
11. Case Study I
UNIX (Linux)

9th ed: Ch. 18

10th ed: Ch. 20

2

Objectives

• To know a little of the history of UNIX from which Linux is derived
• To understand some principles upon which Linux’s design is based
• To examine the Linux process model and lifecycle
• To describe how Linux schedules processes, provides kernel

synchronization, and provides inter-process communication

11. UNIX Case Study (I)

3

Outline

• UNIX / Linux
• Processes
• Tasks

11. UNIX Case Study (I)

4

Outline

• UNIX / Linux
• History
• Components
• Kernel modules

• Processes
• Tasks

11. UNIX Case Study (I)

5

UNIX key feature

• Separation of kernel from user space
• Only essential features inside the OS – editors, compilers etc are just

applications

• Processes are the units of
scheduling and protection

• Command interpreter (shell) just
another process

• All I/O looks like file operations
• In UNIX, everything is a file

11. UNIX Case Study (I)

6

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2003

2001 to 2002

2005 to 2007

2008 to 2009

2004

 2010

 2011 to 2018

 2019 to 2023

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2003

2001 to 2002

2005 to 2007

2008 to 2009

2004

 2010

 2011 to 2018

 2019 to 2023

 Open source

 Mixed/shared source

 Closed source

 Unix-like systems

Xenix
1.0 to 2.3

SunOS
1 to 1.1

System III

System V
R1 to R2

System V
R3

System V
R4

Xenix
3.0

SCO Xenix

SCO Xenix
V/286

SCO Xenix
V/386

SCO Xenix
V/386

AIX
1.0

SunOS
1.2 to 3.0

SunOS
4

Unix
9 and 10

(last versions
from

Bell Labs)

HP-UX
6 to 11.10

HP-UX
1.0 to 1.2

HP-UX
2.0 to 3.0

AIX
3.0 to 7.3

HP-UX
11i v1 to 11i v3

SCO UNIX
3.2.4

OpenServer
5.0 to 5.04

OpenServer
5.0.5 to 5.0.7

OpenServer
6.x

UnixWare
1.x to 2.x

(System V R4.2)

UnixWare
7.x

(System V R5)

Solaris
2.1 to 9

Solaris
10

Solaris
11.0 to 11.4

NexTSTEP
OpenSTEP
1.0 to 4.2

Mac OS X
Server

Unnamed PDP-7 operating system

Unix
Version 1 to 4

Unix
Version 5 to 6

BSD
1.0 to 2.0 Unix

Version 7

Unix/32V

BSD
3.0 to 4.1

BSD 4.2

PWB/Unix

BSD 4.3

BSD 4.3
Tahoe

Unix
Version 8

BSD 4.3
Reno

Linux 0.0.1
To 0.9

Minix
1.x

Mac OS X,
OS X,

macOS
10.x to 13.x

(Darwin
1.2.1 to 22) OpenSolaris

& derivatives
(Illumos, etc.)

Linux
2.0 to 6.x

Minix
2.x

Minix
3.1.0 to 3.4.0

BSD Net/2

386BSD

FreeBSD
1.0 to 2.2x

FreeBSD
3.0 to 3.2

FreeBSD
3.3 to 4.x

FreeBSD
5.0 to 13.x

BSD
4.4-Lite

&
Lite Release 2

DragonFly BSD
1.0 to 6.4

BSD Net/1

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.4 to 9.x

OpenBSD
1.0 to 2.2

OpenBSD
2.3 to 7.2

UNIX

Non-examinable!

11. UNIX Case Study (I) By Eraserhead1, Infinity0, Sav_vas - Levenez Unix History Diagram, Information on the history of IBM’s AIX on
ibm.com, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1801948

7

UNIX history

• Developed in 1969 by Thompson & Ritchie at Bell Labs
• A reaction to Multics which was rather bloated
• Focus on (relative) ease-of-use due to e.g., interactive shell
• In 1973 re-written from ASM to (portable) C even though performance critical

• Development continued through 1970s, 1980s
• Notably, 1976 release of 6th edition (“V6”) included source code, so features could easily be

added from other OSs

• From 1978 two main families
• System V from AT&T and BSD from University of California at Berkeley
• Introduction of POSIX standard, attempting to re-unify
• Addition over time of, e.g., virtual memory, networking
• Notably, 4.2BSD in 1983 included TCP/IP stack funded by DARPA

• Most common UNIX today is Linux

11. UNIX Case Study (I)

8

Linux history

• A modern free OS based on UNIX standards
• Originally a small self-contained kernel in 1991 by Linus Torvalds, release open-source
• Designed for efficiency on common PC hardware but now runs on a huge range of platforms
• Kernel entirely original but compatibility gives an entire UNIX-compatible OS, for free
• Different distributions provide package management, support, configurations, tools, etc
• Odd-number kernels are development kernels, even numbered are production

• Version 0.01, May 1991
• No networking, Intel 80386-compatible processors and PC hardware only, extremely limited device-drive

support, supported only the Minix file system

• Version 1.0, March 1994
• TCP/IP plus BSD-compatible socket interface and device-driver support for IP on Ethernet
• Enhanced file system and SCSI controller support for high-performance disk access
• Linux 1.2, March 1995, was the final PC-only Linux kernel

• Development continues at pace

11. UNIX Case Study (I)

9

Linux design principles

• Multiuser, multitasking system with a full set of UNIX-compatible tools
• File system adheres to traditional UNIX semantics
• Fully implements the standard UNIX networking model
• Designed to be POSIX compliant, achieved by at least two distributions

• Main design goals are speed, efficiency, and standardization
• Constant tension between efficiency and security

• Supports Pthreads and a subset of POSIX real-time process control
• Linux programming interface has SVR4 UNIX semantics, not BSD

11. UNIX Case Study (I)

10

Components of a Linux system

• As most UNIX implementations, there are three main pieces
• Most important distinction is between kernel and the rest

• The kernel is responsible for maintaining the important abstractions of the operating
system

• Executes in kernel mode with full access to all the physical resources of the computer
• All kernel code and data structures share the same single address space

• System libraries define standard functions apps use to interact with
the kernel

• Implement much OS functionality that
does not need kernel privileges

• System utilities perform individual
specialized management tasks

• Rich and varied user-mode programs

11. UNIX Case Study (I)

11

Kernel modules

• Sections of kernel code that can be compiled, loaded, and unloaded
independently

• Implement, e.g., device drivers, file systems, or networking protocols
• Interface enables third parties to write and distribute non-GPL components
• Enable a Linux system to be set up with a standard, minimal kernel, without

extra device drivers compiled in

• Dynamic loading/unloading requires conflict resolution
• Kernel must manage modules trying to access same hardware
• E.g., reservation requests via kernel before granting access

11. UNIX Case Study (I)

12

Outline

• UNIX / Linux
• Processes

• Management
• Properties
• Context
• Threads

• Tasks

11. UNIX Case Study (I)

13

Process management

• UNIX process management separates the creation of processes and
the running of a new program into two distinct operations.

• The fork system call creates a new process before exec runs a new program
• Under UNIX, a process encompasses all the information that the OS must

maintain to track the context of a single execution of a single program

• Under Linux, process properties fall into three groups:
• Identity
• Environment
• Context

11. UNIX Case Study (I)

14

Process properties

• Identity
• Process ID (PID) uniquely identifies and is used to specify the process
• Process credentials in the form of a User ID and one or more Group IDs
• Support for emulation gives personality – not traditional but allows slightly modified semantics

of system calls
• Namespace gives specific view of file system hierarchy – typically shared but can be unique

• Environment, inherited from parent as two null-terminated vectors
• Argument vector listing command-line arguments used to invoke the running program
• Environment vector lists NAME=VALUE pairs associating named variables with arbitrary values
• Flexible way to pass information between user-mode components, giving per-process

customisation

• Context
• The (constantly changing) state of a running program at any point in time

11. UNIX Case Study (I)

15

Process context

• Most important part is the scheduling context
• Required for the scheduler to suspend and restart the process
• Also includes accounting information about current and past resources consumed

• An array of pointers into kernel file structures called the file table
• I/O system calls use indexes into this table, the file descriptor (fd)

• Separately, file-system context applies to requests to open new files
• Current root and default directories for new file searches are stored here

• Signal-handler table defines per-process per-signal signal handling routine
• Virtual-memory context describes full contents of process’ private address

space

11. UNIX Case Study (I)

16

Processes and threads

• The same internal representation
• A thread is just a new process that shares its parent’s address space

• Both called tasks by Linux, distinguished only when created via clone
• fork creates a new task with an entirely new task context
• clone creates a new task with its own identity, but sharing parent’s data

structures

• clone gives control over exactly what is shared between two threads
• File system, memory space, signal handlers, open files

11. UNIX Case Study (I)

17

Outline

• UNIX / Linux
• Processes
• Tasks

• Lifecycle
• Scheduling
• Synchronisation
• Interrupt handlers
• IPC

11. UNIX Case Study (I)

18

• Five states:
• Running/Runnable (R)
• Uninterruptible Sleep (D)
• Interruptible Sleep (S)
• Stopped (T)
• Zombie (Z)

Task lifecycle

11. UNIX Case Study (I)

Running / Runnable
(R)

Zombie
(Z)

Stopped
(T)

Interruptible
Sleep (S)

Uninterruptible
Sleep (D)

SIGSTOP
received

SIGCONT
received

wakeup

wait for
resources

wakeup/
signal

wait for
resources/
signals

new

exit or termination
signals

19

Task scheduling

• Allocation of CPU time to different tasks
• As well as processes, in Linux this includes various kernel tasks
• Those requested by a running process and those executed for a device driver

• Traditional UNIX scheduling uses fixed time slices and priorities to
boost/penalise

• Quantum 100ms, round-robin within priority levels
• Priority set from process’ base priority, average length of process’ run queue,

and nice value

• Worked ok for early time-sharing systems but did not scale or provide
good interactive performance for current systems

11. UNIX Case Study (I)

20

Completely Fair Scheduler (CFS)

• Since 2.6.23 – no more time slices
• Start by assuming every task should have 1/N of the CPU
• Adjust based on nice value from -20 to +19: smaller is higher priority giving higher weighting
• Run task j for a time slice tj ∝ wj / ∑i wi

• Actual length of time given a task is the target latency
• Interval during which time every runnable task should run at least once
• E.g., target latency is 10ms, two runnable tasks of equal priority, each will run for 5ms
• If ten runnable tasks, each runs for 1ms – but what if 1000 runnable tasks?
• To avoid excessive switching overheads, minimum granularity is the minimum length of time for

which a process will be scheduled

• CFS scheduler maintains per-task virtual run time in variable vruntime
• Scheduler picks task with lowest vruntime; in default case, the same as actual run time
• Lower priority means higher decay rate of vruntime
• Implemented as red-black tree with left-most bottom-most value (lowest vruntime) cached

11. UNIX Case Study (I)

21

Kernel synchronisation

• Kernel-mode execution requested in two ways:
• Process requests an OS service, explicitly via a system call or implicitly e.g. when

a page fault occurs
• A device driver delivers a hardware interrupt causing the CPU to start executing

a kernel-defined handler for that interrupt

• Need guarantees that kernel’s critical sections run without interruption
by another critical section

• Before 2.6, kernel code is non-
preemptible so timer
interrupt sets need_resched

• After 2.6, either spin locks or
enable/disable pre-emption

11. UNIX Case Study (I)

22

Interrupt handlers, top and bottom

• Want long critical sections to be able to run without disabling interrupts
for long periods of time

• Split interrupt service routines into a top half and a bottom half
• Top half is a normal interrupt

service routine, run with
recursive interrupts disabled

• Bottom half is run, with all
interrupts enabled, by a
miniature scheduler that ensures
bottom halves never self-interrupt

• This architecture is completed by a mechanism for disabling selected
bottom halves while executing normal, foreground kernel code

11. UNIX Case Study (I)

23

Inter-Process Communication

• Signals
• Process-to-process
• Limited number, carry no information other than which signal has occurred

• Wait queues
• Used inside the kernel
• Process puts itself on wait queue for an event, and informs scheduler that it is no longer eligible for

execution
• All waiting processes are woken when the event completes

• Pipes
• Just another type of inode in the VFS
• Each pipe has a pair of wait queues for reader and writer to synchronise

• Shared memory
• Fast but no synchronisation mechanism – need to be provided
• Persistent object, like a small independent address space

11. UNIX Case Study (I)

24

Summary

• UNIX / Linux
• History
• Components
• Kernel modules

• Processes
• Management
• Properties
• Context
• Threads

11. UNIX Case Study (I)

• Tasks
• Lifecycle
• Scheduling
• Synchronisation
• Interrupt handlers
• IPC

	11. Case Study I UNIX (Linux)
	Objectives
	Outline
	Outline (2)
	UNIX key feature
	UNIX
	UNIX history
	Linux history
	Linux design principles
	Components of a Linux system
	Kernel modules
	Outline (3)
	Process management
	Process properties
	Process context
	Processes and threads
	Outline (4)
	Task lifecycle
	Task scheduling
	Completely Fair Scheduler (CFS)
	Kernel synchronisation
	Interrupt handlers, top and bottom
	Inter-Process Communication
	Summary

