
Advanced Topics in Programming Languages (2023) J. Yallop

Garbage collection

1 Readings

1.1 Set papers

The week’s set papers are as follows:
• A real-time garbage collector with low overhead and

consistent utilization (Bacon, Cheng, and Rajan,
2003)

• Concurrent GCs and Modern Java Workloads: A
Cache Perspective (Carpen-Amarie, Vavouliotis,
Tovletoglou, et al., 2023)

• Low-latency, high-throughput garbage collection
(Zhao, Blackburn, and McKinley, 2022)

You are invited to compare and contrast two of
these papers.

1.2 Background reading

The book The Garbage Collection Handbook: The art of
automatic memory management (Jones, Hosking, and
Moss, 2011) is a comprehensive and clearly-written
guide, and covers significantly more than you will
need for this assignment. A second edition (Jones,
Hosking, and Moss, 2023) was recently published.

Uniprocessor Garbage Collection Techniques (Wilson,
1992) is a freely available shorter survey, although
now rather dated.

2 History

2.1 Beginnings

The first work on automatic memory management
coincided with the introduction of LISP: Recursive
Functions of Symbolic Expressions and Their Computa-
tion by Machine, Part I (McCarthy, 1960) describes a
mark-sweep collector for a machine (IBM 704) that
is tiny by today’s standards, with 32 kilowords of
memory.

Reference counting was introduced around the
same time (Collins, 1960); despite many subsequent
developments, both techniques are still in use today,
and sometimes combined to good effect, as one of
the set papers describes.

2.2 Developments

It is difficult to give precise dates, since several ideas
developed gradually over time. In some cases the

dates below indicate the point at which a technique
first became practical.

1960 Mark-sweep garbage collection, described in
Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I (McCarthy,
1960).

1960 Reference counting, described in A method for
overlapping and erasure of lists (Collins, 1960).

1969 A stop-copy semispace collector, described
in A LISP Garbage-Collector for Virtual-Memory
Computer Systems (Fenichel and Yochelson,
1969).

1984 Several works introduced generational collec-
tors around this time, including A Real-Time
Garbage Collector Based on the Lifetimes of Objects
(Lieberman and Hewitt, 1983) and Generation
Scavenging: A Non-Disruptive High Performance
Storage Reclamation Algorithm (Ungar, 1984).

1993 The first widely-used conservative collector
was introduced by Space Efficient Conservative
Garbage Collection (Boehm, 1993).

1999 Arguably the first practical real-time collector
was described in On Bounding Time and Space for
Multiprocessor Garbage Collection (Blelloch and
Cheng, 1999) (“the first multiprocessor garbage
collection algorithm with provable bounds on
time and space”) and extended in A Parallel,
Real-Time Garbage Collector (Cheng and Blelloch,
2001).

2.3 Status

Garbage collection is still an active area of re-
search, and likely to remain so, as new architectures
and ever larger data sets introduce new challenges.
Over the last few decades, CPU speed improve-
ments have significantly outpaced memory speed
improvements, and locality and cache usage conse-
quently play a large role in collector design. Simi-
larly, with the widespread availability of parallel ar-
chitectures, concurrent and parallel collectors have
become increasingly important.



Advanced Topics in Programming Languages (2023) J. Yallop

root
• •

• • • •

•
• •

• •

mark(node) =
if not node.marked:
node.marked = True
for c in node.children:
mark(c)

Mark

Figure 1: Mark & sweep

•

••

from-space to-space

forward

forward

forward

• • •

1. Copy live blocks to to-space
(starting at the root).

2. Leave forwarding addresses
in from-space.

3. Switch roles of spaces.

Copy

Figure 2: Copying collection

3 Basics

Much of the vocabulary around garbage collection
has become standard:

• The heap consists of one or more blocks of con-
tiguous words

• An object is a heap-allocated (typically) con-
tiguous region addressed by zero or more
pointers in an application

• A mutator is an application execution thread,
opaque to the collector except for operations af-
fecting the heap (allocate, discard, read, write)

• A root is a location accessible to the mutator
(typically in static global storage, stack space,
or registers) that points into the heap

• An object is live if a mutator will access it in the
future; liveness is approximated by reachabil-
ity via a chain of pointers from some root

There are several simple standard algorithms:

1. mark & sweep involves a traversal, starting
from the roots, that sets a bit in every reachable
object, followed by a second pass over the heap
to reclaim unmarked objects.

Figure 1 shows the state of a heap after the
marking traversal.

2. stop & copy divides the heap into from-space
and to-space regions, copies the reachable ob-
ject graph from from-space to to-space before
switching the roles of the two regions.

Figure 2 shows the state of a heap after copy-
ing but before the role switch. The forwarding
pointers allow the objects in to-space to be lo-
cated from the corresponding objects in from-
space during traversal.

3. reference counting involves tracking the num-
ber of pointers to each object, typically via a
counter stored in the object itself.

4. conservative collection is used when limited
run-time support (e.g. in a language compiled
to C) leaves the collector with imperfect infor-
mation about object layout; instead a safe(?) ap-
proximation is used based on examining bit pat-
terns to guess whether they represent pointers.

5. generational collection involves dividing the
heap into several regions: minor regions that
hold young (recently allocated) objects are col-
lected frequently and reachable objects are pro-
moted to infrequently-collected major regions,
under the (empirically justified, e.g. Jones,
Hosking, and Moss (2011, p113)) assumption
that such objects are likely to have long lifetimes



Advanced Topics in Programming Languages (2023) J. Yallop

4 Practical considerations

4.1 Metrics

It is relatively straightforward to write a correct
collector, but writing a collector with good perfor-
mance is challenging, in part due to need to balance
competing performance needs:

1. throughput refers to the performance of muta-
tors. Time spent in collection clearly negatively
affects throughput, but the relationship is more
subtle, since the design of a collector may im-
pose additional costs on heap operations per-
formed by a mutator.

2. latency refers to the pauses in mutator execu-
tion introduced by collection.

3. space overhead may vary: most collector de-
signs involve expanding the size of allocated
objects to track additional information (e.g.
mark bits or layout information).

4. Other metrics relevant to performance may be
consequences of the combination of program
behaviour and collector design; they include
maximum heap size, allocation rate, collection
frequency, mean object size, and the proportion
of the heap occupied by large objects.

In practice, many of these metrics are more sub-
tle, or are only useful in combination. For example,
pause times alone provide little information; a good
distribution of pause times is needed to ensure that
there is opportunity for mutators to make progress.

4.2 Hybrid systems

The standard algorithms have different performance
characteristics that each one suited to particular cir-
cumstances. For example, compaction (which takes
place naturally with stop-and-copy collection) can
make collection slower, but may increase mutator
throughput by improving locality.

In practice, many mature systems use several
of the standard algorithms in some combination.
For example, the implementation of the Cedar lan-
gauge (Rovner, 1985) combined reference counting
with a periodic mark-and-sweep to reclaim cycles;
furthermore, to reduce reference count update fre-
quency it used conservative collection for activation
frames, avoiding the need to modify the count when
heap objects were referenced from the stack.

Other innovations to improve collector perfor-
mance involve partitioning the heap according to
the characteristics of the objects stored in each parti-
tion (mobility, size, space, kind, yield, thread, avail-
abiltiy, mutability, etc.).

4.3 Extras: finalisers, weak references,
ephemerons, etc.

The semantics of many garbage-collected program-
ming languages make no mention of garbage collec-
tion, since there is no semantic difference between
a correct collector and a collector that never runs.
However, to support resource management, prac-
tical systems often expose the operation of the col-
lector to the application via mechanisms such as fi-
nalisers (which run application code on object col-
lection), ephemerons (Hayes, 1997) or weak refer-
ences (i.e. pointers that do not prevent collection).

5 Questions and challenges

In addition to performance improvements and
adaptations for new architectures, work is ongoing
on a several other aspects of garbage collection de-
sign and implementation.

5.1 Cross-language garbage collection

Many applications are implemented in a combina-
tion of languages, whose implementations may em-
ploy quite different memory management strate-
gies. Foreign function interfaces allow such applica-
tions to construct object graphs that span the heaps
of the implementations, making collection challeng-
ing, since none of the implementations have suffi-
cient information to reclaim such graphs. Collecting
Cyclic Garbage across Foreign Function Interfaces: Who
Takes the Last Piece of Cake? (Yamazaki, Nakamaru,
Shioya, et al., 2023) describes a solution that coordi-
nates different runtimes using proxy objects.

5.2 Verified garbage collection

Verified compilers have been developed for a num-
ber of languages. Where the language implementa-
tions support garbage collection, it is natural to wish
to verify the collector, too. A Verified Generational
Garbage Collector for CakeML (Ericsson, Myreen, and
Pohjola, 2019) describes a recent verified implemen-
tation of a moderately complex collector.

5.3 Hardware support for garbage collection

Hardware support for garbage collection dates back
at least to the Symbolics 3600 Lisp machine (1983),
and is still an active area of research. For example,
A Hardware Accelerator for Tracing Garbage Collection
(Maas, Asanović, and Kubiatowicz, 2018) present a
specialized accelerator with support for mark-and-
sweep collection that improves mark speed by 4.2×.



Advanced Topics in Programming Languages (2023) J. Yallop

References

Bacon, D. F., P. Cheng, and V. T. Rajan (2003). “A real-time garbage collector with low overhead and consistent
utilization”. In: Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, New Orleans, Louisisana, USA, January 15-17, 2003. Ed. by A. Aiken and G. Morrisett. ACM, pp. 285–298.
DOI: 10.1145/604131.604155.

Blelloch, G. E. and P. Cheng (1999). “On Bounding Time and Space for Multiprocessor Garbage Collection”. In: Pro-
ceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Atlanta,
Georgia, USA, May 1-4, 1999. Ed. by B. G. Ryder and B. G. Zorn. ACM, pp. 104–117. DOI: 10.1145/301618.301648.

Boehm, H. (1993). “Space Efficient Conservative Garbage Collection”. In: Proceedings of the ACM SIGPLAN’93 Confer-
ence on Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993.
Ed. by R. Cartwright. ACM, pp. 197–206. DOI: 10.1145/155090.155109.

Carpen-Amarie, M., G. Vavouliotis, K. Tovletoglou, B. Grot, and R. Müller (2023). “Concurrent GCs and Modern Java
Workloads: A Cache Perspective”. In: Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory
Management, ISMM 2023, Orlando, FL, USA, 18 June 2023. Ed. by S. M. Blackburn and E. Petrank. ACM, pp. 71–84.
DOI: 10.1145/3591195.3595269.

Cheng, P. and G. E. Blelloch (2001). “A Parallel, Real-Time Garbage Collector”. In: Proceedings of the 2001 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001.
Ed. by M. Burke and M. L. Soffa. ACM, pp. 125–136. DOI: 10.1145/378795.378823.

Collins, G. E. (1960). “A method for overlapping and erasure of lists”. In: Commun. ACM 3.12, pp. 655–657. DOI:
10.1145/367487.367501.

Ericsson, A. S., M. O. Myreen, and J. Å. Pohjola (2019). “A Verified Generational Garbage Collector for CakeML”. In:
J. Autom. Reason. 63.2, pp. 463–488. DOI: 10.1007/s10817-018-9487-z.

Fenichel, R. R. and J. C. Yochelson (Nov. 1969). “A LISP Garbage-Collector for Virtual-Memory Computer Systems”.
In: Commun. ACM 12.11, pp. 611–612. ISSN: 0001-0782. DOI: 10.1145/363269.363280.

Hayes, B. (1997). “Ephemerons: A New Finalization Mechanism”. In: Proceedings of the 1997 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications, OOPSLA 1997, Atlanta, Georgia, October 5-9, 1997.
Ed. by M. E. S. Loomis, T. Bloom, and A. M. Berman. ACM, pp. 176–183. DOI: 10.1145/263698.263733.

Jones, R. E., A. L. Hosking, and J. E. B. Moss (2011). The Garbage Collection Handbook: The art of automatic memory
management. Chapman and Hall / CRC Applied Algorithms and Data Structures Series. CRC Press. ISBN: 978-1-
4200-8279-1.

Jones, R. E., A. L. Hosking, and J. E. B. Moss (2023). The Garbage Collection Handbook: The art of automatic memory
management. Chapman and Hall / CRC Applied Algorithms and Data Structures Series. CRC Press. ISBN: 978-
1032218038.

Lieberman, H. and C. E. Hewitt (June 1983). “A Real-Time Garbage Collector Based on the Lifetimes of Objects”. In:
26.6. Also report TM–184, Laboratory for Computer Science, MIT, Cambridge, MA, July 1980 and AI Lab Memo
569, 1981, pp. 419–429. DOI: 10.1145/358141.358147.

Maas, M., K. Asanović, and J. Kubiatowicz (June 2018). “A Hardware Accelerator for Tracing Garbage Collection”.
In: 45th Annual. Los Angeles, CA. DOI: 10.1109/ISCA.2018.00022.

McCarthy, J. (1960). “Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I”. In:
Commun. ACM 3.4, pp. 184–195. DOI: 10.1145/367177.367199.

Rovner, P. (July 1985). On Adding Garbage Collection and Runtime Types to a Strongly-Typed, Statically-Checked, Concurrent
Language. Technical Report CSL–84–7.

Ungar, D. M. (1984). “Generation Scavenging: A Non-Disruptive High Performance Storage Reclamation Algorithm”.
In: Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Pittsburgh, Pennsylvania, USA, April 23-25, 1984. Ed. by W. E. Riddle and P. B. Henderson. ACM,
pp. 157–167. DOI: 10.1145/800020.808261.

Wilson, P. R. (1992). “Uniprocessor Garbage Collection Techniques”. In: Proceedings of the International Workshop on
Memory Management. IWMM ’92. Berlin, Heidelberg: Springer-Verlag, pp. 1–42. ISBN: 354055940X.

Yamazaki, T., T. Nakamaru, R. Shioya, T. Ugawa, and S. Chiba (June 2023). “Collecting Cyclic Garbage across Foreign
Function Interfaces: Who Takes the Last Piece of Cake?” In: Proc. ACM Program. Lang. 7.PLDI. DOI: 10.1145/
3591244.

Zhao, W., S. M. Blackburn, and K. S. McKinley (2022). “Low-latency, high-throughput garbage collection”. In: PLDI
’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego,
CA, USA, June 13 - 17, 2022. Ed. by R. Jhala and I. Dillig. ACM, pp. 76–91. DOI: 10.1145/3519939.3523440.

https://doi.org/10.1145/604131.604155
https://doi.org/10.1145/301618.301648
https://doi.org/10.1145/155090.155109
https://doi.org/10.1145/3591195.3595269
https://doi.org/10.1145/378795.378823
https://doi.org/10.1145/367487.367501
https://doi.org/10.1007/s10817-018-9487-z
https://doi.org/10.1145/363269.363280
https://doi.org/10.1145/263698.263733
https://doi.org/10.1145/358141.358147
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/800020.808261
https://doi.org/10.1145/3591244
https://doi.org/10.1145/3591244
https://doi.org/10.1145/3519939.3523440

	Readings
	Set papers
	Background reading

	History
	Beginnings
	Developments
	Status

	Basics
	Practical considerations
	Metrics
	Hybrid systems
	Extras: finalisers, weak references, ephemerons, etc.

	Questions and challenges
	Cross-language garbage collection
	Verified garbage collection
	Hardware support for garbage collection


