
Advanced topics in programming languages Michaelmas 2024

Abstract interpretation

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Overview1

1Based on Patrick Cousot’s Abstract Interpretation in a Nutshell

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Possible program executions

Overview

Recipe

Reading t

x(t)

possible
program
trajectories

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Erroneous executions & testing

Overview

Recipe

Reading

Testing cannot (generally) ensure complete absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

Abstract interpretation

Overview

Recipe

Reading

Idea: over-approximate all traces to ensure absence of errors.

t

x(t)

possible
program
trajectories

Forbidden zone

The AI recipe2

2Adapted from Isil Dillig’s Abstract Interpretation slides

https://www.cs.utexas.edu/~isil/cs389L/AI-6up.pdf

Three-part recipe

Overview

Recipe

Reading

1. An abstract domain that captures some aspect of program invariants
(e.g. n ≤ x ≤ m (x always lies within some interval))

2. An abstract semantics that symbolically interprets each program construct
(e.g. given invariants on x and y, what are the invariants on x + y?)

3. Iterate until fixed point

Example: sign abstract domain

Overview

Recipe

Reading

Functions: concretization (γ) and abstraction (α)
map between abstract values & sets of concrete values:

γ({+,−}) = {x ∈ Z | x ̸= 0}
. . .

α({−1,−2, 4}) = {+,−}
. . .

⊤

{+,−}{+, 0} {0,−}

{+} {0} {−}

⊥

Abstract semantics for +

Overview

Recipe

Reading

+ ⊥ {+} {0} {−} {+, 0} {+,−} . . .

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .

{+} ⊥ {+} {+} ⊤ {+} ⊤ . . .

{0} ⊥ {+} {0} {−} {+, 0} {+,−} . . .

{−} ⊥ ⊤ {−} {−} ⊤ ⊤ . . .

{+, 0} ⊥ {+} {+, 0} ⊤ {+, 0} ⊤ . . .

{+,−} ⊥ ⊤ {+,−} ⊤ ⊤ ⊤ . . .

. .

Fixed points

Overview

Recipe

Reading

i n t x = 2;
i n t y = 0;
w h i l e (y != z) {

i f (f y) {x = x + 1;}
y = y + x

}
/* What do we know
about x and y here? */

Evolution of x and y:

x y
0 {+} {0}
1 {+} {+,0}
2 {+} {+,0}

(Generally: fixed point calculation may not terminate; we may need widening.)

Reading

Paper 1: Octagons

Overview

Recipe

Reading

ar
X

iv
:c

s/
07

03
08

4v
2

 [c
s.

P
L]

 1
6

M
ar

 2
00

7
1

The Octagon Abstract Domain
Antoine Miné

École Normale Supérieure de Paris, France,
mine@di.ens.fr,

http://www.di.ens.fr/~mine

Abstract— This article presents a new numerical abstract
domain for static analysis by abstract interpretation. It extends
a former numerical abstract domain based on Difference-Bound
Matrices and allows us to represent invariants of the form
(±x ± y ≤ c), where x and y are program variables and c

is a real constant.
We focus on giving an efficient representation based on

Difference-Bound Matrices—O(n2) memory cost, where n is
the number of variables—and graph-based algorithms for all
common abstract operators—O(n3) time cost. This includes a
normal form algorithm to test equivalence of representation and
a widening operator to compute least fixpoint approximations.

Index Terms— abstract interpretation, abstract domains, linear
invariants, safety analysis, static analysis tools.

I. I NTRODUCTION

This article presents practical algorithms to represent and
manipulate invariants of the form(±x ± y ≤ c), where x
andy are numerical variables andc is a numeric constant. It
extends the analysis we previously proposed in our PADO-II
article [1]. Sets described by such invariants are special kind of
polyhedra calledoctagonsbecause they feature at most eight
edges in dimension 2 (Figure 2). Using abstract interpretation,
this allows discovering automatically common errors, suchas
division by zero, out-of-bound array access or deadlock, and
more generally to prove safety properties for programs.

Our method works well for reals and rationals. Integer
variables can be assumed, in the analysis, to be real in order
to find approximate but safe invariants.

Example. The very simple program described in Figure
1 simulatesM one-dimensional random walks ofm steps
and stores the hits in the arraytab. Assertions in curly
braces are discovered automatically by a simple static analysis
using our octagonal abstract domain. Thanks to the invariants
discovered, we have the guarantee that the program does not
perform out-of-bound array access at lines 2 and 10. The
difficult point in this example is the fact that the bounds of
the arraytab are not known at the time of the analysis; thus,
they must be treated symbolically.

For the sake of brevity, we omit proofs of theorems in this
article. The complete proof for all theorems can be found in
the author’s Master thesis [2].

II. PREVIOUS WORK

A. Numerical Abstract Domains.

Static analysis has developed a successful methodology,
based on the abstract interpretation framework—see Cousot

1 int tab[−m . . .m];
2 for i = −m to m tab[i] = 0; {−m ≤ i ≤ m}
3 for j = 1 to M do
4 int a = 0;
5 for i = 1 to m
6 { 1 ≤ i ≤ m; −i + 1 ≤ a ≤ i− 1 }
7 if rand(2) = 0
8 then a = a + 1; { −i + 1 ≤ a ≤ i }
9 elsea = a− 1; { −i ≤ a ≤ i− 1 }

10 tab[a] = tab[a] + 1; { −m ≤ a ≤ m }
11 done;

Fig. 1. Simulation of a random walk. The assertions in curly brackets{. . .}
are discovered automatically and prove that this program does not perform
index out of bound error when accessing the arraytab.

and Cousot’s POPL’77 paper [3]—to build analyzers that
discover invariants automatically: all we need is anabstract
domain, which is a practical representation of the invariants
we want to study, together with a fixed set of operators and
transfer functions (union, intersection, widening, assignment,
guard, etc.) as described in Cousot and Cousot’s POPL’79
article [4].

There exists manynumerical abstract domains. The most
used are the lattice ofintervals (described in Cousot and
Cousot’s ISOP’76 article [5]) and the lattice ofpolyhedra
(described in Cousot and Halbwachs’s POPL’78 article [6]).
They represent, respectively, invariants of the form(v ∈
[c1; c2]) and (α1v1 + · · · + αnvn ≤ c), wherev, v1, . . . , vn

are program variables andc, c1, c2, α1, . . . , αn are constants.
Whereas the interval analysis is very efficient—linear memory
and time cost—but not very precise, the polyhedron analysisis
much more precise (Figure 2) but has a huge memory cost—in
practice, it is exponential in the number of variables.

Remark that the correctness of the program in Figure 1
depends on the discovery of invariants of the form(a ∈
[−m, m]) where m must not be treated as a constant, but
as a variable—its value is not known at analysis time. Thus,
this example is beyond the scope of interval analysis. It can
be solved, of course, using polyhedron analysis.

B. Difference-Bound Matrices.

Several satisfiability algorithms for set of constraints involv-
ing only two variables per constraint have been proposed in
order to solveConstraint Logic Programming (CLP)problems.
Pratt analyses, in [7], the simple case of constraints of the

x

y

×
× ×

× ××

Octagon domain
±x +±y < c

x

y

×
× ×

× ××

Interval domain
a ≤ x ≤ b, c ≤ y ≤ d

Paper 2: Polyhedra

Overview

Recipe

Reading

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Fast Polyhedra Abstract Domain

Gagandeep Singh Markus Püschel Martin Vechev
Department of Computer Science

ETH Zurich, Switzerland
{gsingh,pueschel,martin.vechev}@inf.ethz.ch

Abstract
Numerical abstract domains are an important ingredient of modern
static analyzers used for verifying critical program properties (e.g.,
absence of buffer overflow or memory safety). Among the many
numerical domains introduced over the years, Polyhedra is the
most expressive one, but also the most expensive: it has worst-case
exponential space and time complexity. As a consequence, static
analysis with the Polyhedra domain is thought to be impractical
when applied to large scale, real world programs.

In this paper, we present a new approach and a complete im-
plementation for speeding up Polyhedra domain analysis. Our ap-
proach does not lose precision, and for many practical cases, is or-
ders of magnitude faster than state-of-the-art solutions. The key in-
sight underlying our work is that polyhedra arising during analysis
can usually be kept decomposed, thus considerably reducing the
overall complexity.

We first present the theory underlying our approach, which iden-
tifies the interaction between partitions of variables and domain op-
erators. Based on the theory we develop new algorithms for these
operators that work with decomposed polyhedra. We implemented
these algorithms using the same interface as existing libraries,
thus enabling static analyzers to use our implementation with lit-
tle effort. In our evaluation, we analyze large benchmarks from
the popular software verification competition, including Linux de-
vice drivers with over 50K lines of code. Our experimental results
demonstrate massive gains in both space and time: we show end-
to-end speedups of two to five orders of magnitude compared to
state-of-the-art Polyhedra implementations as well as significant
memory gains, on all larger benchmarks. In fact, in many cases
our analysis terminates in seconds where prior code runs out of
memory or times out after 4 hours.

We believe this work is an important step in making the Poly-
hedra abstract domain both feasible and practically usable for han-
dling large, real-world programs.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; F.2.1 [Numerical Al-
gorithms and Problems]: Computations on matrices

General Terms Verification, Performance

Keywords Numerical program analysis, Abstract interpretation,
Partitions, Polyhedra decomposition, Performance optimization

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18-20, 2017, Paris, France
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009885

1. Introduction
Abstract interpretation is a general framework for static program
analysis that defines sound and precise abstractions for the pro-
gram’s (potentially infinite) concrete semantics. The abstract se-
mantics of a program require an abstract domain for capturing the
properties of interest. Examples of useful program properties in-
volve the program’s heap [22, 26], numerical values [6, 14, 16, 17,
19, 30], termination [27, 28], and many others. An abstract inter-
preter is obtained by defining the effect of statements and expres-
sions in the programming language on the abstract domain. In this
paper, we focus on numerical abstract domains which capture nu-
merical relationships between program variables. These relation-
ships are important for proving the absence of buffer overflow, di-
vision by zero, and other properties. Thus, numerical domains are
an important ingredient of modern static analyzers [4, 9].

Expressivity vs. cost In an ideal setting, one would simply use
the most expressive domain to analyze a program, i.e., Polyhedra
[6]. However, the Polyhedra domain comes with a worst case ex-
ponential complexity in both space and time. Thus, an analyzer
using Polyhedra can easily fail to analyze large programs by run-
ning out of memory or by timing out. Because of this, the Polyhe-
dra domain is often thought to be impractical, and thus, over the
years, researchers have designed domains that limit its expressivity
in exchange for better asymptotic complexity. Examples include
Octagon [19], Zone [17], Pentagon [16], SubPolyhedra [14] and
Gauge [30]. Unfortunately, limited expressivity can make the over-
approximation too imprecise for proving the desired property.

Our work In this work, we revisit the basic assumption that Poly-
hedra is impractical for static analysis. We present a new approach
which enables the application of Polyhedra to large, realistic pro-
grams, with speedups ranging between two to five orders of mag-
nitude compared to the state-of-the-art. We note that our approach
does not lose precision yet can analyze programs beyond the reach
of current approaches.

The key insight of our approach is that the set of program vari-
ables partitions into subsets such that linear constraints only exist
between variables in the same subset [10, 25]. We leverage this
observation to decompose a large polyhedron into a set of smaller
polyhedra, thus reducing the asymptotic complexity of the Polyhe-
dra domain. However, maintaining decomposition online is chal-
lenging because over 40 Polyhedra operators change the partitions
dynamically and in non-trivial ways: subsets can merge, split, grow,
or shrink during analysis. Note that an exact partition cannot be
computed a priori as otherwise the approach loses precision [4].

To ensure our method does not lose precision, we develop a the-
oretical framework that asserts how partitions are modified during
analysis. We then use this theory to design new abstract operators
for Polyhedra. Interestingly, our framework can be used for decom-
posing other numerical domains, not only Polyhedra.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

POPL’17, January 15–21, 2017, Paris, France
c© 2017 ACM. 978-1-4503-4660-3/17/01...$15.00

http://dx.doi.org/10.1145/3009837.3009885

46

“Among the many numerical domains introduced
over the years, Polyhedra is the most expressive one,
but also the most expensive: it has worst-case expo-
nential space and time complexity.

Our approach does not lose precision, and for many
practical cases, is orders of magnitude faster than
state-of-the-art solutions.”

x

y

×
× ×

× ××
Polyhedra domain
ax + by < c

Paper 3: Verasco

Overview

Recipe

Reading

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

A Formally-Verified C Static Analyzer

Jacques-Henri Jourdan
Inria Paris-Rocquencourt

jacques-henri.jourdan@inria.fr

Vincent Laporte
IRISA and U. Rennes 1
vincent.laporte@irisa.fr

Sandrine Blazy
IRISA and U. Rennes 1
sandrine.blazy@irisa.fr

Xavier Leroy
Inria Paris-Rocquencourt
xavier.leroy@inria.fr

David Pichardie
IRISA and ENS Rennes
david.pichardie@irisa.fr

Abstract
This paper reports on the design and soundness proof, using the
Coq proof assistant, of Verasco, a static analyzer based on abstract
interpretation for most of the ISO C 1999 language (excluding re-
cursion and dynamic allocation). Verasco establishes the absence
of run-time errors in the analyzed programs. It enjoys a modular
architecture that supports the extensible combination of multiple
abstract domains, both relational and non-relational. Verasco inte-
grates with the CompCert formally-verified C compiler so that not
only the soundness of the analysis results is guaranteed with math-
ematical certitude, but also the fact that these guarantees carry over
to the compiled code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Assertion checkers, Correct-
ness proofs; F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical verifi-
cation

Keywords static analysis; abstract interpretation; soundness
proofs; proof assistants

1. Introduction
Verification tools are increasingly used during the development and
validation of critical software. These tools provide guarantees that
are always independent from those obtained by more conventional
means such as testing and code review; often stronger; and some-
times cheaper to obtain (rigorous testing can be very expensive).
Verification tools are based on a variety of techniques such as static
analysis, model checking, deductive program proof, and combina-
tions thereof. The guarantees they provide range from basic mem-
ory safety to full functional correctness. In this paper, we focus on
static analyzers for low-level, C-like languages that establish the
absence of run-time errors such as out-of-bound array accesses,
null pointer dereference, and arithmetic exceptions. These basic

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676966

properties are essential both for safety and security. Among the var-
ious verification techniques, static analysis is perhaps the one that
scales best to large existing code bases, with minimal intervention
from the programmer.

Static analyzers can be used in two different ways: as sophis-
ticated bug finders, discovering potential programming errors that
are hard to find by testing; or as specialized program verifiers, es-
tablishing that a given safety or security property holds with high
confidence. For bug-finding, the analysis must be precise (too many
false alarms render the tool unusable for this purpose), but no guar-
antee is offered nor expected that all bugs of a certain class will be
found. For program verification, in contrast, soundness of the anal-
ysis is paramount: if the analyzer reports no alarms, it must be the
case that the program is free of the class of run-time errors tracked
by the analyzer; in particular, all possible execution paths through
the program must be accounted for.

To use a static analyzer as a verification tool, and obtain certi-
fication credit in regulations such as DO-178C (avionics) or Com-
mon Criteria (security), evidence of soundness of the analyzer must
therefore be provided. Owing to the complexity of static analyzers
and of their input data (programs written in “big” programming
languages), rigorous testing of a static analyzer is very difficult.
Even if the analyzer is built on mathematically-rigorous grounds
such as abstract interpretation [14], the possibility of an implemen-
tation bug remains. The alternative we investigate in this paper is
deductive formal verification of a static analyzer : we apply pro-
gram proof, mechanized with the Coq proof assistant, to the imple-
mentation of a static analyzer in order to prove its soundness with
respect to the dynamic semantics of the analyzed language.

Our analyzer, called Verasco, is based on abstract interpreta-
tion; handles most of the ISO C 1999 language, with the exception
of recursion and dynamic memory allocation; combines several ab-
stract domains, both non-relational (integer intervals and congru-
ences, floating-point intervals, points-to sets) and relational (con-
vex polyhedra, symbolic equalities); and is entirely proved to be
sound using the Coq proof assistant. Moreover, Verasco is con-
nected to the CompCert C formally-verified compiler [26], ensur-
ing that the safety guarantees established by Verasco carry over to
the compiled code.

Mechanizing soundness proofs of verification tools is not a
new idea. It has been applied at large scale to Java type-checking
and bytecode verification [25], proof-carrying code infrastructures
[1, 12], and verification condition generators for C-like languages
[20, 23], among other projects. The formal verification of static an-
alyzers based on dataflow analysis or abstract interpretation is less
developed. As detailed in section 10, earlier work in this area either

“Verasco, a static analyzer based on abstract inter-
pretation for most of the ISO C 1999 language (ex-
cluding recursion and dynamic allocation).

“Verasco establishes the absence of run-time errors
in the analyzed programs. It enjoys a modular archi-
tecture that supports the extensible combination of
multiple abstract domains, both relational and non-
relational.”

Writing suggestions

Overview

Recipe

Reading

Abstract interpretation vs types
What are the relative benefits of AI and types?
(Are they in some sense the same thing?)

Cost vs precision
What is the tradeoff?

Widening and narrowing
What role do they play in convergence and precision?

Applicability
How widely applicable is abstract interpretation? How well does it scale up?

Relational and non-relational domains

