
06. Memory
Management

9th ed: Ch. 8, 9

10th ed: Ch. 9, 10

2

Objectives

• To describe the hardware required for memory protection
• To introduce the concepts of logical and physical addresses
• To discuss the problem of address binding
• To introduce the concept of segmentation
• To understand the problem of fragmentation

06. Memory Management

3

Outline

• Memory protection
• Memory allocation

06. Memory Management

4

Outline

• Memory protection
• Address binding
• Logical and physical addresses
• Memory Management Unit (MMU)
• Linking and loading

• Memory allocation

06. Memory Management

5

Memory management

• Will have many programs in memory simultaneously
• Program code loaded from storage

• The CPU can only access registers and main memory directly
• Register access in a single cycle, but memory access takes many cycles
• Multiple levels of cache attempt to hide main memory latency (L1, L2, L3)

• Memory unit sees only a stream of
• Address plus read request
• Address plus data plus write request

• Need to protect memory accesses to prevent malicious or just buggy
user programs corrupting other programs, including the kernel

06. Memory Management

6

Hardware address protection

• Base and limit registers define the logical
address space
• Base is the smallest legal address, e.g., 300040
• Limit is the size of the range, e.g., 120900
• Thus program can access addresses in the range

[300040, 420940)

• CPU must check every user-mode memory
access to ensure it is in that range
• Exception raised to OS if not

06. Memory Management

=

7

• Programs on disk are brought into memory to create running processes – but where
in memory to put them given program code will refer to memory locations?
• Consider a simple program and the assembly code it might generate
• [Rx] means

the contents of memory at address Rx

• Address binding happens at three different points
• Compile time: If memory location known a priori, absolute code can be generated; requires

recompilation if base location changes
• Load time: Need to generate relocatable code if memory location is not known at compile time
• Execution time: Binding delayed until run time if the process can be moved during its execution

from one memory segment to another

• Bindings map one address space to another – requires hardware support

Address binding

06. Memory Management

8

Logical vs physical addresses

• The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management
• Logical (virtual) address – as generated by the CPU
• Physical address – address seen by the memory unit
• Identical in compile-time and load-time address-binding schemes
• Differ in execution-time address-binding schemes

• The logical/physical address space is the set of all logical/physical
addresses generated by a program
• Need hardware support to perform the mapping from logical to

physical addresses at run time

06. Memory Management

9

Memory Management Unit (MMU)

• Hardware that maps logical to physical addresses at run time
• Conceptually simple scheme: replace

base register with relocation register
• Add the value in the relocation register to

every address generated by a user process
at the time it is sent to memory
• User programs deal with logical addresses, never seeing physical addresses

• Execution-time binding occurs when reference is made to location in
memory
• Logical address is bound to physical address by the MMU

06. Memory Management

+

10

Dynamic linking and loading

• Linking combines different object code modules to create a program
• Static linking – all libraries and program code combined into the binary program image
• Dynamic linking – postpone linking to execution time

• Dynamic linking is particularly useful for system or shared libraries
• May need to track versions

• Calls replaced with a stub
• A small piece of code to locate the appropriate in-memory routine

• Stub replaces itself with the address of the routine, and executes the routine
• Operating system checks if routine is in processes’ memory address, adding it if not

• Dynamic loading avoids loading routines until they’re called
• Better memory usage as unused routines are never loaded
• Requires they be compiled with relocatable addresses
• Useful when large amounts of code are needed infrequently

• OS can help by providing libraries to implement dynamic loading

06. Memory Management

11

Outline

• Memory protection
• Memory allocation
• Swapping
• Dynamic allocation
• Fragmentation
• Compaction
• Segmentation

06. Memory Management

12

Memory allocation

• Main memory must support both kernel and user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is early method putting each process in one chunk of memory

• How to determine chunks?
• Multiple fixed-sized partitions limits the degree of multiprogramming; prefer variable partitioning

• Main memory usually partitioned into two
• Resident kernel, usually held in low memory

alongside interrupt vectors
• User processes then held in high memory,

each in a single contiguous section

• Relocation registers used to protect
• User processes from each other, and
• OS code and data from being modified

• Can then allow actions such as kernel code being
transient and kernel changing size

06. Memory Management

+

13

Swapping

• When physical memory requested exceeds physical
memory in machine, temporarily swap processes out
• Move processes from main memory to storage

• Significant performance impact
• Time to transfer process to/from storage directly

proportional to the amount of memory swapped
• Context switches can thus become very expensive
• E.g., 100MB process with storage transfer rate of 50MB/s

• Swapping default disabled
• Enabled only while allocated memory exceeds threshold
• Plus consider pending I/O to or from process memory space
• System maintains a ready queue of ready-to-run processes with memory images on disk

• Must swapped out processes be swapped into the same physical addresses?
• Depends on address binding method

06. Memory Management

14

Multiple variable-partition allocation

• Holes, blocks of available memory of various size are scattered
throughout memory
• When a process arrives, it is allocated memory from a hole large enough to

accommodate it
• Process exiting frees its partition, adjacent free partitions combined

• OS maintains information about:
• allocated partitions and
• free partitions (holes)

06. Memory Management

15

Dynamic allocation problem

• How to satisfy a request of size from a list of free holes?

• First-fit, allocate the first hole that is big enough
• Best-fit, allocate the smallest hole that is big enough

• Requires searching entire list, unless maintained ordered by size
• Produces the smallest leftover hole

• Worst-fit, allocate the largest hole
• Also requires searching entire list, producing the largest leftover hole

• First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

06. Memory Management

16

Fragmentation

• Fragmentation results in memory being unused and unusable

• External Fragmentation
• Occurs when free memory exists to satisfy a request but it is not contiguous
• Can eventually result in blocking as insufficient contiguous memory to swap any process in

• Internal Fragmentation
• Occurs when allocated memory is

slightly larger than requested memory
• Memory internal to a partition, but unused

• Analysis of first-fit indicates that for N
blocks allocated, 0.5 N blocks lost to
fragmentation

06. Memory Management

17

Compaction

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if
• relocation is dynamic, and
• done at execution time

• I/O problem
• Pin job in memory while involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems

06. Memory Management

18

Segmentation

• Memory-management scheme supporting user view of
memory
• View a program as a collection of segments, logical program units

such as the program, a procedure, an object, an array, etc

• Accessing memory requires
user program to specify
• Segment name (number) and
• Offset within segment

06. Memory Management

19

Segmentation hardware

• Logical address is now a pair < segment-number, offset >

• Segment table maps to physical addresses via entries having
• Base, the starting physical address where the segment resides
• Limit, specifying the length of the segment

• Segment-table base register (STBR) points to the segment
table’s location in memory

• Segment-table length register (STLR) indicates number of segments
used by a program;

• Segment number s is legal if s < STLR

• Protection provided by associating with each entry in segment table
• Validation bit indicating legal / illegal segment
• Read/Write/Execute privileges
• Associated with segments so code sharing occurs at segment level

• Segments vary in length so memory allocation is a dynamic storage-allocation problem

06. Memory Management

20

Sharing segments is subtle

• Consider jumps within shared code
• Specified as a condition and a transfer address < segment-number, offset >
• segment-number is (of course) this one

• So all programs sharing this segment must use the same number to refer to it
• The difficulty of finding a common shared segment number grows as the number of users sharing a segment
• Thus, specify branches as PC-relative or relative to a register containing the current segment number
• Read only segments containing no pointers may be shared

with different segment numbers

• Wasteful to store common information on shared
segment in each process segment table
• Also dangerous as can get out of sync between processes

• Assign each segment a unique System Segment
Number (SSN)
• Process Segment Table then maps

from a Process Segment Number (PSN) to SSN

06. Memory Management

21

Summary

• Memory protection
• Address binding
• Logical and physical addresses
• Memory Management Unit (MMU)
• Linking and loading

• Memory allocation
• Swapping
• Dynamic allocation
• Fragmentation
• Compaction
• Segmentation

06. Memory Management

	06. Memory Management
	Objectives
	Outline
	Outline (2)
	Memory management
	Hardware address protection
	Address binding
	Logical vs physical addresses
	Memory Management Unit (MMU)
	Dynamic linking and loading
	Outline (3)
	Memory allocation
	Swapping
	Multiple variable-partition allocation
	Dynamic allocation problem
	Fragmentation
	Compaction
	Segmentation
	Segmentation hardware
	Sharing segments is subtle
	Summary

