
Advanced topics in programming languages Michaelmas 2023

Abstract interpretation

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Overview1

1Based on Patrick Cousot’s Abstract Interpretation in a Nutshell

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Possible program executions

Overview

Recipe

Reading t

x(t)

possible
program
trajectories

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Abstract interpretation

Overview

Recipe

Reading

Idea: over-approximate all traces to ensure absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

The AI recipe2

2Adapted from Isil Dillig’s Abstract Interpretation slides

https://www.cs.utexas.edu/~isil/cs389L/AI-6up.pdf

Three-part recipe

Overview

Recipe

Reading

1. An abstract domain that captures some aspect of program invariants
(e.g. n ≤ x ≤ m (x always lies within some interval))

2. An abstract semantics that symbolically interprets each program construct
(e.g. given invariants on x and y, what are the invariants on x + y?)

3. Iterate until fixed point

Example: sign abstract domain

Overview

Recipe

Reading

Functions: concretization (γ) and abstraction (α)
map between abstract values & sets of concrete values:

γ({+,−}) = {x ∈ Z | x ̸= 0}
. . .

α({−1,−2, 4}) = {+,−}
. . .

⊤

{+,−}{+, 0} {0,−}

{+} {0} {−}

⊥

Abstract semantics for +

Overview

Recipe

Reading

+ ⊥ {+} {0} {−} {+, 0} {+,−} . . .

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .

{+} ⊥ {+} {+} ⊤ {+} ⊤ . . .

{0} ⊥ {+} {0} {−} {+, 0} {+,−} . . .

{−} ⊥ ⊤ {−} {−} ⊤ ⊤ . . .

{+, 0} ⊥ {+} {+, 0} ⊤ {+, 0} ⊤ . . .

{+,−} ⊥ ⊤ {+,−} ⊤ ⊤ ⊤ . . .

. .

Fixed points

Overview

Recipe

Reading

i n t x = 2;
i n t y = 0;
w h i l e (y != z) {

i f (f y) x = x + 1;
y = y + x

}
/* What do we know
about x and y here? */

Evolution of x and y:

x y
0 {+} {0}
1 {+} {+,0}
2 {+} {+,0}

(Generally: fixed point calculation may not terminate; we may need widening.)

Reading

Reading 1: Octagons

Overview

Recipe

Reading

ar
X

iv
:c

s/
07

03
08

4v
2

 [c
s.

P
L]

 1
6

M
ar

 2
00

7
1

The Octagon Abstract Domain
Antoine Miné

École Normale Supérieure de Paris, France,
mine@di.ens.fr,

http://www.di.ens.fr/~mine

Abstract— This article presents a new numerical abstract
domain for static analysis by abstract interpretation. It extends
a former numerical abstract domain based on Difference-Bound
Matrices and allows us to represent invariants of the form
(±x ± y ≤ c), where x and y are program variables and c

is a real constant.
We focus on giving an efficient representation based on

Difference-Bound Matrices—O(n2) memory cost, where n is
the number of variables—and graph-based algorithms for all
common abstract operators—O(n3) time cost. This includes a
normal form algorithm to test equivalence of representation and
a widening operator to compute least fixpoint approximations.

Index Terms— abstract interpretation, abstract domains, linear
invariants, safety analysis, static analysis tools.

I. I NTRODUCTION

This article presents practical algorithms to represent and
manipulate invariants of the form(±x ± y ≤ c), where x
andy are numerical variables andc is a numeric constant. It
extends the analysis we previously proposed in our PADO-II
article [1]. Sets described by such invariants are special kind of
polyhedra calledoctagonsbecause they feature at most eight
edges in dimension 2 (Figure 2). Using abstract interpretation,
this allows discovering automatically common errors, suchas
division by zero, out-of-bound array access or deadlock, and
more generally to prove safety properties for programs.

Our method works well for reals and rationals. Integer
variables can be assumed, in the analysis, to be real in order
to find approximate but safe invariants.

Example. The very simple program described in Figure
1 simulatesM one-dimensional random walks ofm steps
and stores the hits in the arraytab. Assertions in curly
braces are discovered automatically by a simple static analysis
using our octagonal abstract domain. Thanks to the invariants
discovered, we have the guarantee that the program does not
perform out-of-bound array access at lines 2 and 10. The
difficult point in this example is the fact that the bounds of
the arraytab are not known at the time of the analysis; thus,
they must be treated symbolically.

For the sake of brevity, we omit proofs of theorems in this
article. The complete proof for all theorems can be found in
the author’s Master thesis [2].

II. PREVIOUS WORK

A. Numerical Abstract Domains.

Static analysis has developed a successful methodology,
based on the abstract interpretation framework—see Cousot

1 int tab[−m . . .m];
2 for i = −m to m tab[i] = 0; {−m ≤ i ≤ m}
3 for j = 1 to M do
4 int a = 0;
5 for i = 1 to m
6 { 1 ≤ i ≤ m; −i + 1 ≤ a ≤ i− 1 }
7 if rand(2) = 0
8 then a = a + 1; { −i + 1 ≤ a ≤ i }
9 elsea = a− 1; { −i ≤ a ≤ i− 1 }

10 tab[a] = tab[a] + 1; { −m ≤ a ≤ m }
11 done;

Fig. 1. Simulation of a random walk. The assertions in curly brackets{. . .}
are discovered automatically and prove that this program does not perform
index out of bound error when accessing the arraytab.

and Cousot’s POPL’77 paper [3]—to build analyzers that
discover invariants automatically: all we need is anabstract
domain, which is a practical representation of the invariants
we want to study, together with a fixed set of operators and
transfer functions (union, intersection, widening, assignment,
guard, etc.) as described in Cousot and Cousot’s POPL’79
article [4].

There exists manynumerical abstract domains. The most
used are the lattice ofintervals (described in Cousot and
Cousot’s ISOP’76 article [5]) and the lattice ofpolyhedra
(described in Cousot and Halbwachs’s POPL’78 article [6]).
They represent, respectively, invariants of the form(v ∈
[c1; c2]) and (α1v1 + · · · + αnvn ≤ c), wherev, v1, . . . , vn

are program variables andc, c1, c2, α1, . . . , αn are constants.
Whereas the interval analysis is very efficient—linear memory
and time cost—but not very precise, the polyhedron analysisis
much more precise (Figure 2) but has a huge memory cost—in
practice, it is exponential in the number of variables.

Remark that the correctness of the program in Figure 1
depends on the discovery of invariants of the form(a ∈
[−m, m]) where m must not be treated as a constant, but
as a variable—its value is not known at analysis time. Thus,
this example is beyond the scope of interval analysis. It can
be solved, of course, using polyhedron analysis.

B. Difference-Bound Matrices.

Several satisfiability algorithms for set of constraints involv-
ing only two variables per constraint have been proposed in
order to solveConstraint Logic Programming (CLP)problems.
Pratt analyses, in [7], the simple case of constraints of the

x

y

×
× ×

× ××

Octagon domain
±x +±y < c

x

y

×
× ×

× ××

Interval domain
a ≤ x ≤ b,c ≤ x ≤ d

Reading 2: AI2

Overview

Recipe

Reading

AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri∗, Martin Vechev
Department of Computer Science

ETH Zurich, Switzerland

Abstract—We present AI2, the first sound and scalable ana-
lyzer for deep neural networks. Based on overapproximation,
AI2 can automatically prove safety properties (e.g., robustness)
of realistic neural networks (e.g., convolutional neural networks).

The key insight behind AI2 is to phrase reasoning about safety
and robustness of neural networks in terms of classic abstract
interpretation, enabling us to leverage decades of advances in
that area. Concretely, we introduce abstract transformers that
capture the behavior of fully connected and convolutional neural
network layers with rectified linear unit activations (ReLU), as
well as max pooling layers. This allows us to handle real-world
neural networks, which are often built out of those types of layers.

We present a complete implementation of AI2 together with
an extensive evaluation on 20 neural networks. Our results
demonstrate that: (i) AI2 is precise enough to prove useful
specifications (e.g., robustness), (ii) AI2 can be used to certify
the effectiveness of state-of-the-art defenses for neural networks,
(iii) AI2 is significantly faster than existing analyzers based on
symbolic analysis, which often take hours to verify simple fully
connected networks, and (iv) AI2 can handle deep convolutional
networks, which are beyond the reach of existing methods.

Index Terms—Reliable Machine Learning, Robustness, Neural
Networks, Abstract Interpretation

I. INTRODUCTION

Recent years have shown a wide adoption of deep neural

networks in safety-critical applications, including self-driving

cars [2], malware detection [44], and aircraft collision avoi-

dance detection [21]. This adoption can be attributed to the

near-human accuracy obtained by these models [21], [23].

Despite their success, a fundamental challenge remains:

to ensure that machine learning systems, and deep neural

networks in particular, behave as intended. This challenge

has become critical in light of recent research [40] showing

that even highly accurate neural networks are vulnerable

to adversarial examples. Adversarial examples are typically

obtained by slightly perturbing an input that is correctly

classified by the network, such that the network misclassifies

the perturbed input. Various kinds of perturbations have been

shown to successfully generate adversarial examples (e.g., [3],

[12], [14], [15], [17], [18], [29], [30], [32], [38], [41]). Fig. 1

illustrates two attacks, FGSM and brightening, against a digit

classifier. For each attack, Fig. 1 shows an input in the Original

column, the perturbed input in the Perturbed column, and the

pixels that were changed in the Diff column. Brightened pixels

∗Rice University, work done while at ETH Zurich.

Attack Original Perturbed Diff

FGSM [12], ε = 0.3

Brightening, δ = 0.085

Fig. 1: Attacks applied to MNIST images [25].

are marked in yellow and darkened pixels are marked in pur-

ple. The FGSM [12] attack perturbs an image by adding to it

a particular noise vector multiplied by a small number ε (in

Fig. 1, ε = 0.3). The brightening attack (e.g., [32]) perturbs

an image by changing all pixels above the threshold 1− δ to

the brightest possible value (in Fig. 1, δ = 0.085).

Adversarial examples can be especially problematic when

safety-critical systems rely on neural networks. For instance,

it has been shown that attacks can be executed physically

(e.g., [9], [24]) and against neural networks accessible only as

a black box (e.g., [12], [40], [43]). To mitigate these issues,

recent research has focused on reasoning about neural network

robustness, and in particular on local robustness. Local robus-

tness (or robustness, for short) requires that all samples in the

neighborhood of a given input are classified with the same

label [31]. Many works have focused on designing defenses
that increase robustness by using modified procedures for

training the network (e.g., [12], [15], [27], [31], [42]). Others

have developed approaches that can show non-robustness by

underapproximating neural network behaviors [1] or methods

that decide robustness of small fully connected feedforward

networks [21]. However, no existing sound analyzer handles

convolutional networks, one of the most popular architectures.

Key Challenge: Scalability and Precision. The main chal-

lenge facing sound analysis of neural networks is scaling to

large classifiers while maintaining a precision that suffices

to prove useful properties. The analyzer must consider all

possible outputs of the network over a prohibitively large set

of inputs, processed by a vast number of intermediate neurons.

For instance, consider the image of the digit 8 in Fig. 1 and

suppose we would like to prove that no matter how we brighten

the value of pixels with intensity above 1−0.085, the network

will still classify the image as 8 (in this example we have

84 such pixels, shown in yellow). Assuming 64-bit floating

3

2018 IEEE Symposium on Security and Privacy

© 2018, Timon Gehr. Under license to IEEE.
DOI 10.1109/SP.2018.00058

“Based on overapproximation, AI2 can automatically
prove safety properties (e.g., robustness) of realis-
tic neural networks (e.g., convolutional neural net-
works).

“Our results demonstrate that:
i. AI2 is precise enough to prove useful

specifications (e.g., robustness),
ii. AI2 can be used to certify the effectiveness of

state-of-the-art defenses for neural networks,
iii. AI2 is significantly faster than existing

analyzers based on symbolic analysis, which
often take hours to verify simple fully
connected networks, and

iv. AI2 can handle deep convolutional networks,
which are beyond the reach of existing
methods.”

Reading 3: Verasco

Overview

Recipe

Reading

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

A Formally-Verified C Static Analyzer

Jacques-Henri Jourdan
Inria Paris-Rocquencourt

jacques-henri.jourdan@inria.fr

Vincent Laporte
IRISA and U. Rennes 1
vincent.laporte@irisa.fr

Sandrine Blazy
IRISA and U. Rennes 1
sandrine.blazy@irisa.fr

Xavier Leroy
Inria Paris-Rocquencourt
xavier.leroy@inria.fr

David Pichardie
IRISA and ENS Rennes
david.pichardie@irisa.fr

Abstract
This paper reports on the design and soundness proof, using the
Coq proof assistant, of Verasco, a static analyzer based on abstract
interpretation for most of the ISO C 1999 language (excluding re-
cursion and dynamic allocation). Verasco establishes the absence
of run-time errors in the analyzed programs. It enjoys a modular
architecture that supports the extensible combination of multiple
abstract domains, both relational and non-relational. Verasco inte-
grates with the CompCert formally-verified C compiler so that not
only the soundness of the analysis results is guaranteed with math-
ematical certitude, but also the fact that these guarantees carry over
to the compiled code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Assertion checkers, Correct-
ness proofs; F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical verifi-
cation

Keywords static analysis; abstract interpretation; soundness
proofs; proof assistants

1. Introduction
Verification tools are increasingly used during the development and
validation of critical software. These tools provide guarantees that
are always independent from those obtained by more conventional
means such as testing and code review; often stronger; and some-
times cheaper to obtain (rigorous testing can be very expensive).
Verification tools are based on a variety of techniques such as static
analysis, model checking, deductive program proof, and combina-
tions thereof. The guarantees they provide range from basic mem-
ory safety to full functional correctness. In this paper, we focus on
static analyzers for low-level, C-like languages that establish the
absence of run-time errors such as out-of-bound array accesses,
null pointer dereference, and arithmetic exceptions. These basic

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676966

properties are essential both for safety and security. Among the var-
ious verification techniques, static analysis is perhaps the one that
scales best to large existing code bases, with minimal intervention
from the programmer.

Static analyzers can be used in two different ways: as sophis-
ticated bug finders, discovering potential programming errors that
are hard to find by testing; or as specialized program verifiers, es-
tablishing that a given safety or security property holds with high
confidence. For bug-finding, the analysis must be precise (too many
false alarms render the tool unusable for this purpose), but no guar-
antee is offered nor expected that all bugs of a certain class will be
found. For program verification, in contrast, soundness of the anal-
ysis is paramount: if the analyzer reports no alarms, it must be the
case that the program is free of the class of run-time errors tracked
by the analyzer; in particular, all possible execution paths through
the program must be accounted for.

To use a static analyzer as a verification tool, and obtain certi-
fication credit in regulations such as DO-178C (avionics) or Com-
mon Criteria (security), evidence of soundness of the analyzer must
therefore be provided. Owing to the complexity of static analyzers
and of their input data (programs written in “big” programming
languages), rigorous testing of a static analyzer is very difficult.
Even if the analyzer is built on mathematically-rigorous grounds
such as abstract interpretation [14], the possibility of an implemen-
tation bug remains. The alternative we investigate in this paper is
deductive formal verification of a static analyzer : we apply pro-
gram proof, mechanized with the Coq proof assistant, to the imple-
mentation of a static analyzer in order to prove its soundness with
respect to the dynamic semantics of the analyzed language.

Our analyzer, called Verasco, is based on abstract interpreta-
tion; handles most of the ISO C 1999 language, with the exception
of recursion and dynamic memory allocation; combines several ab-
stract domains, both non-relational (integer intervals and congru-
ences, floating-point intervals, points-to sets) and relational (con-
vex polyhedra, symbolic equalities); and is entirely proved to be
sound using the Coq proof assistant. Moreover, Verasco is con-
nected to the CompCert C formally-verified compiler [26], ensur-
ing that the safety guarantees established by Verasco carry over to
the compiled code.

Mechanizing soundness proofs of verification tools is not a
new idea. It has been applied at large scale to Java type-checking
and bytecode verification [25], proof-carrying code infrastructures
[1, 12], and verification condition generators for C-like languages
[20, 23], among other projects. The formal verification of static an-
alyzers based on dataflow analysis or abstract interpretation is less
developed. As detailed in section 10, earlier work in this area either

“Verasco, a static analyzer based on abstract inter-
pretation for most of the ISO C 1999 language (ex-
cluding recursion and dynamic allocation).

“Verasco establishes the absence of run-time errors
in the analyzed programs. It enjoys a modular archi-
tecture that supports the extensible combination of
multiple abstract domains, both relational and non-
relational.”

Writing suggestions

Overview

Recipe

Reading

Abstract interpretation vs types
What are the relative benefits of AI and types?
(Are they in some sense the same thing?)

Cost vs precision
What is the tradeoff?

Widening and narrowing
What role do they play in convergence and precision?

Applicability
How widely applicable is abstract interpretation? How well does it scale up?

Relational and non-relational domains

