12. Case Study I
UNIX (Linux)

oth ed: Ch. 6, 18
10" ed: Ch. 5, 20

Objectives

* To examine memory management in Linux

* To explore how Linux implements file systems
* To understand how Linux manages I/O devices
* To understand how a shell works

Outline

* Physical memory
* Virtual memory
* File systems
*1/0

* Start of day

Outline

* Physical memory
* Page allocation
* Slab allocation

Physical memory management

* Deals with allocation/freeing of pages, groups of pages, small blocks of memory

* Additional mechanisms for handling virtual memory, memory mapped into the address
space of running processes

* Splits memory into zones based on hardware characteristics

* DMA, DMA32, NORMAL, HIGHMEM Yoo E——
* Architecture specific; e.g., x86_32 ZONE_DMA <16 MB
* Some devices only address lower 16 MB, ZONE_NORMAL 18 el e
so DMA must take place there ZONE_HIGHMEM >896 MB

* HIGHMEM is memory not mapped into kernel space, all else is NORMAL

* Other systems have different constraints

* E.g., some devices can only access first 4GB (even with 64 bit addresses)
* x86_64 has (small) 16MB DMA zone for legacy devices, and the rest is ZONE_NORMAL

Physical page allocation

* Page allocator allocates and frees all physical pages
* Can allocate ranges of physically-contiguous pages on request

* Uses a buddy-heap algorithm to track available physical pages
* Each allocatable memory region is paired with an adjacent partner

* Two allocated partner regions freed
together are combined into a larger region

* If no small free region exists to satisfy
a small memory request, subdivide a
larger free region into two pieces to
satisfy the request

16KB

8KB

8KB

<

8KB

4KB

4KB

Slab allocation

* Allocation in the kernel occurs either
* Statically, drivers reserve contiguous memory during system boot, or
* Dynamically, via the page allocator

kernel objects caches slabs
* Uses a slab allocator for kernel memory .+ — |]
* Using page cache, virtual memory ajecs | T~ |
system also manages physical memory : o
physically
* Kernel’s main cache for files i - contiguous

pages

* Main mechanism for I/O to block devices

* Stores entire pages of file contents for 5| —— 7 .
local and network file I/O

Outline

* Virtual memory
* Creation
* Running a program

Virtual memory

* Virtual memory system maintains each process’ address space
* Creates pages of virtual memory on demand
* Manages loading of those pages from disk or swapping back out as required

* VM manager maintains two views of a process’s address space

* Logical view describes the layout of the address space, a set of non-overlapping regions, each
representing a continuous, page-aligned subset of the address space

* Physical view stored in the process’ hardware page tables

* Virtual memory regions are characterized by

* The backing store, which describes from where the pages for a region come; regions are
usually backed by a file or by nothing (demand-zero memory)

* The region’s reaction to writes, either page sharing or copy-on-write

* Paging system uses page-out policy to decide which pages to move to and from
backing store using the paging mechanism

Virtual memory creation

* The kernel creates a new virtual address space for two reasons

* A process runs a new program via exec
* The existing process is given a new, completely empty virtual-address space
* Program-loading routines populate the address space with virtual-memory regions

* A process creates a new process via fork
* New process is given a complete copy of the parent’s virtual address space
* Kernel copies parent’s VMA descriptors and creates a new set of page tables for the child

* Then copies parent’s page tables into the child’s, incrementing the reference count of each page
covered

* Thus parent and child address spaces initially share the same physical pages of memory

* Kernel reserves a constant (architecture-dependent) area of two regions

* Static region has page table references to every available physical page to ease logical-physical
translation in kernel

* Remainder is unreserved and PTEs can be pointed to any other area of memory

Running a program

* Kernel has function table for program loading
* Supports multiple binary formats, commonly ELF

* ELF-format program has a header plus several
page-aligned sections
* Pages initially mapped into virtual memory,
and then faulted in to physical memory

* ELF loader reads header and maps sections of
the file into separate VM regions

* Unless statically linked there will be symbols
defined elsewhere

kernel virtual memory

stack

|
f

memory-mapped region

memory-mapped region

memory-mapped region

t

run-time data

uninitialized data

initialized data

program text

I memory invisible to user-mode code

the ‘brk’ pointer

forbidden region

* Calling dynamic linker stubs trigger mapping of the link library into memory, resolving references
* Shared libraries typically compiled to position-independent code (PIC) so can be loaded

anywhere

Outline

* File systems
* Implementation
* Directories and links
* Access control

File systems

* To the user, Linux’s file system appears as a hierarchical directory tree obeying UNIX semantics
* Devices are represented by special files
* proc file system doesn’t store data but computes it on demand using inode number to identify the
operation
* Kernel hides details, managing different file systems via the virtual file system (VFS), an
abstraction layer with four components
* The inode object structure represent an individual file
* The file object represents an open file
* The superblock object represents an entire file system
* A dentry object represents an individual directory entry

* Then manipulate those objects via a set of operations on the objects, e.g., for files include
* int (*open) (struct inode *, struct file *);
* ssize_t (*read) (struct file *, char * size t *
* ssize t (*write) (struct file *, const char * size t
* int (*mmap) (struct file *, struct vm area_ struct *

File system implementation

* UNIX file systems use inodes (index nodes) as FCBs
* A combined scheme: the inode contains pointers to blocks, and pointers to

pointers to blocks, and so on

* Alternatives include linked
schemes where an index block
points to blocks and ends with
either a null or a pointer to the
next index block

12. UNIX Case Study (ll)

type mode
userid groupid

size nblocks
nlinks flags

timestamps (x3)

direct blocks (x12)

T

direct
blocks
(512)

single indirect

double indirect

» o block with 512

 wipleindiect — T

| o block with 512

double indirect entries

0000000006 O06OCOCGCOCGCOSEOS

i

14

Directories and links

* Directory is just a file, itself pointed to by an inode, mapping filenames to
inodes

* An instance of a file in a directory is a hardlink

* Reference counted in the inode with file removed when Filename I-Node
reference count becomes zero 1. 13
* Directories cannot have more I " /
than one hardlink otherwise : 6 | / l \ ___
cycles might be created - 2N kel b does
* Alternatively, a softlink or e : / \ N\
symbolic-link is a normal file 7 steve/ jean/
containing a filename, interpreted // \

by the filesystem misc/

In-memory tables

process-specific

* Each process sees files as file itk f"etab'i
descriptors 23 process 5
* Index into a process-specific open file — g 22;
table =
N 6
* Table entries point into a system-wide 4
open file table gl
* Multiple processes might operate onthe | '---g-“};5““““:,-;e-,-;o;e-ta-b:--
same file, including deleting it N
* System-wide table entries then point o N ~~[Tnode 78
to in-memory inode table open i ai

Access control

* Every object uses same mechanism: unigue numeric identifiers
* User ID (UID) identifies single user (set of rights)
* Group ID (GID) identifies a group (rights held by one or more users)

* Processes have a single UID but one or more GIDs
* Process UID matches object UID, then process has user/owner rights
* Else if a process GID matches an object GID, then process has group rights
* Else process has world rights

Object has protection mask indicating R/W/X for user/group/world
* Root UID process has automatic rights to everything

Rights can be passed by forwarding fds down a local network socket

* E.g., Print server is passed a descriptor for the file to be printed, avoiding the need for it
to have rights to read any other of the user’s files

File access control

Owner | Group | World
. . . . R W E|R W E|R W E
* Access control information held in each inode

* Three bits for each of owner, group and world
: : = 0640
* For files, read, write execute

. _] . Owner | Group | World
* For directories, read entry, write entry, traverse directory R weElR welr we

* Also have setuid and setgid bits: l l
* Normally processes inherit permissions of invoking user — 0755

* setuid/setgid allow user to “become” someone else when running a given program

* E.g. an assessment application might have
* A sit-exam application owned by the examiner with permissions 0711 plus setuid
* A test-scores file also owned by the examiner but with permissions 0600

Outline

*|/O
* Buffer cache
* Device types

Input/Output

* Device-oriented file system accesses disk storage via two caches:
* The page cache caches data, unified with the virtual memory system
* The buffer cache caches metadata separately, indexed by physical disk block

* Three classes of device:
* Block devices allow random access to independent, fixed size blocks of data

* Character devices include most other devices, not needing the functionality
of regular files

* Network devices are interfaced via the kernel’s networking subsystem

Buffer cache

* Maintain copies of some parts of disk in memory for speed

* Reading then involves
* Locate relevant blocks from inode
* Check if in buffer cache
* If not, read from disk into buffer cache memory
* Return data from buffer cache

* Writing is the same except final step updates the version in the cache
* “Typically” prevents majority (around 85%) of implied disk transfers
* But at risk of losing data while the update is only in the buffer cache

* Must periodically (30 seconds) flush dirty buffers to disk
* Can cache metadata too but what problems can that cause?

Device types

* Block devices provide the main interface to system’s disk devices
* Block buffer cache acts as a pool of buffers for active I/O and as a cache for completed I/0O
* Request manager handles reading/writing of buffer contents to/from block device driver
using Completely Fair Queueing (CFQ)
* Character devices do not offer random access, with driver just passing on
request directly

* Main exception are terminal devices where line discipline is responsible for interpreting
information from device

* Eg., tty discipline glues stdin/stdout onto terminal data/output streams

* Network structure complex with socket interface, protocol drivers, network
device drivers

* Also firewall management, filtering, marking etc

Outline

* Start of day
* Shell operation
e Standard I/O

UNIX start of day

Kernel (/vmunix) loaded from disk and executed, mounting root filesystem
* Bootloader required to read from the disk
* First process (PID=1), traditionally /etc/init, is hand-crafted

Proceeds by reading /etc/inittab and, for each entry:
* Opens terminal special file, e.g. /dev/tty0, duplicates the resulting fd twice, and forks an /etc/tty process

Each tty process then:
* [Initialises the terminal, outputs the string login: & waits for input
* On receiving input, execve /bin/login

/bin/login then
* Qutputs the string password: & waits for input
* On receiving input, hash it and check against entry in /etc/passwd
* If match, set the UID & GID, and execve the indicated shell

When the shell exits, the parent init resurrects the /etc/tty process which goes again

Shell operation

* Just another process — needn’t understand

v
commands, just files repeat
G
<

issue prompt

ad

* Using CWD avoids need for fully qualified infinitum
pathnames

get command line

* Command line parsing can be complex
* Wildcard expansion (globbing) fork |~ process
* Tilde (~) processing nol ro program
* Conventionally trailing & put forked process yes erequies

into the background b
lomoie
process

Standard 1/O

* Every process has three fds on creation:
* stdin from which to read input
* stdout to which output is sent
* stderr to which diagnostics are sent

* Inherited from parent but can be redirected to/from a file, e.g.,
Is >listing.txt Is >&listing.txt sh <commands.sh

* Consider: Is >temp.txt; wc <temp.txt >results
* Pipeline is better, e.g. Is | wc >results

* Unix command lines can become very complex e.g., with many filters
* Redirection can cause some buffering subtleties

Summary

* Physical memory
* Page allocation
* Slab allocation

* Virtual memory

* Creation

* Running a program
* File systems

* Implementation

* Directories and links
* Access control

*|/O
* Buffer cache
* Device types

* Start of day
* Shell operation
* Standard I/O

