
04. Scheduling
9th ed: Ch. 6

10th ed: Ch. 5

2

Objectives

• To introduce CPU scheduling, the basis for multi-programmed
operating systems, and the CPU I/O burst cycle
• To distinguish pre-emptive and non-preemptive scheduling
• To understand some different metrics used to make scheduling

decisions
• Utilisation, Throughput
• Turnaround time, Waiting time, Response time

04. Scheduling

3

Outline

• Queues
• Scheduling
• Multiple processor scheduling

04. Scheduling

4

Outline

• Queues
• CPU I/O burst cycle
• CPU scheduler vs job scheduler
• Idling

• Scheduling
• Multiple processor scheduling

04. Scheduling

5

Queues

• Job Queue: batch processes
awaiting admission
• Ready Queue: processes in

main memory, ready and
waiting to execute
• Wait Queue(s): set of

processes waiting for e.g., I/O
devices or other processes

04. Scheduling

6

Queues

• For example,
• Two processes (7, 2) in the

Ready queue
• No processes waiting for

either magnetic tape unit
• Three processes (3, 14, 6)

waiting for the disk
• One process (5) waiting for

the terminal

• …etc

04. Scheduling

wait
queues

ready
queue

7

CPU I/O Burst Cycle

• Process execution interleaves CPU execution with waiting
for I/O
• Maximising CPU utilization means multiprogramming

• Need something to do while waiting for I/O

• CPU burst distribution helps
parameterise scheduling
• Often (hyper-)exponential

• I/O-bound
• Many short CPU bursts

• CPU-bound
• Fewer longer CPU bursts

04. Scheduling

8

Schedulers

• Short-term or CPU scheduler
• Selects which process should be executed next and allocates it to the CPU
• Sometimes the only scheduler in a system
• Invoked frequently (milliseconds) so must be fast

• Long-term or Job scheduler
• Controls the degree of multiprogramming
• Selects which processes should be brought into the ready queue
• Invoked infrequently (seconds, minutes) so may be slow
• Strives for good process mix between CPU- and I/O-bound processes

04. Scheduling

9

Idling

• Will assume there’s always something to do – but what if there isn’t?
• An important question on a modern (interactive) machine

• Three options:
1. Busy wait in the scheduler: short-response times but ugly, inefficient
2. Halt CPU until interrupted: saves energy but increases latency
3. Invent an idle process:

• nice uniform structure and could do some housekeeping
• …but consumes resources and might slow interrupt response

04. Scheduling

10

Outline

• Queues
• Scheduling
• Dispatcher
• Pre-emptive vs non-preemptive
• Criteria

• Multiple processor scheduling

04. Scheduling

11

Dispatcher

• After scheduler, the Dispatcher gives control of the CPU to the
selected process by
• Switching context,
• Switching to user mode,
• Executing the user process from the selected location

• Dispatch latency is the time it takes to complete this stop/start
procedure
• Two important questions:

1. When to make a scheduling decision to select the next process?
2. How to order the queue – which process to select next?

04. Scheduling

12

When to enter the scheduler?

• When can the scheduling decision be made? When
1. ...a running process blocks (running → waiting)
2. ...a running process terminates (running → terminated)
3. ...a timer expires (running → ready)
4. ...a waiting process unblocks (waiting → ready)

• If the scheduler is only invoked
under 1 and 2, it is non-preemptive
• Running process decides if/when

to enter scheduler

• Otherwise, it is pre-emptive
• OS can force scheduler entry

04. Scheduling

13

Pre-emptive vs Non-preemptive

• Pre-emptive scheduling
• Hardware support for regular timer interrupts required to ensure scheduler

entered
• Precludes denial-of-service: the OS simply pre-empts a long-running process
• More complex to implement: timer management, concurrency issues

• Non-preemptive scheduling
• Typically uses an explicit yield system call or similar so running process can enter

the scheduler, alongside implicit yields when, e.g., performing I/O
• Simple to implement: no timers required, process holds CPU as long as desired
• Open to denial-of-service: malicious or buggy process can refuse to yield

• Almost all modern schedulers are pre-emptive

04. Scheduling

14

Scheduling Criteria

• Typically there will be more than one process runnable –
how to decide which one to pick?
• Many different metrics may be used, with different trade-offs and

leading to different operating regimes
• Data structures introduce time and space overheads
• …of measurement and computation for the metric
• …of selecting the “best” next process

04. Scheduling

15

Scheduling Criteria

• Turnaround time, minimising the time for any process to complete
• Aims to minimise total time from process submission to completion across all

states

• Waiting time, minimising the time a process sits in the Ready queue
• Scheduler only controls time in the Ready queue – rest is up to the process
• But may penalise I/O heavy processes that spend a long time in the wait

queue

• Response time, minimising the time to start responding
• In interactive/time-sharing systems, users may prefer to total efficiency
• But may penalise longer running sessions under heavy load

04. Scheduling

16

Scheduling Criteria

• CPU utilisation, maximising the time the CPU is actively in use
• Aims to keep the (expensive) CPU as busy as possible
• But may penalise I/O heavy processes as they appear to leave the CPU idle

• Throughput, maximising the rate at which processes complete execution
• Aims to get useful work done at the highest possible rate
• But may penalise long-running processes as short-run processes will be preferred

• Typically want to maximise utilisation and throughput, and minimise
turnaround, waiting and response times
• …but what exactly – optimise the average? Minimise the maximum?
• What about the distribution, e.g., variance, confidence intervals?

04. Scheduling

17

Outline

• Queues
• Scheduling
• Multiple processor scheduling
• NUMA
• Load balancing, multicore, virtualisation

04. Scheduling

18

Multiple processor scheduling

• Everything becomes more complex when multiple CPUs are available
• Assume homogeneous processors within a multiprocessor

• Asymmetric multiprocessing
• Only one processor accesses the system data structures
• Alleviates the need for data sharing

• Symmetric multiprocessing (SMP) – currently the most common
• Each processor is self-scheduling
• All processes can be in a single ready queue, or each processor has its own private ready queue

• Processor affinity when a process has affinity for which processor it runs
• Soft affinity indicates preference
• Hard affinity indicates constraint
• Variations including processor sets

04. Scheduling

19

Non-Uniform Memory Access
(NUMA)
• Affects CPU scheduling as it means different CPUs have faster or

slower access to parts of memory
• E.g., because have combined CPU and memory boards

• Memory placement then
affects affinity
• Costs of switching to a

different CPU could be very
much higher than without
NUMA

04. Scheduling

20

Load balancing, multicore,
virtualisation
• SMP means OS needs to keep all CPUs loaded for efficiency
• Load balancing attempts to keep workload evenly distributed

• Push migration has a periodic task check load on each CPU and push tasks off
overloaded CPUs onto other CPUs
• Pull migration has idle CPUs pull waiting tasks off busy CPUs

• Recent trends include
• Multicore, placing multiple CPU cores on same physical chip, increasing speed and

efficiency
• Hyperthreading, increasing the number of threads per core so that one thread can

make progress while another is stalled on memory read
• Virtualisation challenges OS scheduler as hypervisor and guests are all scheduling

against each other

04. Scheduling

21

Summary

• Queues
• CPU I/O burst cycle
• CPU scheduler vs job scheduler
• Idling

• Scheduling
• Dispatcher
• Pre-emptive vs non-preemptive
• Criteria

• Multiple processor scheduling
• NUMA
• Load balancing, multicore,

virtualisation

04. Scheduling

	04. Scheduling
	Objectives
	Outline
	Outline (2)
	Queues
	Queues (2)
	CPU I/O Burst Cycle
	Schedulers
	Idling
	Outline (3)
	Dispatcher
	When to enter the scheduler?
	Pre-emptive vs Non-preemptive
	Scheduling Criteria
	Scheduling Criteria (2)
	Scheduling Criteria (3)
	Outline (4)
	Multiple processor scheduling
	Non-Uniform Memory Access (NUMA)
	Load balancing, multicore, virtualisation
	Summary

