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Objectives

• To examine memory management in Linux
• To explore how Linux implements file systems 
• To understand how Linux manages I/O devices
• To understand how a shell works 
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Physical memory management

• Deals with allocation/freeing of pages, groups of pages, small blocks of memory
• Additional mechanisms for handling virtual memory, memory mapped into the address 

space of running processes

• Splits memory into zones based on hardware characteristics
• DMA, DMA32, NORMAL, HIGHMEM

• Architecture specific; e.g., x86_32
• Some devices only address lower 16MB,

so DMA must take place there
• HIGHMEM is memory not mapped into kernel space, all else is NORMAL

• Other systems have different constraints
• E.g., some devices can only access first 4GB (even with 64 bit addresses)
• x86_64 has (small) 16MB DMA zone for legacy devices, and the rest is ZONE_NORMAL

12. UNIX Case Study (II)
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Physical page allocation

• Page allocator allocates and frees all physical pages
• Can allocate ranges of physically-contiguous pages on request

• Uses a buddy-heap algorithm to track available physical pages
• Each allocatable memory region is paired with an adjacent partner
• Two allocated partner regions freed 

together are combined into a larger region
• If no small free region exists to satisfy 

a small memory request, subdivide a 
larger free region into two pieces to 
satisfy the request

12. UNIX Case Study (II)
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Slab allocation

• Allocation in the kernel occurs either 
• Statically, drivers reserve contiguous memory during system boot, or 
• Dynamically, via the page allocator

• Uses a slab allocator for kernel memory
• Using page cache, virtual memory 

system also manages physical memory
• Kernel’s main cache for files 
• Main mechanism for I/O to block devices
• Stores entire pages of file contents for 

local and network file I/O

12. UNIX Case Study (II)
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Outline

• Physical memory
• Virtual memory
• Creation
• Running a program

• File systems
• I/O
• Start of day

12. UNIX Case Study (II)



9

Virtual memory

• Virtual memory system maintains each process’ address space 
• Creates pages of virtual memory on demand
• Manages loading of those pages from disk or swapping back out as required

• VM manager maintains two views of a process’s address space
• Logical view describes the layout of the address space, a set of non-overlapping regions, each 

representing a continuous, page-aligned subset of the address space
• Physical view stored in the process’ hardware page tables

• Virtual memory regions are characterized by
• The backing store, which describes from where the pages for a region come; regions are 

usually backed by a file or by nothing (demand-zero memory)
• The region’s reaction to writes, either page sharing or copy-on-write

• Paging system uses page-out policy to decide which pages to move to and from 
backing store using the paging mechanism

12. UNIX Case Study (II)
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Virtual memory creation

• The kernel creates a new virtual address space for two reasons
• A process runs a new program via exec

• The existing process is given a new, completely empty virtual-address space
• Program-loading routines populate the address space with virtual-memory regions

• A process creates a new process via fork
• New process is given a complete copy of the parent’s virtual address space
• Kernel copies parent’s VMA descriptors and creates a new set of page tables for the child
• Then copies parent’s page tables into the child’s, incrementing the reference count of each page 

covered 
• Thus parent and child address spaces initially share the same physical pages of memory

• Kernel reserves a constant (architecture-dependent) area of two regions
• Static region has page table references to every available physical page to ease logical-physical 

translation in kernel
• Remainder is unreserved and PTEs can be pointed to any other area of memory

12. UNIX Case Study (II)
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Running a program

• Kernel has function table for program loading 
• Supports multiple binary formats, commonly ELF

• ELF-format program has a header plus several 
page-aligned sections
• Pages initially mapped into virtual memory, 

and then faulted in to physical memory
• ELF loader reads header and maps sections of 

the file into separate VM regions

• Unless statically linked there will be symbols 
defined elsewhere
• Calling dynamic linker stubs trigger mapping of the link library into memory, resolving references
• Shared libraries typically compiled to position-independent code (PIC) so can be loaded 

anywhere
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File systems

• To the user, Linux’s file system appears as a hierarchical directory tree obeying UNIX semantics
• Devices are represented by special files
• proc file system doesn’t store data but computes it on demand using inode number to identify the 

operation

• Kernel hides details, managing different file systems via the virtual file system (VFS), an 
abstraction layer with four components
• The inode object structure represent an individual file
• The file object represents an open file
• The superblock object represents an entire file system
• A dentry object represents an individual directory entry

• Then manipulate those objects via a set of operations on the objects, e.g., for files include
• int (*open) (struct inode *, struct file *); 
• ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 
• ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 
• int (*mmap) (struct file *, struct vm_area_struct *);
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14

File system implementation

• UNIX file systems use inodes (index nodes) as FCBs
• A combined scheme: the inode contains pointers to blocks, and pointers to 

pointers to blocks, and so on

• Alternatives include linked 
schemes where an index block 
points to blocks and ends with 
either a null or a pointer to the 
next index block
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Directories and links

• Directory is just a file, itself pointed to by an inode, mapping filenames to 
inodes
• An instance of a file in a directory is a hardlink

• Reference counted in the inode with file removed when 
reference count becomes zero

• Directories cannot have more 
than one hardlink otherwise 
cycles might be created

• Alternatively, a softlink or 
symbolic-link is a normal file 
containing a filename, interpreted 
by the filesystem
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In-memory tables

• Each process sees files as file 
descriptors
• Index into a process-specific open file 

table 

• Table entries point into a system-wide 
open file table
• Multiple processes might operate on the 

same file, including deleting it

• System-wide table entries then point 
to in-memory inode table 
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Access control

• Every object uses same mechanism: unique numeric identifiers
• User ID (UID) identifies single user (set of rights)
• Group ID (GID) identifies a group (rights held by one or more users)

• Processes have a single UID but one or more GIDs
• Process UID matches object UID, then process has user/owner rights
• Else if a process GID matches an object GID, then process has group rights
• Else process has world rights

• Object has protection mask indicating R/W/X for user/group/world
• Root UID process has automatic rights to everything

• Rights can be passed by forwarding fds down a local network socket
• E.g., Print server is passed a descriptor for the file to be printed, avoiding the need for it 

to have rights to read any other of the user’s files
11. UNIX Case Study (I)
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File access control

• Access control information held in each inode 
• Three bits for each of owner, group and world
• For files, read, write execute
• For directories, read entry, write entry, traverse directory 

• Also have setuid and setgid bits: 
• Normally processes inherit permissions of invoking user
• setuid/setgid allow user to “become” someone else when running a given program

• E.g. an assessment application might have 
• A sit-exam application owned by the examiner with permissions 0711 plus setuid
• A test-scores file also owned by the examiner but with permissions 0600

12. UNIX Case Study (II)
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Input/Output

• Device-oriented file system accesses disk storage via two caches:
• The page cache caches data, unified with the virtual memory system
• The buffer cache caches metadata separately, indexed by physical disk block

• Three classes of device:
• Block devices allow random access to independent, fixed size blocks of data
• Character devices include most other devices, not needing the functionality 

of regular files
• Network devices are interfaced via the kernel’s networking subsystem
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Buffer cache

• Maintain copies of some parts of disk in memory for speed 
• Reading then involves

• Locate relevant blocks from inode 
• Check if in buffer cache
• If not, read from disk into buffer cache memory 
• Return data from buffer cache 

• Writing is the same except final step updates the version in the cache
• “Typically” prevents majority (around 85%) of implied disk transfers 
• But at risk of losing data while the update is only in the buffer cache

• Must periodically (30 seconds) flush dirty buffers to disk 
• Can cache metadata too but what problems can that cause? 
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Device types

• Block devices provide the main interface to system’s disk devices
• Block buffer cache acts as a pool of buffers for active I/O and as a cache for completed I/O
• Request manager handles reading/writing of buffer contents to/from block device driver 

using Completely Fair Queueing (CFQ)

• Character devices do not offer random access, with driver just passing on 
request directly
• Main exception are terminal devices where line discipline is responsible for interpreting 

information from device
• Eg., tty discipline glues stdin/stdout onto terminal data/output streams

• Network structure complex with socket interface, protocol drivers, network 
device drivers
• Also firewall management, filtering, marking etc

12. UNIX Case Study (II)
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UNIX start of day

• Kernel (/vmunix) loaded from disk and executed, mounting root filesystem
• Bootloader required to read from the disk
• First process (PID=1), traditionally /etc/init, is hand-crafted 

• Proceeds by reading /etc/inittab and, for each entry:
• Opens terminal special file, e.g. /dev/tty0, duplicates the resulting fd twice, and forks an /etc/tty process

• Each tty process then: 
• Initialises the terminal, outputs the string login: & waits for input
• On receiving input, execve /bin/login 

• /bin/login then
• Outputs the string password: & waits for input
• On receiving input, hash it and check against entry in /etc/passwd
• If match, set the UID & GID, and execve the indicated shell 

• When the shell exits, the parent init resurrects the /etc/tty process which goes again

12. UNIX Case Study (II)
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Shell operation

• Just another process – needn’t understand 
commands, just files 
• Using CWD avoids need for fully qualified 

pathnames 

• Command line parsing can be complex
• Wildcard expansion (globbing)
• Tilde (~) processing 
• Conventionally trailing & put forked process 

into the background

12. UNIX Case Study (II)
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Standard I/O

• Every process has three fds on creation:
• stdin from which to read input 
• stdout to which output is sent
• stderr to which diagnostics are sent

• Inherited from parent but can be redirected to/from a file, e.g., 

ls >listing.txt ls >&listing.txt sh <commands.sh 
• Consider: ls >temp.txt; wc <temp.txt >results 
• Pipeline is better, e.g. ls | wc >results

• Unix command lines can become very complex e.g., with many filters
• Redirection can cause some buffering subtleties 
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Summary

• Physical memory
• Page allocation
• Slab allocation

• Virtual memory
• Creation
• Running a program

• File systems
• Implementation
• Directories and links
• Access control
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• I/O
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• Device types

● Start of day
• Shell operation
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