PLDI, Article 151 (June 2024), 24 pages. https://doi.org/10.1145/3656381

1 INTRODUCTION

We consider the problem of sy programs from examples. Following
previous work, we consider functional programs over algebraic data types such as the natural
numbers, lists, and trees [Kneuss et al. 2013; Lubin et al. 2020; Osera and Zdancewic 2015]. For
example, consider a program that appends two lists:

append Nil I =1

append (Cons h t) [= Cons h (append t Iy
‘This program uses general recursion, that s, the function append is explicitly recursively defined,
with calls to append within its definition. Depending on what other language features are present,
unrestricted general recursion is difficult to reason about; for example, proving termination of
general recursive programs is normally non-trivial.

In practice many iterative/recursive programs, including append, can be expressed using more
restricted primitive recursive constructs. The essence of primitive recursion is that the number of
iterations or recursive invocations is known when the function is first called. For example, the
Fold combinator captures a typical primitive recursive pattern where the number of recursive calls
is the length of the list argument. A standard (general recursive) definition of fold is

fold Nil n f = n

fold (Cons h t) n f = f h (fold t n f)

Paper 3: paramorphisms (2024)

“Our method synthesizes paramorphisms, a class of pro-
grams that includes the most common recursive program-
ming patterns on algebraic data types.

[.]

The paramorphism combinator on lists is:
para Nil gy; 8cons = Bni
para (Cons h t) gyl 8cons = Bcons N1 (£, PAra T B Bcons)

[.]

We have shown by experiment that an implementation of
our approach is able to synthesize all the problems han-
dled by the current state of the art as well as substantially
harder problems.”

Writing suggestions

Decidability
How does the system determine when a solution is valid?

Scalability
How complex can specifications be?
How large can generated programs be?
What subset of the language is targeted?
How long does synthesis take?

Practicability
How easy is it for users to express specifications?
Reading Applicability
What range of problems might the system apply to?

