
12. Case Study II
UNIX (Linux)

9th ed: Ch. 6, 18

10th ed: Ch. 5, 20



2

Objectives

• To examine memory management in Linux
• To explore how Linux implements file systems 
• To understand how Linux manages I/O devices
• To understand how a shell works 

12. UNIX Case Study (II)



3

Outline

• Physical memory
• Virtual memory
• File systems
• I/O
• Start of day

12. UNIX Case Study (II)



4

Outline

• Physical memory
• Page allocation
• Slab allocation

• Virtual memory
• File systems
• I/O
• Start of day

12. UNIX Case Study (II)



5

Physical memory management

• Deals with allocation/freeing of pages, groups of pages, small blocks of memory
• Additional mechanisms for handling virtual memory, memory mapped into the address 

space of running processes

• Splits memory into zones based on hardware characteristics
• DMA, DMA32, NORMAL, HIGHMEM

• Architecture specific; e.g., x86_32
• Some devices only address lower 16MB,

so DMA must take place there
• HIGHMEM is memory not mapped into kernel space, all else is NORMAL

• Other systems have different constraints
• E.g., some devices can only access first 4GB (even with 64 bit addresses)
• x86_64 has (small) 16MB DMA zone for legacy devices, and the rest is ZONE_NORMAL

12. UNIX Case Study (II)



6

Physical page allocation

• Page allocator allocates and frees all physical pages
• Can allocate ranges of physically-contiguous pages on request

• Uses a buddy-heap algorithm to track available physical pages
• Each allocatable memory region is paired with an adjacent partner
• Two allocated partner regions freed 

together are combined into a larger region
• If no small free region exists to satisfy 

a small memory request, subdivide a 
larger free region into two pieces to 
satisfy the request

12. UNIX Case Study (II)



7

Slab allocation

• Allocation in the kernel occurs either 
• Statically, drivers reserve contiguous memory during system boot, or 
• Dynamically, via the page allocator

• Uses a slab allocator for kernel memory
• Using page cache, virtual memory 

system also manages physical memory
• Kernel’s main cache for files 
• Main mechanism for I/O to block devices
• Stores entire pages of file contents for 

local and network file I/O

12. UNIX Case Study (II)



8

Outline

• Physical memory
• Virtual memory
• Creation
• Running a program

• File systems
• I/O
• Start of day

12. UNIX Case Study (II)



9

Virtual memory

• Virtual memory system maintains each process’ address space 
• Creates pages of virtual memory on demand
• Manages loading of those pages from disk or swapping back out as required

• VM manager maintains two views of a process’s address space
• Logical view describes the layout of the address space, a set of non-overlapping regions, each 

representing a continuous, page-aligned subset of the address space
• Physical view stored in the process’ hardware page tables

• Virtual memory regions are characterized by
• The backing store, which describes from where the pages for a region come; regions are 

usually backed by a file or by nothing (demand-zero memory)
• The region’s reaction to writes, either page sharing or copy-on-write

• Paging system uses page-out policy to decide which pages to move to and from 
backing store using the paging mechanism

12. UNIX Case Study (II)



10

Virtual memory creation

• The kernel creates a new virtual address space for two reasons
• A process runs a new program via exec

• The existing process is given a new, completely empty virtual-address space
• Program-loading routines populate the address space with virtual-memory regions

• A process creates a new process via fork
• New process is given a complete copy of the parent’s virtual address space
• Kernel copies parent’s VMA descriptors and creates a new set of page tables for the child
• Then copies parent’s page tables into the child’s, incrementing the reference count of each page 

covered 
• Thus parent and child address spaces initially share the same physical pages of memory

• Kernel reserves a constant (architecture-dependent) area of two regions
• Static region has page table references to every available physical page to ease logical-physical 

translation in kernel
• Remainder is unreserved and PTEs can be pointed to any other area of memory

12. UNIX Case Study (II)



11

Running a program

• Kernel has function table for program loading 
• Supports multiple binary formats, commonly ELF

• ELF-format program has a header plus several 
page-aligned sections
• Pages initially mapped into virtual memory, 

and then faulted in to physical memory
• ELF loader reads header and maps sections of 

the file into separate VM regions

• Unless statically linked there will be symbols 
defined elsewhere
• Calling dynamic linker stubs trigger mapping of the link library into memory, resolving references
• Shared libraries typically compiled to position-independent code (PIC) so can be loaded 

anywhere

12. UNIX Case Study (II)



12

Outline

• Physical memory
• Virtual memory
• File systems
• Implementation
• Directories and links
• Access control

• I/O
• Start of day

12. UNIX Case Study (II)



13

File systems

• To the user, Linux’s file system appears as a hierarchical directory tree obeying UNIX semantics
• Devices are represented by special files
• proc file system doesn’t store data but computes it on demand using inode number to identify the 

operation

• Kernel hides details, managing different file systems via the virtual file system (VFS), an 
abstraction layer with four components
• The inode object structure represent an individual file
• The file object represents an open file
• The superblock object represents an entire file system
• A dentry object represents an individual directory entry

• Then manipulate those objects via a set of operations on the objects, e.g., for files include
• int (*open) (struct inode *, struct file *); 
• ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 
• ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 
• int (*mmap) (struct file *, struct vm_area_struct *);

12. UNIX Case Study (II)



14

File system implementation

• UNIX file systems use inodes (index nodes) as FCBs
• A combined scheme: the inode contains pointers to blocks, and pointers to 

pointers to blocks, and so on

• Alternatives include linked 
schemes where an index block 
points to blocks and ends with 
either a null or a pointer to the 
next index block

12. UNIX Case Study (II)



15

Directories and links

• Directory is just a file, itself pointed to by an inode, mapping filenames to 
inodes
• An instance of a file in a directory is a hardlink

• Reference counted in the inode with file removed when 
reference count becomes zero

• Directories cannot have more 
than one hardlink otherwise 
cycles might be created

• Alternatively, a softlink or 
symbolic-link is a normal file 
containing a filename, interpreted 
by the filesystem

12. UNIX Case Study (II)



16

In-memory tables

• Each process sees files as file 
descriptors
• Index into a process-specific open file 

table 

• Table entries point into a system-wide 
open file table
• Multiple processes might operate on the 

same file, including deleting it

• System-wide table entries then point 
to in-memory inode table 

12. UNIX Case Study (II)



17

Access control

• Every object uses same mechanism: unique numeric identifiers
• User ID (UID) identifies single user (set of rights)
• Group ID (GID) identifies a group (rights held by one or more users)

• Processes have a single UID but one or more GIDs
• Process UID matches object UID, then process has user/owner rights
• Else if a process GID matches an object GID, then process has group rights
• Else process has world rights

• Object has protection mask indicating R/W/X for user/group/world
• Root UID process has automatic rights to everything

• Rights can be passed by forwarding fds down a local network socket
• E.g., Print server is passed a descriptor for the file to be printed, avoiding the need for it 

to have rights to read any other of the user’s files
11. UNIX Case Study (I)



18

File access control

• Access control information held in each inode 
• Three bits for each of owner, group and world
• For files, read, write execute
• For directories, read entry, write entry, traverse directory 

• Also have setuid and setgid bits: 
• Normally processes inherit permissions of invoking user
• setuid/setgid allow user to “become” someone else when running a given program

• E.g. an assessment application might have 
• A sit-exam application owned by the examiner with permissions 0711 plus setuid
• A test-scores file also owned by the examiner but with permissions 0600

12. UNIX Case Study (II)



19

Outline

• Physical memory
• Virtual memory
• File systems
• I/O
• Buffer cache
• Device types

• Start of day

12. UNIX Case Study (II)



20

Input/Output

• Device-oriented file system accesses disk storage via two caches:
• The page cache caches data, unified with the virtual memory system
• The buffer cache caches metadata separately, indexed by physical disk block

• Three classes of device:
• Block devices allow random access to independent, fixed size blocks of data
• Character devices include most other devices, not needing the functionality 

of regular files
• Network devices are interfaced via the kernel’s networking subsystem

12. UNIX Case Study (II)



21

Buffer cache

• Maintain copies of some parts of disk in memory for speed 
• Reading then involves

• Locate relevant blocks from inode 
• Check if in buffer cache
• If not, read from disk into buffer cache memory 
• Return data from buffer cache 

• Writing is the same except final step updates the version in the cache
• “Typically” prevents majority (around 85%) of implied disk transfers 
• But at risk of losing data while the update is only in the buffer cache

• Must periodically (30 seconds) flush dirty buffers to disk 
• Can cache metadata too but what problems can that cause? 

12. UNIX Case Study (II)



22

Device types

• Block devices provide the main interface to system’s disk devices
• Block buffer cache acts as a pool of buffers for active I/O and as a cache for completed I/O
• Request manager handles reading/writing of buffer contents to/from block device driver 

using Completely Fair Queueing (CFQ)

• Character devices do not offer random access, with driver just passing on 
request directly
• Main exception are terminal devices where line discipline is responsible for interpreting 

information from device
• Eg., tty discipline glues stdin/stdout onto terminal data/output streams

• Network structure complex with socket interface, protocol drivers, network 
device drivers
• Also firewall management, filtering, marking etc

12. UNIX Case Study (II)



23

Outline

• Physical memory
• Virtual memory
• File systems
• I/O
• Start of day
• Shell operation
• Standard I/O

12. UNIX Case Study (II)



24

UNIX start of day

• Kernel (/vmunix) loaded from disk and executed, mounting root filesystem
• Bootloader required to read from the disk
• First process (PID=1), traditionally /etc/init, is hand-crafted 

• Proceeds by reading /etc/inittab and, for each entry:
• Opens terminal special file, e.g. /dev/tty0, duplicates the resulting fd twice, and forks an /etc/tty process

• Each tty process then: 
• Initialises the terminal, outputs the string login: & waits for input
• On receiving input, execve /bin/login 

• /bin/login then
• Outputs the string password: & waits for input
• On receiving input, hash it and check against entry in /etc/passwd
• If match, set the UID & GID, and execve the indicated shell 

• When the shell exits, the parent init resurrects the /etc/tty process which goes again

12. UNIX Case Study (II)



25

Shell operation

• Just another process – needn’t understand 
commands, just files 
• Using CWD avoids need for fully qualified 

pathnames 

• Command line parsing can be complex
• Wildcard expansion (globbing)
• Tilde (~) processing 
• Conventionally trailing & put forked process 

into the background

12. UNIX Case Study (II)



26

Standard I/O

• Every process has three fds on creation:
• stdin from which to read input 
• stdout to which output is sent
• stderr to which diagnostics are sent

• Inherited from parent but can be redirected to/from a file, e.g., 

ls >listing.txt ls >&listing.txt sh <commands.sh 
• Consider: ls >temp.txt; wc <temp.txt >results 
• Pipeline is better, e.g. ls | wc >results

• Unix command lines can become very complex e.g., with many filters
• Redirection can cause some buffering subtleties 

12. UNIX Case Study (II)



27

Summary

• Physical memory
• Page allocation
• Slab allocation

• Virtual memory
• Creation
• Running a program

• File systems
• Implementation
• Directories and links
• Access control

12. UNIX Case Study (II)

• I/O
• Buffer cache
• Device types

● Start of day
• Shell operation
• Standard I/O


