
09. I/O Systems
9th ed: Ch. 13

10th ed: Ch. 12



2

Objectives

• To understand the general structure of the I/O subsystem
• To know different ways of performing I/O including polling, interrupts, 

and direct memory access
• To know of different types of device
• To be aware of other issues including caching, scheduling, and 

performance

09. I/O Systems



3

Outline

• I/O subsystem
• I/O devices
• Kernel data structures

09. I/O Systems



4

Outline

• I/O subsystem
• Polling
• Interrupts
• Interrupt handling
• Direct Memory Access (DMA)

• I/O devices
• Kernel data structures

09. I/O Systems



5

Computation relies on I/O

• Need input data to process, and need means to output results
• There is a huge range of I/O devices 

• Human readable: graphical displays, keyboard, mouse, printers 
• Machine readable: disks, tapes, CD, sensors
• Communications: modems, network interfaces, radios 

• All differ significantly from one another in several ways:
• Data rate: orders of magnitude different between keyboard and network 
• Control complexity: printers much simpler than disks
• Transfer unit and direction: blocks vs characters vs frame stores
• Data representation 
• Error handling 

• I/O management is therefore a major component of an OS
• New devices come along frequently
• I/O performance is critical to system performance
• Also wish to present a homogeneous API

09. I/O Systems



6

I/O subsystem

• Incredible variety of I/O devices but there are commonalities
• Signals from I/O devices interface with computer
• A device has at least one connection point, or port
• Devices interconnect via a bus, either daisy-chained or shared direct access
• Devices have integrated or separate controllers (host adapters) containing processor, microcode, 

private memory, etc that operate the device, handle bus connections, any ports

• Typically device will have registers to hold commands, addresses, data
• E.g., Data-in register, data-out register, status register, control register

• Devices have addresses and are used 
by either
• Direct I/O instructions, usually privileged, or
• Memory-mapped I/O, where device registers

are mapped into processor address space, 
especially when large (e.g., graphics cards)

09. I/O Systems



7

Polling

• Consider a simple device 
• Three registers: status, data and command
• Host can read and write registers via the bus

• Polled mode operation is as follows, for every byte:
• Host repeatedly reads device-busy until clear
• Host sets read or write bit in command register, and 

puts data into data register 
• Host sets command-ready bit in status register
• Device sees command-ready and sets device-busy
• Device performs requested operation, executing transfer
• Device clears command-ready and any error bit, and then clears device-busy 

• Step 1 is polling – a busy-wait cycle, waiting for some I/O from device
• This is ok if the device is fast but very inefficient if not
• If the CPU switches to another task it risks missing a cycle leading to data being overwritten or lost

09. I/O Systems



8

Interrupts

• More efficient than polling when device is 
relatively infrequently accessed
• Device triggers interrupt-request line

• Checked by the CPU after each instruction
• Aligns interrupts with instruction boundaries

• Interrupt handler receives the interrupt 
unless masked
• Interrupt vector dispatches interrupt to 

correct handler
• Context switch required before and after
• Priorities applied, and some interrupts may be 

non-maskable

09. I/O Systems



9

Intel Pentium interrupt vectors

09. I/O Systems



10

Handling interrupts

• Split the implementation into two parts: 
• Bottom half, the interrupt handler 
• Top half, interrupt service routines (ISR; per-device) 

• Processor-dependent interrupt handler may: 
• Save more registers and establish a language environment 
• Demultiplex interrupt in software and invoke relevant ISR 

• Device- (not processor-) dependent interrupt service routine will: 
• For programmed I/O device: transfer data and clear interrupt
• For DMA devices: acknowledge transfer; request any more pending; signal any 

waiting processes; and finally enter the scheduler or return 

• But who is scheduling whom? Consider, e.g., network livelock 
09. I/O Systems



11

Direct Memory Access (DMA)

• Used for high-speed I/O devices able to transmit information at close 
to memory speeds
• Interrupts good but (e.g.) livelock a problem
• Better if devices can read and write processor memory directly – Direct 

Memory Access (DMA)

• Device controller transfers blocks of data from buffer storage directly 
to main memory without CPU intervention with generic DMA 
“command” include, e.g.,
• Source address plus increment / decrement / do nothing 
• Sink address plus increment / decrement / do nothing 
• Transfer size 

09. I/O Systems



12

Direct Memory Access (DMA)

• Only generate one interrupt per block rather than one per byte
• DMA channels may be provided by dedicated DMA controller, or by devices 

themselves
• E.g. disk controller passes disk address, 

memory address and size, and read/write

• All that’s required is that a device can 
become a bus master
• Requires ability for arbitration as not 

just CPU driving the bus
• Involves cycle stealing as taking the 

bus away from the CPU

• Scatter/Gather DMA chains multiple 
requests, e.g., of disk reads into set of buffers 

09. I/O Systems

=
=



13

Outline

• I/O subsystem
• I/O devices
• Device characteristics
• Blocking, non-blocking, asynchronous I/O
• I/O structure

• Kernel data structures

09. I/O Systems



14

I/O device characteristics

• Block devices, e.g. disk drives, CD
• Commands include read, write, seek 
• Can have raw access or via (e.g.) filesystem 

(“cooked”) or memory-mapped 

• Character devices, e.g. keyboards, mice, serial
• Commands include get, put
• Layer libraries on top for line editing, etc 

• Network Devices 
• Vary enough from block and character devices 

to get their own interface 
• Unix and Windows NT use the Berkeley Socket 

interface 

• Miscellaneous 
• Current time, elapsed time, timers, clocks 
• On Unix, ioctl covers other odd aspects of I/O 

09. I/O Systems



15

Blocking, non-blocking, 
asynchronous I/O
• From programmer perspective, I/O system calls exhibit one of three behaviours 
• Blocking

• Process suspended until I/O completed 
• Easy to use and understand but 

insufficient for some needs

• Non-blocking
• I/O call returns all available data, immediately
• Returns count of bytes read/written, maybe 0
• select following read/write
• Relies on multi-threading

• Asynchronous
• Process continues running while I/O executes with I/O subsystem explicitly signalling I/O completion
• Most flexible and potentially most efficient, but also most complex to use 

Synchronous I/O Asynchronous I/O

09. I/O Systems



16

I/O structure

• Synchronous
• After I/O starts, control returns to user program only upon I/O completion
• Wait instruction idles the CPU until the next interrupt
• Wait loop (contention for memory access)
• At most one I/O request is outstanding at a time, no simultaneous I/O processing

• Asynchronous
• After I/O starts, control returns to user program without waiting for I/O completion
• System call allows application to request to the OS to allow user to wait for I/O 

completion
• Device-status table contains entry for each I/O device indicating type, address, and state
• OS indexes into I/O device table to determine device status and to modify table entry to 

include interrupt

09. I/O Systems



17

I/O request lifecycle

• Consider process reading a file from disk:
• Determine device holding file 
• Translate name to device representation
• Physically read data from disk into buffer
• Make data available to requesting process
• Return control to process

09. I/O Systems



18

Outline

• I/O subsystem
• I/O devices
• Kernel data structures
• Vectored I/O
• Buffering
• Other issues

09. I/O Systems



19

Kernel data structures

• To manage all this, the OS kernel must maintain state for I/O components: 
• Open file tables 
• Network connections 
• Character device states 

• Results in many complex and performance critical data structures to track 
buffers, memory allocation, “dirty” blocks 
• Consider reading a file from disk for a process: 

• Determine device holding file
• Translate name to device representation 
• Physically read data from disk into buffer 
• Make data available to requesting process 
• Return control to process 

09. I/O Systems



20

Vectored I/O

• Enable one system call to perform multiple I/O operations
• E.g., Unix readve accepts a vector of multiple buffers to read into or write 

from

• This scatter-gather method better than multiple individual I/O calls
• Decreases context switching and system call overhead

• Some versions provide atomicity
• Avoids, e.g., worry about multiple threads changing data while I/O occurring 

09. I/O Systems



21

Buffering

• Different buffering strategies can be used to deal with mismatches between 
devices in, e.g., speed, transfer size
• Single buffering: OS assigns a system buffer to the user request
• Double buffering: process consumes from one buffer while system fills the next 
• Circular buffering: most useful for bursty I/O 
• Details often dictated by device type: character devices buffer by line; network devices 

are very bursty; block devices often the major user of I/O buffer memory 

• Can smooth peaks/troughs in data rate but can’t help if on average: 
• Process demand > data rate – the process will spend time waiting, or
• Data rate > capability of the system – the buffers will all fill and data will spill

• However, buffering can introduce jitter which is bad for real-time or multimedia 
applications

09. I/O Systems



22

Other issues

• Caching: fast memory holding copy of data for both reads and writes; critical to I/O performance
• Scheduling: order I/O requests in per-device queues; some OSs may even attempt to be fair 
• Spooling: queue output for a device, useful if device is “single user”, i.e. can serve only one 

request at a time (e.g., printer)
• Device reservation: system calls for acquiring or releasing exclusive access to a device (care 

required) 
• Error handling: generally get some form of error number or code when request fails, logged into 

system error log (e.g., transient write failed, disk full, device unavailable, ...) 
• Protection: process might attempt to disrupt normal operation via illegal I/O operations so all 

such instructions must be privileged and memory-mapped and I/O port memory locations 
protected, with I/O performed via system calls

• Performance: I/O really affects performance through demands on CPU to execute device driver, 
kernel I/O code, context switches due to interrupts, data copying

09. I/O Systems



23

Summary

• I/O subsystem
• Polling
• Interrupts
• Interrupt handling
• Direct Memory Access (DMA)

• I/O devices
• Device characteristics
• Blocking, non-blocking, 

asynchronous I/O
• I/O structure

• Kernel data structures
• Vectored I/O
• Buffering
• Other issues

09. I/O Systems


	09. I/O Systems
	Objectives
	Outline
	Outline (2)
	Computers and computation rely on I/O
	I/O subsystem
	Polling
	Interrupts
	Intel Pentium interrupt vectors
	Handling interrupts
	Direct Memory Access (DMA)
	Direct Memory Access (DMA) (2)
	Outline (3)
	I/O device characteristics
	Blocking, non-blocking, asynchronous I/O
	I/O structure
	I/O request lifecycle
	Outline (4)
	Kernel data structures
	Vectored I/O
	Buffering
	Other issues
	Summary

