- Advanced topics in programming languages

Delimited continuations

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2024 -

Evaluation & the stack

The stack

° Values
9= X variable
Ax.M abstraction

Computation rules

(Ax.M) V ~ M{V/x}

Expression evaluation

LM = V value
L M application

Congruence rules

L~ L'
LM~ L"M

M ~~ M’
VM~ VM

Continuation-based expression evaluation

The stack

(N J q .
Values TETe Clt_:)[nt}muatlons

X variable LM =V value
Ax.M abstraction | LM application

Computation rules

E[(0x.M) V] ~ EIM{V/x}]

Stack-based expression evaluation

The stack

100 + 10

(Axx+2)[—]

1+]

1+ ((Ax.x+2)[100 + 10])

Stack-based expression evaluation

The stack

1+ ((xx + 2)[110])

Stack-based expression evaluation

The stack

(Ax.x+2)110

1+]

1+ ([(Axx -+ 2)110])

Stack-based expression evaluation

The stack

Stack-based expression evaluation

The stack

Stack-based expression evaluation

The stack

Stack-based expression evaluation

The stack

Delimited continuations

Values Terms

X variable LM
Ax.M abstraction

Continuationg

Computation rules

Basics

Continuations
value E[-] == [-]
| E[[-]M]
| E[V[-]]
| EK[- D]

application
reset
shift

Basics

Values Terms Continuations

Ax.M abstraction application

Continuationg reset
. shift

variable LM value E[-] ==
|
|
|

Computation rules

Example

(M{(Ay(E2[¥))/ K})

Continuations

(XX S ki.ky 100 + k1 10

1 Sk Skl

Ly

<1 = <[S ki.kqy 100 + kq 10] + S ky.S /(3.1>>

Example

~ E(M{(Ay-(E2[¥))/K})

Continuations p ~

. J
s)

= aF (Ay.<y+ S k2S k31>) 10

1+ —

Example

~ E(M{(Ay-(E2[¥))/K})

Sky.S ks.1

Continuations

PPN 100 + —

= aF (Ay.<y+ S k2S k31>) 10

1+ —

Example

~ E(M{(Ay-(E2[¥))/K})

Continuations

Ny S ks.1

= aF (Ay.<y+ S k2S k31>) 10

1+ —

Example

~ E(M{(Ay-(E2[¥))/K})

Continuations

o000 1

= aF (Ay.<y+ S k2S k31>) 10

1+ —

(14 (V)] + Ay (y+ S ka.S k3.1)) 10))

Example

~ E(M{(Ay-(E2[¥))/K})

Continuations

(XX (Ay.(y + S k2.S ks.1)) 10

14—

Ly

(14 1+ [(A\y(y+ S ka.S k3.1)) 10]))

Example

(M{(Ay(E2[¥))/ K})

S koS k.1

Continuations

PPN 10 + —

1+—

1+ —

1+ (1 + (10 + [S koS k3.1])))

Example

~ E(M{(Ay-(E2[¥))/K})

Continuations

(1+ (1 +([S ks.1])))

Example

~ E(M{(Ay-(E2[¥))/K})

Continuations

Example

~ E(M{(Ay-(E2[¥))/K})

Continuationg

Example

~ E(M{(Ay-(E2[¥))/K})

Continuationg

Example

~ E(M{(Ay-(E2[¥))/K})

Continuationg

Example

~ E(M{(Ay-(E2[¥))/K})

Continuationg

Example

~ E(M{(Ay-(E2[¥))/K})

Continuationg

Variations & applications

Variations &
applications

[}
w
T

c
=]
o
=
@
—~
|
~
©
2
0
£

retain enclosing (—)

(E2[S k.M))
(M{(A\y-(E2[y]))/k})

control

(Eo[F k.M))
(M{(Ay.Ex[y])/k})

Variations

shift0
(E2[Sp k-M])
M{(\y.(E2[y]))/k}

control0

(Es[Fo k.M])
M{(Ay-Ex[y])/ Kk}

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example:

Variations &
applications

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)

Variations &
applications

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)
~~ case (R((A().1+ ([So k.L 0] +100))())) of Le = (Av.u+2)e| Rv— v

Variations &
applications

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)
~~ case (R((A().1+ ([So k.L 0] +100))())) of Le = (Av.u+2)e| Rv— v

Variati &
a?):EcI:t?Zns ~ case (R(1+ [So k.L0]))ofL e — (Au.u+2)e| Rv— v

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)
~~ case (R((A().1+ ([So k.L 0] +100))())) of Le = (Av.u+2)e| Rv— v

Variati &
a?):EcI:t?Zns ~ case (R(1+ [So k.L0]))ofL e — (Au.u+2)e| Rv— v

PRPAP ~ [case LO of L e — (Au.u+2)e| Rv— V|

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)
~~ case (R((A().1+ ([So k.L 0] +100))())) of Le = (Av.u+2)e| Rv— v

Variati &
a?):EcI:t?Zns ~ case (R(1+ [So k.L0]))ofL e — (Au.u+2)e| Rv— v

PRPAP ~ [case LO of L e — (Au.u+2)e| Rv— V|

~ [(Av.u+2) 0]

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)
~~ case (R((A().1+ ([So k.L 0] +100))())) of Le = (Av.u+2)e| Rv— v

Variati &
a?):EcI:t?Zns ~ case (R(1+ [So k.L0]))ofL e — (Au.u+2)e| Rv— v

PRPAP ~ [case LO of L e — (Au.u+2)e| Rv— V|

~ [(Av.u+2) 0]
~ [0 4 2]

Application: exceptions

Simulating exceptions is straightforward: just discard the continuation:

try bh=case (R(b()))of Le+>he|Rv—v
raise e = Sp k.L e

Example: try (A().1 + (raise 0 4 100))(Auv.u+ 2)
~~ case (R((A().1+ ([So k.L 0] +100))())) of Le = (Av.u+2)e| Rv— v
Variations & (R(L+[So kL O))YofL e = (Auu+2) e| Rv— v

applications

PRPAP ~ [case LO of L e — (Au.u+2)e| Rv— V|

[
~ [(Av.u+2) 0]
[
[

Application: generators

We can build generators that yield items from iterators that traverse collections

generate iter [= (iter (Av.Sp k.(v, k))/)

Example:

Variations &
applications

Application: generators

We can build generators that yield items from iterators that traverse collections

generate iter [= (iter (Av.Sp k.(v, k))/)

Example: generate iter [1;2; 3]

Variations &
applications

Application: generators

We can build generators that yield items from iterators that traverse collections

generate iter [= (iter (Av.Sp k.(v, k))/)

Example: generate iter [1;2; 3]

~ (iter (Av.So k.(v, k)) [1;2;3])
Variations &
applications

Application: generators

We can build generators that yield items from iterators that traverse collections

generate iter [= (iter (Av.Sp k.(v, k))/)

Example: generate iter [1;2; 3]

~ (iter (Av.So k.(v, k)) [1;2;3])
Rapatioads s (AV.So k.(v, K)) 1; iter (Av.So k.(v, K)) [2;3])

applications

Application: generators

We can build generators that yield items from iterators that traverse collections

generate iter [= (iter (Av.Sp k.(v, k))/)

Example: generate iter [1;2; 3]

~ (iter (Av.So k.(v, k)) [1;2;3])
Rapatioads s (AV.So k.(v, K)) 1; iter (Av.So k.(v, K)) [2;3])

applications
PRPAPS ~ ((So k.(1, k)); iter (Av.So k.(v, k)) [2;3])

Application: generators

We can build generators that yield items from iterators that traverse collections

generate iter [= (iter (Av.Sp k.(v, k))/)

Example: generate iter [1;2; 3]

~ (iter (Av.So k.(v, k)) [1;2;3])

‘;xﬁg’tﬁn&s‘ s (AV.So k.(v, k) 1; iter (Av.So k.(v, k)) [2;3])
~ ((So k.(1, k)); iter (Av.So k.(v, k)) [2;3])
s (1, X().(iter (Av.So k.(v, K)) [2;3]))

Reading

Reading

Delimited Control in OCaml,
Abstractly and Concretely

Oleg Kisclyov
Monterey, CA, U.S.A

Abstract.

We describe the first implementation of multi-prompt delimited control op
erators in OCaml that is direct in that it captures only the needed part of the
control stack. The implementation is a library that requires no changes to
the OCaml compiler or run-time, so it is perfectly compatible with existing
OCaml source and binary code. The library has been in fruitful practical usc
since 2006

We present the library as an implementation of an abstract machine de
rived by elaborating the definitional machine. The abstract view lets us
distill a minimalistic API, scAPI sufficient for implementing multi-prompt
delimited control. We argue that a language system that supports exception
and stack-overflow handling supports scAPL. With byte- and native-code
OCaml systems as two examples, our library illustrates how to use scAPI
to implement multi-prompt delimited control in a typed language. The ap
proach is general and has been used to add multi-prompt delimited control
to other existing language systems

Keywords: ~delimited continuation, exception, semantics, implementation.
abstract machine

1. Introduction

The library delimee of delimited control for OCaml was first released at
the beginning of 2006 [1] and has been used for implementing (delimited)

Paper 1: delimcc

“[T]he first direct implementation of delimited
control in a typed, mainstream, mature lan-
guage — it captures only the needed prefix
of the current continuation, requires no code
transformations, and integrates with native-
language exceptions.

“[D]oes not modify the OCaml compiler or run-
time in any way, so it ensures perfect binary
compatibility with existing OCaml code and
other libraries.

“Captured delimited continuations may be re-
instated arbitrarily many times in different dy-
namic contexts.”

Reading

Paper 2: a selective CPS transform (2009

Implementing First-Class Polymorphic Delimited Continuations

by Type.Directed Selective CPS-Transform “To tackle the problem of implementing first-class

P continuations under the adverse conditions brought
upon by the Java VM, we employ a selective
CPS transform, which is driven entirely by effect-
annotated types and leaves pure code in direct style.

Abstract

“Benchmarks indicate that this high-level approach
performs competitively.

Continuing WebAssembly with Effect Handlers

LUNA PHIPPS-COSTIN, Northeastern University, United States

ANDREAS ROSSBERG, Independent, Germany

ARJUN GUHA, Northeastern University and Roblox, United States

DAAN LEIJEN, Microsoft Research, United States

DANIEL HILLERSTROM, Huawei Zurich Research Center, Switzerland

KC SIVARAMAKRISHNAN, Tarides and IIT Madras, India

MATIJA PRETNAR, University of Ljubljana and Institute of Mathematics, Physics & Mechanics, Slovenia
SAM LINDLEY, The University of Edinburgh, United Kingdom

WebAssembly (Wasm) is a low-level portable code format offering near native performance. I is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We present WasmEX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal
and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our
primitive instructions are type-safe providing typed continuations which are well-aligned with the design
principles of Wasm whose stacks are typed. We present a formal specification of WasmEX and show that the
extension is sound. We have implemented WasmEX as an extension to the Wasm reference interpreter and
also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on
Wasmtime's existing fibers APL The preliminary results for our prototyp and
we outline future plans to realise a native implementation.

CCS Concepts: « Theory of computation — Control primitives; Operational semantics.
Additional Key Words and Phrases: WebAssembly, effect handlers, stack switching

ACM Reference Format:
Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerstrom, KC Sivaramakrishnan,
Matija Pretnar, and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program.
Lang. 7, OOPSLAZ, Article 238 (October 2023), 27 pages. https:/doi.org/10.1145/3622814

1 INTRODUCTION

WebAssembly (also known as Wasm) [Haas et al. 2017; Rossberg 2019, 2023] is a low-level virtual
machine designed to be safe and fast, while being both language- and platform-independent. A

Paper 3: WasmFX (2023)

“Wasm provides no direct support for non-local
control flow features such as async/await, gen-
erators/iterators, lightweight threads, first-class
continuations, etc. [..] compilers for source lan-
guages with such features must ceremoniously
transform whole source programs in order to tar-
get Wasm [..]

“"WasmFX mechanism is based on delimited con-
tinuations extended with multiple named con-
trol tags inspired by Plotkin and Pretnar’s ef-
fect handlers [..]

“The resume instruction consumes its contin-
uation operand, meaning a continuation may
be resumed only once — i.e., we only support
single-shot continuations.”

Writing suggestions

Expressiveness
Do these implementations support multi-shot continuations?
Do these implementations support multiple prompts?
(Does either of these questions matter in practice?)

Efficiency
Under which circumstances (if any) is the performance acceptable?

Types
How are continuations typed?
Are types used in the implementations?

Usability

Reading . . .
How usable is each approach in practice?

