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Expression evaluation

The stack

Continuations
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Reading

Values
V ::= x variable

| λx.M abstraction

Terms
L,M ::= V value

| L M application

Computation rules

(λx.M) V⇝ M{V/x}

Congruence rules

L⇝ L′

L M⇝ L′ M

M⇝ M ′

V M⇝ V M ′
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Values
V ::= x variable

| λx.M abstraction

Terms
L,M ::= V value

| L M application

Continuations
E[ · ] ::= [ · ]

| E[[ · ] M]
| E[V [ · ]]

Computation rules

E[(λx.M) V]⇝ E[M{V/x}]
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1 + [−]

(λx.x + 2)[−]

100 + 10

1 + ((λx.x + 2)[100 + 10])
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Values
V ::= x variable

| λx.M abstraction

Terms
L,M ::= V value

| L M application
| ⟨M⟩ reset
| S k.M shift

Continuations
E[ · ] ::= [ · ]

| E[[ · ] M]
| E[V [ · ]]
| E[⟨[ · ]⟩]

Computation rules

E[(λx.M) V] ⇝ E[M{V/x}]
E[⟨V⟩] ⇝ E[V]

E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]
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| λx.M abstraction

Terms
L,M ::= V value

| L M application
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E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

1 +−

−+ S k2.S k3.1

S k1.k1 100 + k1 10

E2

⟨1 + ⟨[S k1.k1 100 + k1 10] + S k2.S k3.1⟩⟩
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E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

1 +−

1 +−

1

⟨1 + ⟨1 + [⟨1⟩]⟩⟩



Example

The stack

Continuations

Variations &
applications

Reading

E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

1 +−

1 + 1
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E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

1 +−

2

⟨1 + [⟨2⟩]⟩
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E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

1 + 2

⟨[1 + 2]⟩



Example

The stack

Continuations

Variations &
applications

Reading

E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

3

[⟨3⟩]



Example

The stack

Continuations

Variations &
applications

Reading

E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

3

3



Variations & applications



Variations

The stack

Continuations

Variations &
applications

Reading

E[⟨E2[S k.M]⟩]
⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

E[⟨E2[S0 k.M]⟩]
⇝ E[M{(λy.⟨E2[y]⟩)/k}]

E[⟨E2[F k.M]⟩]
⇝ E[⟨M{(λy.E2[y])/k}⟩]

E[⟨E2[F0 k.M]⟩]
⇝ E[M{(λy.E2[y])/k}]
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−
⟩
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retain enclosing ⟨−⟩

shift shift0

control control0
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Simulating exceptions is straightforward: just discard the continuation:

try b h = case ⟨R (b ())⟩ of L e → h e | R v → v
raise e = S0 k.L e

Example:
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Simulating exceptions is straightforward: just discard the continuation:

try b h = case ⟨R (b ())⟩ of L e → h e | R v → v
raise e = S0 k.L e

Example: try (λ().1 + (raise 0 + 100))(λu.u + 2)

⇝ case ⟨R((λ().1 + ([S0 k.L 0] + 100))())⟩ of L e → (λu.u + 2) e | R v → v

⇝ case ⟨R(1 + [S0 k.L 0])⟩ofL e → (λu.u + 2) e | R v → v

⇝ [case L 0 of L e → (λu.u + 2)e | R v → v]

⇝ [(λu.u + 2) 0]
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Simulating exceptions is straightforward: just discard the continuation:

try b h = case ⟨R (b ())⟩ of L e → h e | R v → v
raise e = S0 k.L e

Example: try (λ().1 + (raise 0 + 100))(λu.u + 2)

⇝ case ⟨R((λ().1 + ([S0 k.L 0] + 100))())⟩ of L e → (λu.u + 2) e | R v → v

⇝ case ⟨R(1 + [S0 k.L 0])⟩ofL e → (λu.u + 2) e | R v → v

⇝ [case L 0 of L e → (λu.u + 2)e | R v → v]

⇝ [(λu.u + 2) 0]

⇝ [0 + 2]
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Simulating exceptions is straightforward: just discard the continuation:

try b h = case ⟨R (b ())⟩ of L e → h e | R v → v
raise e = S0 k.L e

Example: try (λ().1 + (raise 0 + 100))(λu.u + 2)

⇝ case ⟨R((λ().1 + ([S0 k.L 0] + 100))())⟩ of L e → (λu.u + 2) e | R v → v

⇝ case ⟨R(1 + [S0 k.L 0])⟩ofL e → (λu.u + 2) e | R v → v

⇝ [case L 0 of L e → (λu.u + 2)e | R v → v]

⇝ [(λu.u + 2) 0]

⇝ [0 + 2]

⇝ [2]



Application: generators

The stack

Continuations

Variations &
applications

Reading

We can build generators that yield items from iterators that traverse collections

generate iter l = ⟨iter (λv.S0 k.(v, k))l⟩

Example:
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generate iter l = ⟨iter (λv.S0 k.(v, k))l⟩
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We can build generators that yield items from iterators that traverse collections

generate iter l = ⟨iter (λv.S0 k.(v, k))l⟩

Example: generate iter [1; 2; 3]

⇝ ⟨iter (λv.S0 k.(v, k)) [1; 2; 3]⟩

⇝ ⟨(λv.S0 k.(v, k)) 1; iter (λv.S0 k.(v, k)) [2; 3]⟩

⇝ ⟨(S0 k.(1, k)); iter (λv.S0 k.(v, k)) [2; 3]⟩

⇝ (1, λ().⟨iter (λv.S0 k.(v, k)) [2; 3]⟩)
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Delimited Control in OCaml,

Abstractly and Concretely

Oleg Kiselyov

Monterey, CA, U.S.A.

Abstract

We describe the first implementation of multi-prompt delimited control op-
erators in OCaml that is direct in that it captures only the needed part of the
control stack. The implementation is a library that requires no changes to
the OCaml compiler or run-time, so it is perfectly compatible with existing
OCaml source and binary code. The library has been in fruitful practical use
since 2006.

We present the library as an implementation of an abstract machine de-
rived by elaborating the definitional machine. The abstract view lets us
distill a minimalistic API, scAPI, sufficient for implementing multi-prompt
delimited control. We argue that a language system that supports exception
and stack-overflow handling supports scAPI. With byte- and native-code
OCaml systems as two examples, our library illustrates how to use scAPI
to implement multi-prompt delimited control in a typed language. The ap-
proach is general and has been used to add multi-prompt delimited control
to other existing language systems.

Keywords: delimited continuation, exception, semantics, implementation,
abstract machine

1. Introduction

The library delimcc of delimited control for OCaml was first released at
the beginning of 2006 [1] and has been used for implementing (delimited)

Email address: oleg@okmij.org (Oleg Kiselyov)
URL: http://okmij.org/ftp/ (Oleg Kiselyov)

Preprint submitted to Theoretical Computer Science February 29, 2012

“[T]he first direct implementation of delimited
control in a typed, mainstream, mature lan-
guage — it captures only the needed prefix
of the current continuation, requires no code
transformations, and integrates with native-
language exceptions.

“[D]oes not modify the OCaml compiler or run-
time in any way, so it ensures perfect binary
compatibility with existing OCaml code and
other libraries.

“Captured delimited continuations may be re-
instated arbitrarily many times in different dy-
namic contexts.”
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Implementing First-Class Polymorphic Delimited Continuations
by a Type-Directed Selective CPS-Transform

Tiark Rompf Ingo Maier Martin Odersky
Programming Methods Laboratory (LAMP)

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract
We describe the implementation of first-class polymorphic delim-
ited continuations in the programming language Scala. We use
Scala’s pluggable typing architecture to implement a simple type
and effect system, which discriminates expressions with control ef-
fects from those without and accurately tracks answer type modi-
fication incurred by control effects. To tackle the problem of im-
plementing first-class continuations under the adverse conditions
brought upon by the Java VM, we employ a selective CPS trans-
form, which is driven entirely by effect-annotated types and leaves
pure code in direct style. Benchmarks indicate that this high-level
approach performs competitively.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Theory

Keywords Delimited continuations, selective CPS transform,
control effects, program transformation

1. Introduction
Continuations, and in particular delimited continuations, are a ver-
satile programming tool. Most notably, we are interested in their
ability to suspend and resume sequential code paths in a controlled
way without syntactic overhead and without being tied to VM
threads.

Classical (or full) continuations can be seen as a functional ver-
sion of the infamous GOTO-statement (Strachey and Wadsworth
2000). Delimited (or partial, or composable) continuations are
more like regular functions and less like GOTOs. They do not em-
body the entire rest of the computation, but just a partial rest, up to
a programmer-defined outer bound. Unlike their undelimited coun-
terparts, delimited continuations will actually return control to the
caller after they are invoked, and they may also return values. This
means that delimited continuations can be called multiple times in
succession, and the program can proceed at the call site afterwards.
This ability makes delimited continuations strictly more powerful
than regular ones. Operationally speaking, delimited continuations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

do not embody the entire control stack but just stack fragments, so
they can be used to recombine stack fragments in interesting and
possibly complicated ways.

To access and manipulate delimited continuations in direct-
style programs, a number of control operators have been proposed,
which can be broadly classified as static or dynamic, according to
whether the extent of the continuations they capture is determined
statically or not. The dynamic variant is due to Felleisen (1988);
Felleisen et al. (1988) and the static variant to Danvy and Filinski
(1990, 1992). The static variant has a direct, corresponding CPS-
formulation which makes it attractive for an implementation using
a static code transformation and thus, this is the variant underly-
ing the implementation described in this paper. We will not go into
the details of other variants here, but refer to the literature instead
(Dyvbig et al. 2007; Shan 2004; Biernacki et al. 2006); suffice it to
note that the two main variants, at least in an untyped setting, are
equally expressive and have been shown to be macro-expressible
(Felleisen 1991) by each other (Shan 2004; Kiselyov 2005). Ap-
plying the type systems of Asai and Kameyama (2007); Kameyama
and Yonezawa (2008), however, renders the dynamic control oper-
ators strictly more expressive since strong normalization holds only
for the static variant (Kameyama and Yonezawa 2008).

In Danvy and Filinski’s model, there are two primitive opera-
tions, shift and reset. With shift, one can access the current
continuation and with reset, one can demarcate the boundary up
to which continuations reach: A shift will capture the control
context up to, but not including, the nearest dynamically enclosing
reset (Biernacki et al. 2006; Shan 2007).

Despite their undisputed expressive power, continuations (and
in particular delimited ones) have not yet found their way into
the majority of programming languages. Full continuations are
standard language constructs in Scheme and popular ML dialects,
but most other languages do not support them natively. This is
partly because efficient support for continuations is assumed to
require special provisions from the runtime system (Clinger et al.
1999), like the ability to capture and restore the run-time stack,
which are not available in all environments. In particular, popular
VM’s such as the JVM or the .NET CLR do not provide this low-
level access to the run-time stack. One way to overcome these
limitations is to simulate stack inspection with exception handlers
and/or external data structures (Pettyjohn et al. 2005; Srinivasan
2006).

Another avenue is to use monads instead of continuations to ex-
press custom-defined control flow. Syntactic restrictions imposed
by monadic style can be overcome by supporting more language
constructs in the monadic level, as is done in F#’s workflow ex-
pressions. Nevertheless, the fact remains that monads or workflows
impose a certain duplication of syntax constructs that need to be

317

“To tackle the problem of implementing first-class
continuations under the adverse conditions brought
upon by the Java VM, we employ a selective
CPS transform, which is driven entirely by effect-
annotated types and leaves pure code in direct style.

“Benchmarks indicate that this high-level approach
performs competitively.
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Continuing WebAssembly with Effect Handlers

LUNA PHIPPS-COSTIN, Northeastern University, United States

ANDREAS ROSSBERG, Independent, Germany

ARJUN GUHA, Northeastern University and Roblox, United States

DAAN LEIJEN, Microsoft Research, United States

DANIEL HILLERSTRÖM, Huawei Zurich Research Center, Switzerland

KC SIVARAMAKRISHNAN, Tarides and IIT Madras, India

MATIJA PRETNAR, University of Ljubljana and Institute of Mathematics, Physics & Mechanics, Slovenia

SAM LINDLEY, The University of Edinburgh, United Kingdom

WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended

as a compilation target for a wide variety of source languages. However, Wasm provides no direct support

for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class

continuations, etc. This means that compilers for source languages with such features must ceremoniously

transform whole source programs in order to target Wasm.

We presentWasmFX, an extension toWasmwhich provides a universal target for non-local control features

via effect handlers, enabling compilers to translate such features directly intoWasm. Our extension is minimal

and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our

primitive instructions are type-safe providing typed continuations which are well-aligned with the design

principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the

extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and

also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on

Wasmtime’s existing fibers API. The preliminary performance results for our prototype are encouraging, and

we outline future plans to realise a native implementation.
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“Wasm provides no direct support for non-local
control flow features such as async/await, gen-
erators/iterators, lightweight threads, first-class
continuations, etc. […] compilers for source lan-
guages with such features must ceremoniously
transform whole source programs in order to tar-
get Wasm […]

“WasmFX mechanism is based on delimited con-
tinuations extended with multiple named con-
trol tags inspired by Plotkin and Pretnar’s ef-
fect handlers […]

“The resume instruction consumes its contin-
uation operand, meaning a continuation may
be resumed only once — i.e., we only support
single-shot continuations.”



Writing suggestions

The stack

Continuations

Variations &
applications

Reading

Expressiveness
Do these implementations support multi-shot continuations?
Do these implementations support multiple prompts?
(Does either of these questions matter in practice?)

Efficiency
Under which circumstances (if any) is the performance acceptable?

Types
How are continuations typed?
Are types used in the implementations?

Usability
How usable is each approach in practice?


