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A heap: of one or more blocks of contiguous words
A object: a heap-allocated contiguous region addressed by 0+ pointers
A mutator: application thread, opaque to the collector except for heap
operations (allocate, read, write)
A root: a heap pointer accessible to the mutator
(e.g. in static global storage, stack space, or registers)
An object is live if a mutator will access it in the future
An object is reachable if there is a chain of pointers to it from a root
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The reference count tracks the number of pointers to each object.

1

•

An object’s reference count is 1 when the
object is created:

1

•

2

• •

The count is incremented when a pointer
newly references the object:

1

•

2

• •

The count is decremented when a
pointer no longer references the object:

01

•

The object is unreachable garbage when
the reference count goes to 0:
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Motivation: collector has imperfect information about object layout
(e.g. because language is compiled to C)

Idea: use an approximation to guess whether a value represents a pointer, e.g.:

1. does the value point into the heap?
2. does it point to valid metadata?

Drawbacks
1. (chance) can incorrectly classify addresses as pointers
2. (subterfuge) can fail to identify disguised pointers
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GC metrics
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Throughput: mutator performance

Latency: pauses in mutator execution

Space overhead: e.g. due to mark bits, layout information

More (combination of program behaviour and collector design):

maximum heap size allocation rate
collection frequency mean object size

proportion of heap occupied by large objects



Performance subtleties
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Example
Pause times alone provide little information.
A good distribution of pause times is needed for mutators to make progress.

Example
Compaction can slow collection but improve locality (& hence throughput)



Hybrid systems
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Many mature systems combine several standard algorithms.

For example, Cedar (1985):

“[…] provides both a concurrent reference-counting collector that
runs in the background when needed, and a pre-emptive conven-
tional “trace-and-sweep” collector that can be invoked explicitly by
the user to reclaim circular data structures […]
“Both collectors treat procedure-call activation records (called frames)
“conservatively”; that is they assume that every ref-sized bit pattern
found in a frame might be a ref”
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ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright c� 2003 ACM 1-58113-628-5/03/0001 $5.00.

programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-
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“[…] there is significant interest in applying garbage
collection to hard real-time systems.”

“Past approaches have generally suffered from one
of two major flaws: either they were not provably
real-time, or they imposed large space overheads to
meet the real-time bounds.”

“We […] show that at real-time resolution we are
able to obtain mutator utilization rates of 45% with
only 1.6–2.5 times the actual space required by the
application”
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Abstract
The garbage collector (GC) is a crucial component of lan-
guage runtimes, offering correctness guarantees and high
productivity in exchange for a run-time overhead. Concur-
rent collectors run alongside application threads (mutators)
and share CPU resources. A likely point of contention be-
tween mutators and GC threads and, consequently, a poten-
tial overhead source is the shared last-level cache (LLC).
This work builds on the hypothesis that the cache pol-

lution caused by concurrent GCs hurts application perfor-
mance. We validate this hypothesis with a cache-sensitive
Java micro-benchmark. We find that concurrent GC activity
may slow down the application by up to 3× and increase the
LLC misses by 3 orders of magnitude. However, when we ex-
tend our analysis to a suite of benchmarks representative for
today’s server workloads (Renaissance), we find that only 5
out of 23 benchmarks show a statistically significant correla-
tion between GC-induced cache pollution and performance.
Even for these, the performance overhead of GC does not
exceed 10 %. Based on further analysis, we conclude that the
lower impact of the GC on the performance of Renaissance
benchmarks is due to their lack of sensitivity to LLC capacity.

CCS Concepts: • Software and its engineering→ Run-
time environments; Garbage collection; • Computer
systems organization→ Multicore architectures.

Keywords: JVM, garbage collection, ZGC, cache pollution
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1 Introduction
Automatic memory management, also known as garbage
collection (GC),1 is a technique that provides memory access
safety and reliability while significantly reducing develop-
ers’ load. These aspects make garbage collection an essential
component of managed runtime environments (e.g., Java,
C#, JavaScript), which are intensively used by web services
(e.g., Twitter), web browsers, and mobile platforms (e.g., An-
droid). For these reasons, automatic memory management
continues to be a hot topic today, even after more than half
a century of active research towards its optimization.

However, the benefits offered by the GC do not come for
free. Prior work [2, 4, 13, 19, 27, 30] has shown that appli-
cation performance is profoundly contingent on the effec-
tiveness of the garbage collector. Historically, GCs harmed
application performance due to unacceptably long stop-the-
world (STW) pauses. To reduce the performance overhead
and responsiveness issues created by STW events, significant
effort was put into re-designing and implementing more effi-
cient GCs [7, 12, 16, 22, 26, 28, 29]. Therefore, most modern
GCs [10, 32] have increasingly shorter pauses, while per-
forming most of the work concurrently with the application
threads (e.g., ZGC [32]). However, concurrency comes at a
price as well [5], as the application needs to share resources
with the GC (e.g., cache capacity, bandwidth, CPU time) and
even sometimes help with the collection itself. To the best
of our knowledge, there is no work on concurrent GCs that
quantifies these overhead components individually. Such in-
formation would reveal new weaknesses and opportunities
and facilitate well-targeted performance improvements.

1For the rest of the paper we use GC to refer to the process of garbage
collection as well as the garbage collector itself.

“This work builds on the hypothesis that the cache
pollution caused by concurrent GCs hurts applica-
tion performance.”

“We find that concurrent GC activity may slow down
the application by up to 3× and increase the LLC
misses by 3 orders of magnitude.”

“However, […] we find that only 5 out of 23 bench-
marks show a statistically significant correlation
between GC-induced cache pollution and perfor-
mance.”
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Abstract

To achieve short pauses, state-of-the-art concurrent copying
collectors such as C4, Shenandoah, and ZGCuse substantially
more CPU cycles and memory than simpler collectors. They
suffer from design limitations: i) concurrent copying with
inherently expensive read and write barriers, ii) scalability
limitations due to tracing, and iii) immediacy limitations for
mature objects that impose memory overheads.

This paper takes a different approach to optimizing respon-
siveness and throughput. It uses the insight that regular, brief
stop-the-world collections deliver sufficient responsiveness
at greater efficiency than concurrent evacuation. It intro-
duces LXR, where stop-the-world collections use reference
counting (RC) and judicious copying. RC delivers scalability
and immediacy, promptly reclaiming young and mature ob-
jects. RC, in a hierarchical Immix heap structure, reclaims
most memory without any copying. Occasional concurrent
tracing identifies cyclic garbage. LXR introduces: i) RC re-
membered sets for judicious copying of mature objects; ii) a
novel low-overhead write barrier that combines coalescing
reference counting, concurrent tracing, and remembered set
maintenance; iii) object reclamation while performing a con-
current trace; iv) lazy processing of decrements; and v) novel
survival rate triggers that modulate pause durations.
LXR combines excellent responsiveness and throughput,

improving over production collectors. On the widely-used
Lucene search engine in a tight heap, LXR delivers 7.8×
better throughput and 10× better 99.99% tail latency than
Shenandoah. On 17 diverse modern workloads in a moderate
heap, LXR outperforms OpenJDK’s default G1 on throughput
by 4% and Shenandoah by 43%.

CCSConcepts: • Software and its engineering→Garbage

collection;
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1 Introduction

Modern concurrent garbage collectors are surprisingly ex-
pensive. Growth in memory footprints and latency-sensitive
applications led vendors to focus on low pause time collec-
tors, such as C4 [39], Shenandoah [20], and ZGC [27]. While
they achieve low pause times, they do so at memory and
CPU costs. Furthermore, we show that their low pause times
do not always translate into low latency for latency-sensitive
applications. This paper identifies why they are expensive
and proposes a very different approach. We introduce LXR
(Latency-critical ImmiX with Reference counting), imple-
ment it in OpenJDK, and compare it against these widely-
used collectors on diverse contemporary workloads.

The early Garbage First (G1) collector is a copying collec-
tor with concurrent tracing [17]. Each collection chooses a
set of profitable fixed size regions to evacuate. It is optimized
for throughput and low pause times. C4, Shenandoah, and
ZGC built on the G1 foundation, seeking to further reduce
pause times, believing lower pause times would translate to
improved application latency. These collectors all rely on
i) concurrent tracing to identify live objects, ii) evacuation
alone to reclaim space, and iii) expensive read and/or write
barriers. These choices have fundamental implications on
i) application (mutator) performance, ii) timeliness of recla-
mation, and iii) collector performance. They reclaimmemory
only with concurrent copying, an intrinsically expensive ap-
proach that relocates every object using expensive barriers
to maintain coherence of heap references [34].

Table 1 shows the tradeoff Shenandoah makes to achieve
low pause times and that those low pause times do not trans-
late to low latency on the widely used Lucene enterprise
search engine (lusearch). It compares G1Ðthe OpenJDK de-
fault, optimized for throughput; Shenandoahśoptimized for
latency; and LXRÐoptimized for both, using a tight heap
1.3× the minimum required by G1 on our Zen 3. The work-
load is challenging because it is highly parallel and has a
very high allocation rate. We report throughput using queries
per second (QPS) and total time, and latency using query

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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“To achieve short pauses, state-of-the-art concur-
rent copying collectors such as C4, Shenandoah, and
ZGC use substantially more CPU cycles and memory
than simpler collectors.”

“This paper […] uses the insight that regular, brief
stop-the-world collections deliver sufficient respon-
siveness at greater efficiency than concurrent evacu-
ation.”

“[…] LXR delivers 7.8× better throughput and 10×
better 99.99% tail latency than Shenandoah.”


