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Objectives

• To know a little of the history of UNIX from which Linux is derived 
• To understand some principles upon which Linux’s design is based
• To examine the Linux process model and lifecycle
• To describe how Linux schedules processes, provides kernel 

synchronization, and provides inter-process communication
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Outline
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UNIX key feature

• Separation of kernel from user space
• Only essential features inside the OS – editors, compilers etc are just 

applications

• Processes are the units of 
scheduling and protection

• Command interpreter (shell) just 
another process

• All I/O looks like file operations 
• In UNIX, everything is a file

11. UNIX Case Study (I)
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     2010

     2011 to 2018
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    Open source   

    Mixed/shared source   

    Closed source   

    Unix-like systems   

Xenix
1.0 to 2.3

SunOS
1 to 1.1

System III

System V
R1 to R2

System V
R3

System V
R4

Xenix
3.0

SCO Xenix

SCO Xenix
V/286

SCO Xenix
V/386

SCO Xenix
V/386

AIX
1.0

SunOS
1.2 to 3.0

SunOS
4

Unix
9 and 10

(last versions
from

Bell Labs)

HP-UX
6 to 11.10

HP-UX
1.0 to 1.2

HP-UX
2.0 to 3.0

AIX
3.0 to 7.3

HP-UX
11i v1 to 11i v3

SCO UNIX
3.2.4

OpenServer
5.0 to 5.04

OpenServer
5.0.5 to 5.0.7

OpenServer
6.x

UnixWare
1.x to 2.x

(System V R4.2)

UnixWare
7.x

(System V R5)

Solaris
2.1 to 9

Solaris
10

Solaris
11.0 to 11.4

NexTSTEP
OpenSTEP
1.0 to 4.2

Mac OS X
Server

Unnamed PDP-7 operating system

Unix
Version 1 to 4

Unix
Version 5 to 6

BSD
1.0 to 2.0 Unix

Version 7

Unix/32V

BSD
3.0 to 4.1

BSD 4.2

PWB/Unix

BSD 4.3

BSD 4.3
Tahoe

Unix
Version 8

BSD 4.3
Reno

Linux 0.0.1
To 0.9

Minix
1.x

Mac OS X,
OS X,

macOS
10.x to 13.x

(Darwin
1.2.1 to 22)   OpenSolaris

& derivatives
(Illumos, etc.)

Linux
2.0 to 6.x

Minix
2.x

Minix
3.1.0 to 3.4.0

BSD Net/2

386BSD

FreeBSD
1.0 to 2.2x

FreeBSD
3.0 to 3.2

FreeBSD
3.3 to 4.x

FreeBSD
5.0 to 13.x

BSD
4.4-Lite

&
Lite Release 2

DragonFly BSD
1.0 to 6.4

BSD Net/1

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.4 to 9.x

OpenBSD
1.0 to 2.2

OpenBSD
2.3 to 7.2

UNIX

Non-examinable!

11. UNIX Case Study (I) By Eraserhead1, Infinity0, Sav_vas - Levenez Unix History Diagram, Information on the history of IBM’s AIX on 
ibm.com, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1801948
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UNIX history

• Developed in 1969 by Thompson & Ritchie at Bell Labs 
• A reaction to Multics which was rather bloated
• Focus on (relative) ease-of-use due to e.g., interactive shell
• In 1973 re-written from ASM to (portable) C even though performance critical

• Development continued through 1970s, 1980s
• Notably, 1976 release of 6th edition (“V6”) included source code, so features could easily be 

added from other OSs

• From 1978 two main families
• System V from AT&T and BSD from University of California at Berkeley
• Introduction of POSIX standard, attempting to re-unify
• Addition over time of, e.g., virtual memory, networking
• Notably, 4.2BSD in 1983 included TCP/IP stack funded by DARPA

• Most common UNIX today is Linux

11. UNIX Case Study (I)
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Linux history

• A modern free OS based on UNIX standards
• Originally a small self-contained kernel in 1991 by Linus Torvalds, release open-source
• Designed for efficiency on common PC hardware but now runs on a huge range of platforms
• Kernel entirely original but compatibility gives an entire UNIX-compatible OS, for free 
• Different distributions provide package management, support, configurations, tools, etc
• Odd-number kernels are development kernels, even numbered are production

• Version 0.01, May 1991
• No networking, Intel 80386-compatible processors and PC hardware only, extremely limited device-drive 

support, supported only the Minix file system

• Version 1.0, March 1994
• TCP/IP plus BSD-compatible socket interface and device-driver support for IP on Ethernet
• Enhanced file system and SCSI controller support for high-performance disk access
• Linux 1.2, March 1995, was the final PC-only Linux kernel

• Development continues at pace

11. UNIX Case Study (I)
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Linux design principles

• Multiuser, multitasking system with a full set of UNIX-compatible tools
• File system adheres to traditional UNIX semantics
• Fully implements the standard UNIX networking model
• Designed to be POSIX compliant, achieved by at least two distributions

• Main design goals are speed, efficiency, and standardization
• Constant tension between efficiency and security

• Supports Pthreads and a subset of POSIX real-time process control
• Linux programming interface has SVR4 UNIX semantics, not BSD

11. UNIX Case Study (I)
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Components of a Linux system

• As most UNIX implementations, there are three main pieces
• Most important distinction is between kernel and the rest

• The kernel is responsible for maintaining the important abstractions of the operating 
system

• Executes in kernel mode with full access to all the physical resources of the computer
• All kernel code and data structures share the same single address space

• System libraries define standard functions apps use to interact with 
the kernel

• Implement much OS functionality that 
does not need kernel privileges

• System utilities perform individual 
specialized management tasks

• Rich and varied user-mode programs

11. UNIX Case Study (I)
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Kernel modules

• Sections of kernel code that can be compiled, loaded, and unloaded 
independently

• Implement, e.g., device drivers, file systems, or networking protocols
• Interface enables third parties to write and distribute non-GPL components
• Enable a Linux system to be set up with a standard, minimal kernel, without 

extra device drivers compiled in

• Dynamic loading/unloading requires conflict resolution
• Kernel must manage modules trying to access same hardware
• E.g., reservation requests via kernel before granting access

11. UNIX Case Study (I)
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Outline

• UNIX / Linux
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Process management

• UNIX process management separates the creation of processes and 
the running of a new program into two distinct operations.

• The fork system call creates a new process before exec runs a new program
• Under UNIX, a process encompasses all the information that the OS must 

maintain to track the context of a single execution of a single program

• Under Linux, process properties fall into three groups:  
• Identity
• Environment
• Context

11. UNIX Case Study (I)
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Process properties

• Identity
• Process ID (PID) uniquely identifies and is used to specify the process 
• Process credentials in the form of a User ID and one or more Group IDs
• Support for emulation gives personality – not traditional but allows slightly modified semantics 

of system calls
• Namespace gives specific view of file system hierarchy – typically shared but can be unique

• Environment, inherited from parent as two null-terminated vectors
• Argument vector listing command-line arguments used to invoke the running program
• Environment vector lists NAME=VALUE pairs associating named variables with arbitrary values
• Flexible way to pass information between user-mode components, giving per-process 

customisation

• Context
• The (constantly changing) state of a running program at any point in time

11. UNIX Case Study (I)
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Process context

• Most important part is the scheduling context 
• Required for the scheduler to suspend and restart the process
• Also includes accounting information about current and past resources consumed

• An array of pointers into kernel file structures called the file table
• I/O system calls use indexes into this table, the file descriptor (fd)

• Separately, file-system context applies to requests to open new files
• Current root and default directories for new file searches are stored here

• Signal-handler table defines per-process per-signal signal handling routine 
• Virtual-memory context describes full contents of process’ private address 

space

11. UNIX Case Study (I)
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Processes and threads

• The same internal representation
• A thread is just a new process that shares its parent’s address space 

• Both called tasks by Linux, distinguished only when created via clone
• fork creates a new task with an entirely new task context
• clone creates a new task with its own identity, but sharing parent’s data 

structures

• clone gives control over exactly what is shared between two threads
• File system, memory space, signal handlers, open files

11. UNIX Case Study (I)
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Outline

• UNIX / Linux
• Processes
• Tasks

• Lifecycle
• Scheduling
• Synchronisation
• Interrupt handlers
• IPC
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• Five states:
• Running/Runnable (R)
• Uninterruptible Sleep (D)
• Interruptible Sleep (S)
• Stopped (T)
• Zombie (Z)

Task lifecycle

11. UNIX Case Study (I)
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Task scheduling

• Allocation of CPU time to different tasks 
• As well as processes, in Linux this includes various kernel tasks
• Those requested by a running process and those executed for a device driver

• Traditional UNIX scheduling uses fixed time slices and priorities to 
boost/penalise

• Quantum 100ms, round-robin within priority levels
• Priority set from process’ base priority, average length of process’ run queue, 

and nice value

• Worked ok for early time-sharing systems but did not scale or provide 
good interactive performance for current systems

11. UNIX Case Study (I)
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Completely Fair Scheduler (CFS)

• Since 2.6.23 – no more time slices 
• Start by assuming every task should have 1/N of the CPU
• Adjust based on nice value from -20 to +19: smaller is higher priority giving higher weighting
• Run task j for a time slice tj ∝ wj / ∑i wi

• Actual length of time given a task is the target latency 
• Interval during which time every runnable task should run at least once
• E.g., target latency is 10ms, two runnable tasks of equal priority, each will run for 5ms
• If ten runnable tasks, each runs for 1ms – but what if 1000 runnable tasks?
• To avoid excessive switching overheads, minimum granularity is the minimum length of time for 

which a process will be scheduled

• CFS scheduler maintains per-task virtual run time in variable vruntime
• Scheduler picks task with lowest vruntime; in default case, the same as actual run time
• Lower priority means higher decay rate of vruntime
• Implemented as red-black tree with left-most bottom-most value (lowest vruntime) cached

11. UNIX Case Study (I)



21

Kernel synchronisation

• Kernel-mode execution requested in two ways:
• Process requests an OS service, explicitly via a system call or implicitly e.g. when 

a page fault occurs
• A device driver delivers a hardware interrupt causing the CPU to start executing 

a kernel-defined handler for that interrupt

• Need guarantees that kernel’s critical sections run without interruption 
by another critical section

• Before 2.6, kernel code is non-
preemptible so timer 
interrupt sets need_resched 

• After 2.6, either spin locks or 
enable/disable pre-emption

11. UNIX Case Study (I)
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Interrupt handlers, top and bottom

• Want long critical sections to be able to run without disabling interrupts 
for long periods of time

• Split interrupt service routines into a top half and a bottom half
• Top half is a normal interrupt 

service routine, run with 
recursive interrupts disabled

• Bottom half is run, with all 
interrupts enabled, by a 
miniature scheduler that ensures 
bottom halves never self-interrupt

• This architecture is completed by a mechanism for disabling selected 
bottom halves while executing normal, foreground kernel code

11. UNIX Case Study (I)
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Inter-Process Communication

• Signals
• Process-to-process
• Limited number, carry no information other than which signal has occurred

• Wait queues
• Used inside the kernel
• Process puts itself on wait queue for an event, and informs scheduler that it is no longer eligible for 

execution
• All waiting processes are woken when the event completes

• Pipes
• Just another type of inode in the VFS 
• Each pipe has a pair of wait queues for reader and writer to synchronise

• Shared memory
• Fast but no synchronisation mechanism – need to be provided
• Persistent object, like a small independent address space

11. UNIX Case Study (I)
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Summary

• UNIX / Linux
• History
• Components
• Kernel modules

• Processes
• Management
• Properties
• Context
• Threads
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• Tasks
• Lifecycle
• Scheduling
• Synchronisation
• Interrupt handlers
• IPC
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