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Objectives

• To discuss the purpose of paging
• To understand how paging is implemented
• To know some different ways that page tables are structured
• To be aware of the performance impact of the translation lookaside 

buffer
• To discuss how paging interacts with segmentation
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Outline

• Non-contiguous allocation
• Paging implementation
• Page table structure
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Non-contiguous allocation

• How can we enable the physical address space of a process to be non-contiguous?
• Allows physical memory to be allocated whenever available
• Avoids external fragmentation and the problem of varying sized memory chunks
• Still have internal fragmentation though

• Paging
• Divide physical memory into frames, fixed-size (power of two) blocks from 512 bytes to 1GB
• Divide logical memory into pages, blocks of the same fixed size
• Build a page table to map between pages and frames

• Running a program that needs N pages then requires 
• Find N free frames
• Create entries in page table to map each page to a frame
• Load the program

07. Paging
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Address translation

p d

m-n bits n bits

page number page offset

07. Paging

• Divide each logical address generated by the CPU into:
• Page number (p) used as an index into a page table which contains base 

address of each page in physical memory
• Page offset (d) is combined with base address to define the physical memory 

address that is sent to the memory unit

• For given logical address space 2m and page size 2n
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Paging model

• Page Table stores Page Table Entries 
(PTEs) that map between logical and 
physical addresses

• For example,

n=2 and m=4
32 byte memory and 4 byte pages

07. Paging
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Pros and cons

• No external fragmentation but still have internal fragmentation, e.g.,
• Page size 2048 bytes, process size 72,766 bytes, so process requires 35 pages 

plus 1086 bytes, so internal fragmentation is 2048 – 1086 = 962 bytes

• On average, fragmentation is ½ frame per process
• So small frame sizes desirable to waste less
• But each page table entry takes memory to track so page table grows

• Process view and physical memory now very different
• OS controls the mapping so user process can only access its own memory
• OS must track the free frames
• OS must remap the page table on every context switch – adds overhead

07. Paging
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Free frames

07. Paging

• Before allocation, OS has 
several frames on the free 
frame list

• After allocation, page table 
entries created and frames no 
longer in 
free-frame list
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Outline

• Non-contiguous allocation
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• Free frames
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• Sharing
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Page table implementation

• Hardware support required for performance
• Translates (logical) page number into (physical) frame number
• Offset within a page is then the offset within the frame

• Page table sits in main memory
• Page-table base register (PTBR) 

points to the page table
• Page-table length register (PTLR) 

indicates size of the page table

• Means every data/instruction access 
now requires two memory accesses

• One for the page table plus one for the 
data/instruction

• Dramatically reduces performance

07. Paging
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Translation Lookaside Buffer (TLB)

• Resolves the performance issue of two memory 
accesses

• Effectively a special hardware cache using 
associative memory

• Typically fairly small, 64—1024 entries

• Operation
• If translation is in the TLB, use it
• Else we have a TLB miss so do the slow 

two-memory-access lookup in the page table
• Also add the entry to the TLB for faster access next 

time subject to replacement policies – typically 
Least Recently Used (LRU)

• Can sometimes pin entries for permanent fast access

07. Paging



13

TLB performance

• Performance is measured in terms of hit ratio, the proportion of time a PTE is found in TLB, 
e.g., assume

• TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%

• If one memory reference is required for lookup, what is the effective memory access time?

• 0.8 × 120ns + 0.2 × 220ns = 140ns
• If the hit ratio increases to 98%, what is the new effective access time?

• 0.98 × 120ns + 0.2 × 220ns = 122ns

• That is, it only gives a 13% improvement 

• (Intel 80486 had 32 registers and claimed a 98% hit ratio) 
• TLB also adds context switch overhead as need to flush the TLB each time

• Can store address-space identifiers (ASIDs) in each entry to avoid this

07. Paging
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Protection

• Associate protection bits with each page, in the Page Table Entry (PTE), e.g.,
• Accessible in kernel mode only, or user mode
• Read/Write/Execute to page permitted
• Valid/Invalid

• As the address goes through the page hardware, protection bits are checked
• Note this only gives page granularity protection, not byte granularity protection

• Attempts to violate protection cause a hardware trap to the OS
• TLB entry has the valid/invalid bit indicating whether the page is mapped
• If invalid, trap to the OS handler to map the page 

• Can do lots of interesting things here, particularly with regard to sharing and 
virtualization

07. Paging
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Sharing pages

• Shared code
• Keep just one copy of read-only 

(reentrant) code shared among processes 
• Similar to multiple threads sharing the 

same process space
• Can also be useful for IPC if read-write 

pages can be shared

• Private code and data 
• Each process keeps its own copy of 

private code and data
• Pages for which can appear anywhere in 

the logical address space

07. Paging
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Outline

• Non-contiguous allocation
• Paging implementation
• Page table structure

• Two-level page table
• Larger address spaces
• Examples: IA-32, x86-64, ARM
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Page table structure

07. Paging

• Page tables can get huge using straight-
forward methods

• E.g., for a 32-bit logical address space and 
page size of 4 KB (212), page table would 
have 1 million entries (232 / 212 = 220) 

• If each entry is 4 bytes that means 4 MB of 
physical memory for page table – don’t 
want to contiguously allocate that 

• Instead, split the page table into multiple 
levels and page out all but the outermost 
level
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Two-level paging

• For example, given a 20 bit page number and a 12 bit 
page offset, split the page number into two equal 
sized parts of 10 bits each

• NB. A 12 bit offset implies 212 = 4096 byte pages
• There is no requirement that the two (or more) parts be 

equal sized

• The PTBR then points to the address of the outermost 
L1 page table and lookup proceeds by

• The 10 bit p1 value indexes into the L1 page table to obtain 
the address of the relevant page of the L2 page table

• The 10 bit p2 value then indexes into the L2 page table to 
obtain the address of the mapped frame

• Finally the page offset d then indexes into the frame to 
obtain the intended byte

• This is a forward mapped page table

07. Paging
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Larger address spaces

• For large address spaces – e.g., 64 bit – simple 
hierarchy is impractical

• Either one or more layers remains too large, 
• Or the number of accesses to get to the target address 

becomes too large

• Non-examinable alternatives include
• Hashed page tables, where the page number is hashed 

into a table and the chain followed until the specific 
entry is found

• Inverted page tables, with an entry for each frame and 
a hash-table used to limit the search to one or a few 
entries, trading size for lookup latency

• Three non-examinable practical examples follow: 
Intel IA-32, Intel x86-64, and ARM

Hashed page table

Inverted page table

07. Paging
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Example: Intel IA-32 architecture

• Hybrid using segmentation with paging
• Each segment up to 4GB, and up to 16,384 segments per process split into two 

equal partitions
• First partition’s segments are private to the process, kept in the Local Descriptor 

Table (LDT)
• Second partition’s segments are shared among all processes, kept in the Global 

Descriptor Table (GDT)
• LDT and GDT entries are 8 bytes with info about a given segment including its 

base location and limit

• CPU generates a logical address which the segmentation unit translates 
to a linear address which the paging unit translates to a physical 
address

07. Paging
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Example: Intel IA-32 architecture

• Logical address is a pair < selector, offset > where 
• the selector is a 16 bit number indicating segment 

number s, global/local indicator g, and protection bits 
p, and 

• the offset is a 32 bit number indicating the byte in the 
selected segment

• Generate linear address by 
• Six segment registers so can address six segments at 

any given time, and further six 8 bit microprogram 
registers hold the LDT/GDT descriptors

• Segment register points to entry in LDT/GDT 
• Limit information validates the offset
• If valid, offset is added to base giving linear address

07. Paging
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Example: Intel IA-32 architecture

• Linear address is then resolved 
• If the page_size flag is not set, then standard 4kB 

pages are used with a two level lookup, with Intel 
referring to the (outermost) L1 table as the page 
directory and the L2 table as the page table

• Otherwise 4MB pages and frames are used with the 
page directory pointing directly to the 4MB frame, 
bypassing the inner page table completely

• In the former case, a valid/invalid bit in the page 
directory entry indicates whether the inner page 
table is itself swapped out or not

• If it is, the other 31 bits indicate the disk address from 
which to swap it in

07. Paging
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Example: Intel Page Address 
Extensions (PAE)
• 32 bit address limits led Intel to create Page Address Extension (PAE) 

allowing 36 bit addresses ~ access to 64GB physical memory
• Paging went to a 3-level scheme
• Top two bits refer to a page directory pointer table
• Page-directory and page-table entries moved to 64 bits in size

07. Paging
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Example: Intel x86-64

• Current generation Intel x86 architecture
• Developed by AMD, adopted by Intel
• 64 bits is enormous – 16 exabytes!

• In practice only implement 48 bit addressing
• Page sizes of 4kB, 2MB, 1GB
• Four levels of paging hierarchy

• Can also use PAE so virtual addresses are 48 bits but physical 
addresses are 52 bits

07. Paging
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Example: ARM

• Modern, energy efficient, 32-bit CPU
• Dominant mobile platform chip 
• E.g., Apple iOS and Google Android devices

• Paging structures
• 4 kB and 16 kB pages
• 1 MB and 16 MB pages called sections
• One-level paging for sections, two-level for smaller pages

• TLB support in two levels
• Outer level has two micro TLBs: one for data, one for 

instructions
• Micro TLBs support ASIDs
• Inner is single main TLB

• Lookup proceeds by
• First check inner TLB
• On miss, check outers
• On miss, CPU performs page table walk

07. Paging
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Summary

• Non-contiguous allocation
• Address translation
• Paging model

• Paging implementation
• Free frames
• Translation Lookaside Buffer (TLB)
• Protection
• Sharing
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• Page table structure
• Two-level page table
• Larger address spaces
• Examples: IA-32, x86-64, ARM
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