
07. Paging
9th ed: Ch. 8, 9

10th ed: Ch. 9, 10

2

Objectives

• To discuss the purpose of paging
• To understand how paging is implemented
• To know some different ways that page tables are structured
• To be aware of the performance impact of the translation lookaside

buffer
• To discuss how paging interacts with segmentation

07. Paging

3

Outline

• Non-contiguous allocation
• Paging implementation
• Page table structure

07. Paging

4

Outline

• Non-contiguous allocation
• Address translation
• Paging model

• Paging implementation
• Page table structure

07. Paging

5

Non-contiguous allocation

• How can we enable the physical address space of a process to be non-contiguous?
• Allows physical memory to be allocated whenever available
• Avoids external fragmentation and the problem of varying sized memory chunks
• Still have internal fragmentation though

• Paging
• Divide physical memory into frames, fixed-size (power of two) blocks from 512 bytes to 1GB
• Divide logical memory into pages, blocks of the same fixed size
• Build a page table to map between pages and frames

• Running a program that needs N pages then requires
• Find N free frames
• Create entries in page table to map each page to a frame
• Load the program

07. Paging

6

Address translation

p d

m-n bits n bits

page number page offset

07. Paging

• Divide each logical address generated by the CPU into:
• Page number (p) used as an index into a page table which contains base

address of each page in physical memory
• Page offset (d) is combined with base address to define the physical memory

address that is sent to the memory unit

• For given logical address space 2m and page size 2n

7

Paging model

• Page Table stores Page Table Entries
(PTEs) that map between logical and
physical addresses

• For example,

n=2 and m=4
32 byte memory and 4 byte pages

07. Paging

8

Pros and cons

• No external fragmentation but still have internal fragmentation, e.g.,
• Page size 2048 bytes, process size 72,766 bytes, so process requires 35 pages

plus 1086 bytes, so internal fragmentation is 2048 – 1086 = 962 bytes

• On average, fragmentation is ½ frame per process
• So small frame sizes desirable to waste less
• But each page table entry takes memory to track so page table grows

• Process view and physical memory now very different
• OS controls the mapping so user process can only access its own memory
• OS must track the free frames
• OS must remap the page table on every context switch – adds overhead

07. Paging

9

Free frames

07. Paging

• Before allocation, OS has
several frames on the free
frame list

• After allocation, page table
entries created and frames no
longer in
free-frame list

10

Outline

• Non-contiguous allocation
• Paging implementation

• Free frames
• Translation Lookaside Buffer (TLB)
• Protection
• Sharing

• Page table structure

07. Paging

11

Page table implementation

• Hardware support required for performance
• Translates (logical) page number into (physical) frame number
• Offset within a page is then the offset within the frame

• Page table sits in main memory
• Page-table base register (PTBR)

points to the page table
• Page-table length register (PTLR)

indicates size of the page table

• Means every data/instruction access
now requires two memory accesses

• One for the page table plus one for the
data/instruction

• Dramatically reduces performance

07. Paging

12

Translation Lookaside Buffer (TLB)

• Resolves the performance issue of two memory
accesses

• Effectively a special hardware cache using
associative memory

• Typically fairly small, 64—1024 entries

• Operation
• If translation is in the TLB, use it
• Else we have a TLB miss so do the slow

two-memory-access lookup in the page table
• Also add the entry to the TLB for faster access next

time subject to replacement policies – typically
Least Recently Used (LRU)

• Can sometimes pin entries for permanent fast access

07. Paging

13

TLB performance

• Performance is measured in terms of hit ratio, the proportion of time a PTE is found in TLB,
e.g., assume

• TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%

• If one memory reference is required for lookup, what is the effective memory access time?

• 0.8 × 120ns + 0.2 × 220ns = 140ns
• If the hit ratio increases to 98%, what is the new effective access time?

• 0.98 × 120ns + 0.2 × 220ns = 122ns

• That is, it only gives a 13% improvement

• (Intel 80486 had 32 registers and claimed a 98% hit ratio)
• TLB also adds context switch overhead as need to flush the TLB each time

• Can store address-space identifiers (ASIDs) in each entry to avoid this

07. Paging

14

Protection

• Associate protection bits with each page, in the Page Table Entry (PTE), e.g.,
• Accessible in kernel mode only, or user mode
• Read/Write/Execute to page permitted
• Valid/Invalid

• As the address goes through the page hardware, protection bits are checked
• Note this only gives page granularity protection, not byte granularity protection

• Attempts to violate protection cause a hardware trap to the OS
• TLB entry has the valid/invalid bit indicating whether the page is mapped
• If invalid, trap to the OS handler to map the page

• Can do lots of interesting things here, particularly with regard to sharing and
virtualization

07. Paging

15

Sharing pages

• Shared code
• Keep just one copy of read-only

(reentrant) code shared among processes
• Similar to multiple threads sharing the

same process space
• Can also be useful for IPC if read-write

pages can be shared

• Private code and data
• Each process keeps its own copy of

private code and data
• Pages for which can appear anywhere in

the logical address space

07. Paging

16

Outline

• Non-contiguous allocation
• Paging implementation
• Page table structure

• Two-level page table
• Larger address spaces
• Examples: IA-32, x86-64, ARM

07. Paging

17

Page table structure

07. Paging

• Page tables can get huge using straight-
forward methods

• E.g., for a 32-bit logical address space and
page size of 4 KB (212), page table would
have 1 million entries (232 / 212 = 220)

• If each entry is 4 bytes that means 4 MB of
physical memory for page table – don’t
want to contiguously allocate that

• Instead, split the page table into multiple
levels and page out all but the outermost
level

18

Two-level paging

• For example, given a 20 bit page number and a 12 bit
page offset, split the page number into two equal
sized parts of 10 bits each

• NB. A 12 bit offset implies 212 = 4096 byte pages
• There is no requirement that the two (or more) parts be

equal sized

• The PTBR then points to the address of the outermost
L1 page table and lookup proceeds by

• The 10 bit p1 value indexes into the L1 page table to obtain
the address of the relevant page of the L2 page table

• The 10 bit p2 value then indexes into the L2 page table to
obtain the address of the mapped frame

• Finally the page offset d then indexes into the frame to
obtain the intended byte

• This is a forward mapped page table

07. Paging

19

Larger address spaces

• For large address spaces – e.g., 64 bit – simple
hierarchy is impractical

• Either one or more layers remains too large,
• Or the number of accesses to get to the target address

becomes too large

• Non-examinable alternatives include
• Hashed page tables, where the page number is hashed

into a table and the chain followed until the specific
entry is found

• Inverted page tables, with an entry for each frame and
a hash-table used to limit the search to one or a few
entries, trading size for lookup latency

• Three non-examinable practical examples follow:
Intel IA-32, Intel x86-64, and ARM

Hashed page table

Inverted page table

07. Paging

20

Example: Intel IA-32 architecture

• Hybrid using segmentation with paging
• Each segment up to 4GB, and up to 16,384 segments per process split into two

equal partitions
• First partition’s segments are private to the process, kept in the Local Descriptor

Table (LDT)
• Second partition’s segments are shared among all processes, kept in the Global

Descriptor Table (GDT)
• LDT and GDT entries are 8 bytes with info about a given segment including its

base location and limit

• CPU generates a logical address which the segmentation unit translates
to a linear address which the paging unit translates to a physical
address

07. Paging

21

Example: Intel IA-32 architecture

• Logical address is a pair < selector, offset > where
• the selector is a 16 bit number indicating segment

number s, global/local indicator g, and protection bits
p, and

• the offset is a 32 bit number indicating the byte in the
selected segment

• Generate linear address by
• Six segment registers so can address six segments at

any given time, and further six 8 bit microprogram
registers hold the LDT/GDT descriptors

• Segment register points to entry in LDT/GDT
• Limit information validates the offset
• If valid, offset is added to base giving linear address

07. Paging

22

Example: Intel IA-32 architecture

• Linear address is then resolved
• If the page_size flag is not set, then standard 4kB

pages are used with a two level lookup, with Intel
referring to the (outermost) L1 table as the page
directory and the L2 table as the page table

• Otherwise 4MB pages and frames are used with the
page directory pointing directly to the 4MB frame,
bypassing the inner page table completely

• In the former case, a valid/invalid bit in the page
directory entry indicates whether the inner page
table is itself swapped out or not

• If it is, the other 31 bits indicate the disk address from
which to swap it in

07. Paging

23

Example: Intel Page Address
Extensions (PAE)
• 32 bit address limits led Intel to create Page Address Extension (PAE)

allowing 36 bit addresses ~ access to 64GB physical memory
• Paging went to a 3-level scheme
• Top two bits refer to a page directory pointer table
• Page-directory and page-table entries moved to 64 bits in size

07. Paging

24

Example: Intel x86-64

• Current generation Intel x86 architecture
• Developed by AMD, adopted by Intel
• 64 bits is enormous – 16 exabytes!

• In practice only implement 48 bit addressing
• Page sizes of 4kB, 2MB, 1GB
• Four levels of paging hierarchy

• Can also use PAE so virtual addresses are 48 bits but physical
addresses are 52 bits

07. Paging

25

Example: ARM

• Modern, energy efficient, 32-bit CPU
• Dominant mobile platform chip
• E.g., Apple iOS and Google Android devices

• Paging structures
• 4 kB and 16 kB pages
• 1 MB and 16 MB pages called sections
• One-level paging for sections, two-level for smaller pages

• TLB support in two levels
• Outer level has two micro TLBs: one for data, one for

instructions
• Micro TLBs support ASIDs
• Inner is single main TLB

• Lookup proceeds by
• First check inner TLB
• On miss, check outers
• On miss, CPU performs page table walk

07. Paging

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

26

Summary

• Non-contiguous allocation
• Address translation
• Paging model

• Paging implementation
• Free frames
• Translation Lookaside Buffer (TLB)
• Protection
• Sharing

07. Paging

• Page table structure
• Two-level page table
• Larger address spaces
• Examples: IA-32, x86-64, ARM

	07. Paging
	Objectives
	Outline
	Outline (2)
	Non-contiguous allocation
	Address translation
	Paging model
	Pros and cons
	Free frames
	Outline (3)
	Page table implementation
	Translation Lookaside Buffer (TLB)
	TLB performance
	Protection
	Sharing pages
	Outline (4)
	Page table structure
	Two-level paging
	Larger address spaces
	Example: Intel IA-32 architecture
	Example: Intel IA-32 architecture (2)
	Example: Intel IA-32 architecture (3)
	Example: Intel Page Address Extensions (PAE)
	Example: Intel x86-64
	Example: ARM
	Summary

