- Advanced topics in programming languages

Garbage collection

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2024 -




Algorithms



Algorithms

Vocabulary

A heap: of one or more blocks of contiguous words
A object: a heap-allocated contiguous region addressed by 0+ pointers

A mutator: application thread, opaque to the collector except for heap
operations (allocate, read, write)

A root: a heap pointer accessible to the mutator
(e.g. in static global storage, stack space, or registers)

An object is live if a mutator will access it in the future

An object is reachable if there is a chain of pointers to it from a root



Al ith Mark
orit S
gorithm mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Copying collection

Collect

Algorithms copy live blocks to to-space (starting at the root)

leave forwarding addresses in from-space
switch roles of spaces

from-space to-space

1]




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

to-space from-space

SO LTI




Reference counting

The reference count tracks the number of pointers to each object.

Algorith et i
SDIEIDS An object's reference count is 1 when the

object is created:

The count is incremented when a pointer
newly references the object:

The count is decremented when a
pointer no longer references the object:

The object is unreachable garbage when
the reference count goes to 0:




Algorithms

Conservative collection

Motivation: collector has imperfect information about object layout
(e.g. because language is compiled to C)

Idea: use an approximation to guess whether a value represents a pointer, e.g.:

1. does the value point into the heap?

2. does it point to valid metadata?

Drawbacks
1. (chance) can incorrectly classify addresses as pointers

2. (subterfuge) can fail to identify disguised pointers



Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Algorithms Copying collector for minor heap / mark-and-sweep for major heap

major heap

minor heap

4 A

AN
N N

|7




Generational collection

Algorithms Copying collector for minor heap / mark-and-sweep for major heap

major heap

minor heap

4 A

AN
O b




Generational collection

Algorithms Copying collector for minor heap / mark-and-sweep for major heap

major heap

minor heap

4 A

/N
p EAN I MR




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Performance



Performance

GC metrics

Throughput: mutator performance
Latency: pauses in mutator execution

Space overhead: e.g. due to mark bits, layout information

More (combination of program behaviour and collector design):

maximum heap size allocation rate

collection frequency mean object size

proportion of heap occupied by large objects



Performance subtleties

Example
Pause times alone provide little information.
A good distribution of pause times is needed for mutators to make progress.

Performance

Example
Compaction can slow collection but improve locality (& hence throughput)




Hybrid systems

Many mature systems combine several standard algorithms.

For example, Cedar (1985):

“[..] provides both a concurrent reference-counting collector that

runs in the background when needed, and a pre-emptive conven-
tional “trace-and-sweep” collector that can be invoked explicitly by

the user to reclaim circular data structures [...]

Performance

“Both collectors treat procedure-call activation records (called frames)
“conservatively”; that is they assume that every ref-sized bit pattern

found in a frame might be a ref”




Reading



Reading

THE i iy
GARBAGE COLLEGTION

HANDBOOK# = &

The Art of Automalic l\m‘mry fhn'agqm‘_nt 2

Second edition

Background reading

K.




Paper 1: Bacon et al (2004)

A Unified Theory of Garbage Collection

“Tracing and reference counting [...]
seem to share some deep structure”

David F. Bacon Perry Cheng Rajan

181 T.. Watson Research Center

Vorktown Heights, NY 10598

1 INTRODUCTION

s gty 5 s s s “For every operation performed by the

ave implemented igh- veloped.

R e tracing collector, there is a precisely

e present a formulaion of e s B

5, 48] sof rea

e T A corresponding anti-operation performed by
S e e o the reference counting collector.”

9 [

Cowatems : ] “[A]ll high-performance collectors [..] are in

Sy D ; fact hybrids of tracing and reference
= counting”

Reading




Paper 2: Hertz and Berger (2005)

Quantifying the Performance -
of Garbage Collection vs. Explicit Memory Management “ [A] novel experi mental methOdOIOgy that lets us

quantify the performance of precise garbage
collection versus explicit memory management.”

azon 5
matthew.hertz@canisius.edu emery@cs.umass.odu

ABSTRACT

“[W]ith five times as much memory, an Appel-style
generational collector with a non-copying mature
space matches the performance of
reachability-based explicit memory management.”

“When physical memory is scarce, paging causes
garbage collection to run an order of magnitude
slower than explicit memory management”

Reading




Reading

Fast Conservative Garbage Collection

Blackby Kathryn S. McKinley

Introduct

Paper 3: Shahriyar et al (2014)

“Garbage collectors are exact or conservative. |..]
We explore conservative collectors for managed
languages, with ambiguous stacks and registers.
We show that for Java benchmarks they retain and
pin remarkably few heap objects”

“We introduce high performance conservative
Immix and reference counting (RC)."

“[FJor managed languages, conservative collection
is compatible with high performance.”




