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Objectives

• To describe the hardware required for memory protection
• To introduce the concepts of logical and physical addresses
• To discuss the problem of address binding
• To introduce the concept of segmentation
• To understand the problem of fragmentation
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Outline

• Memory protection
• Memory allocation
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Outline

• Memory protection
• Address binding
• Logical and physical addresses
• Memory Management Unit (MMU) 
• Linking and loading

• Memory allocation
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Memory management

• Will have many programs in memory simultaneously
• Program code loaded from storage

• The CPU can only access registers and main memory directly
• Register access in a single cycle, but memory access takes many cycles
• Multiple levels of cache attempt to hide main memory latency (L1, L2, L3)

• Memory unit sees only a stream of
• Address plus read request
• Address plus data plus write request

• Need to protect memory accesses to prevent malicious or just buggy 
user programs corrupting other programs, including the kernel
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Hardware address protection

• Base and limit registers define the logical 
address space
• Base is the smallest legal address, e.g., 300040 
• Limit is the size of the range, e.g., 120900
• Thus program can access addresses in the range 

[300040, 420940)

• CPU must check every user-mode memory 
access to ensure it is in that range
• Exception raised to OS if not
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• Programs on disk are brought into memory to create running processes – but where 
in memory to put them given program code will refer to memory locations?
• Consider a simple program and the assembly code it might generate
• [Rx] means 

the contents of memory at address Rx

• Address binding happens at three different points
• Compile time: If memory location known a priori, absolute code can be generated; requires 

recompilation if base location changes
• Load time: Need to generate relocatable code if memory location is not known at compile time
• Execution time: Binding delayed until run time if the process can be moved during its execution 

from one memory segment to another

• Bindings map one address space to another – requires hardware support

Address binding
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Logical vs physical addresses

• The concept of a logical address space that is bound to a separate 
physical address space is central to proper memory management
• Logical (virtual) address – as generated by the CPU
• Physical address – address seen by the memory unit
• Identical in compile-time and load-time address-binding schemes
• Differ in execution-time address-binding schemes

• The logical/physical address space is the set of all logical/physical 
addresses generated by a program
• Need hardware support to perform the mapping from logical to 

physical addresses at run time
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Memory Management Unit (MMU)

• Hardware that maps logical to physical addresses at run time 
• Conceptually simple scheme: replace 

base register with relocation register 
• Add the value in the relocation register to 

every address generated by a user process 
at the time it is sent to memory
• User programs deal with logical addresses, never seeing physical addresses

• Execution-time binding occurs when reference is made to location in 
memory
• Logical address is bound to physical address by the MMU
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Dynamic linking and loading

• Linking combines different object code modules to create a program
• Static linking – all libraries and program code combined into the binary program image
• Dynamic linking – postpone linking to execution time

• Dynamic linking is particularly useful for system or shared libraries
• May need to track versions

• Calls replaced with a stub
• A small piece of code to locate the appropriate in-memory routine

• Stub replaces itself with the address of the routine, and executes the routine
• Operating system checks if routine is in processes’ memory address, adding it if not

• Dynamic loading avoids loading routines until they’re called
• Better memory usage as unused routines are never loaded
• Requires they be compiled with relocatable addresses
• Useful when large amounts of code are needed infrequently

• OS can help by providing libraries to implement dynamic loading
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Outline

• Memory protection
• Memory allocation
• Swapping
• Dynamic allocation
• Fragmentation
• Compaction
• Segmentation
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Memory allocation

• Main memory must support both kernel and user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is early method putting each process in one chunk of memory

• How to determine chunks?
• Multiple fixed-sized partitions limits the degree of multiprogramming; prefer variable partitioning

• Main memory usually partitioned into two
• Resident kernel, usually held in low memory 

alongside interrupt vectors
• User processes then held in high memory, 

each in a single contiguous section

• Relocation registers used to protect 
• User processes from each other, and 
• OS code and data from being modified

• Can then allow actions such as kernel code being 
transient and kernel changing size

06. Memory Management
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Swapping

• When physical memory requested exceeds physical 
memory in machine, temporarily swap processes out 
• Move processes from main memory to storage

• Significant performance impact
• Time to transfer process to/from storage directly 

proportional to the amount of memory swapped 
• Context switches can thus become very expensive
• E.g., 100MB process with storage transfer rate of 50MB/s

• Swapping default disabled
• Enabled only while allocated memory exceeds threshold
• Plus consider pending I/O to or from process memory space
• System maintains a ready queue of ready-to-run processes with memory images on disk

• Must swapped out processes be swapped into the same physical addresses?
• Depends on address binding method
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Multiple variable-partition allocation

• Holes, blocks of available memory of various size are scattered 
throughout memory
• When a process arrives, it is allocated memory from a hole large enough to 

accommodate it
• Process exiting frees its partition, adjacent free partitions combined

• OS maintains information about: 
• allocated partitions and
• free partitions (holes)

06. Memory Management



15

Dynamic allocation problem

• How to satisfy a request of size  from a list of free holes?

• First-fit, allocate the first hole that is big enough
• Best-fit, allocate the smallest hole that is big enough

• Requires searching entire list, unless maintained ordered by size  
• Produces the smallest leftover hole

• Worst-fit, allocate the largest hole
• Also requires searching entire list, producing the largest leftover hole

• First-fit and best-fit better than worst-fit in terms of speed and storage 
utilization
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Fragmentation

• Fragmentation results in memory being unused and unusable

• External Fragmentation
• Occurs when free memory exists to satisfy a request but it is not contiguous
• Can eventually result in blocking as insufficient contiguous memory to swap any process in

• Internal Fragmentation 
• Occurs when allocated memory is 

slightly larger than requested memory
• Memory internal to a partition, but unused

• Analysis of first-fit indicates that for N 
blocks allocated, 0.5 N blocks lost to 
fragmentation
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Compaction

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if 
• relocation is dynamic, and 
• done at execution time

• I/O problem
• Pin job in memory while involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems
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Segmentation

• Memory-management scheme supporting user view of 
memory 
• View a program as a collection of segments, logical program  units 

such as the program, a procedure, an object, an array, etc

• Accessing memory requires 
user program to specify
• Segment name (number) and 
• Offset within segment
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Segmentation hardware

• Logical address is now a pair < segment-number, offset >

• Segment table maps to physical addresses via entries having
• Base, the starting physical address where the segment resides
• Limit, specifying the length of the segment

• Segment-table base register (STBR) points to the segment 
table’s location in memory

• Segment-table length register (STLR) indicates number of segments 
used by a program;

• Segment number s is legal if s < STLR

• Protection provided by associating with each entry in segment table 
• Validation bit indicating legal / illegal segment
• Read/Write/Execute privileges
• Associated with segments so code sharing occurs at segment level

• Segments vary in length so memory allocation is a dynamic storage-allocation problem

06. Memory Management
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Sharing segments is subtle

• Consider jumps within shared code
• Specified as a condition and a transfer address < segment-number, offset > 
• segment-number is (of course) this one

• So all programs sharing this segment must use the same number to refer to it
• The difficulty of finding a common shared segment number grows as the number of users sharing a segment 
• Thus, specify branches as PC-relative or relative to a register containing the current segment number
• Read only segments containing no pointers may be shared 

with different segment numbers

• Wasteful to store common information on shared 
segment in each process segment table
• Also dangerous as can get out of sync between processes

• Assign each segment a unique System Segment
Number (SSN)
• Process Segment Table then maps 

from a Process Segment Number (PSN) to SSN 

06. Memory Management
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Summary

• Memory protection
• Address binding
• Logical and physical addresses
• Memory Management Unit (MMU) 
• Linking and loading

• Memory allocation
• Swapping
• Dynamic allocation
• Fragmentation
• Compaction
• Segmentation
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