
03. Processes
Ch. 1.6, 3



2

Objectives

• To understand the concept of a process vs a program, and the need 
for context switching

• To distinguish the states in a process’ lifecycle 
• To know some of the state required for process management

03. Processes



3

Outline

• What is a process?
• Process lifecycle
• Inter-Process Communication (IPC)

03. Processes



4

Outline

• What is a process?
• Process Control Block (PCB)
• Threads of execution
• Context switching

• Process lifecycle
• Inter-Process Communication (IPC)

03. Processes



5

What is a process?

• The computer is there to execute programs, not the OS! 
• Process ≠ Program 

• A program is static, on-disk
• A process is dynamic, a program in execution 
• On a batch system, one might refer to jobs instead of processes – nowadays 

generally used interchangeably

• Process is the unit of protection and resource allocation
• So you may have multiple running processes created from a single program

03. Processes



6

What is a process?

• Each process executed on a virtual processor has
• Text containing the program code
• Data containing global variables
• Heap containing memory allocating during runtime
• …plus one or more threads of execution

• Each thread has
• Program counter indicating current instruction
• Stack for temporary variables, parameters, return 

addresses, etc. 

03. Processes



7

Process Control Block (PCB)

• Data structure representing a process, containing
• Process ID or number – uniquely identifies the process
• Current process state – running, waiting, etc
• CPU scheduling information – priorities, scheduling queue pointers
• Memory-management information – memory allocated to the 

process
• Accounting information – CPU used, clock time elapsed since start, 

time limits
• I/O status information – I/O devices allocated to process, list of 

open files

• Highlighted process context is the machine environment 
while the process is running

• Program counter, location of next instruction to execute
• CPU registers, contents of all process-centric registers

03. Processes



8

Threads of execution

• A thread represents an individual execution context
• One process may have many threads
• OS visible threads are kernel threads, whether executing in kernel or user 

space

• Each thread has an associated Thread Control Block (TCB) 
• Contains thread metadata: saved context (registers, including stack pointer), 

scheduler info, program counter, etc.

• A scheduler determines which thread to run 
• Changing the running thread involves a context switch
• If between threads in different processes, the process state also switches 

03. Processes



9

Context switching

• Switching between processes means
• Saving the context of the currently 

executing process (if any), and
• Restoring the context of the process being 

resumed

• Wasted time! No useful work is carried 
out while switching

• How much time depends on hardware 
support

• From nothing, to
• Save/load multiple registers to/from 

memory, to
• Complete hardware “task switch”

03. Processes



10

Outline

• What is a process?
• Process lifecycle

• Process states
• Process creation
• Process termination

• Inter-Process Communication (IPC)

03. Processes



11

Process states

• New: process is being created
• Ready: process is ready to run, 

and is waiting for the CPU
• Running: process’ instructions are 

being executed on the CPU
• Waiting (Blocked): process has 

stopped executing, and is waiting 
for an event to occur 

• Terminated (Exit): process has 
finished executing

03. Processes



12

Process creation

• Most systems are 
hierarchical

• Parent processes create 
child processes 

• Forms a tree

• E.g., a possible Linux 
process tree

03. Processes

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298



13

Process creation

• How are resources shared?
1. Parent and children share all resources 
2. Children share subset of parent’s resources 
3. Parent and child share no resources 

• How is the child’s memory initialised? 
1. Child starts with a duplicate of the parent and then modifies it
2. Child explicitly has a program loaded into it 

• How is execution of parent and children handled?
1. Parent and children execute concurrently 
2. Parent waits until children terminate 

03. Processes



14

Process creation

• E.g., on Unix 
• fork clones a child process from parent, 
• then execve replaces child’s memory space 

with a new program,
• meanwhile parent waits until child exits

• Alternative approach in NT/2K/XP
• CreateProcess explicitly includes name of 

program to be executed 

03. Processes

pid = fork()

exec()

parent

parent (pid > 0)

child (pid = 0)

wait()

exit()

parent resumes



15

Process termination

1. Process performs an illegal operation, e.g., 
• Makes an attempt to access memory without authorisation
• Attempts to execute a privileged instruction 

2. Parent terminates child (abort, kill), e.g. because 
• Child has exceeded allocated resources 
• Task assigned to child is no longer required 
• Cascading termination – parent is exiting and OS requires children must also exit

3. Process executes last statement and asks the OS to delete it (exit)
• Parent waits and obtains status data from child
• If parent didn’t wait, process is a zombie
• If parent terminated without waiting, process is an orphan

03. Processes



16

Outline

• What is a process?
• Process lifecycle
• Inter-Process Communication (IPC)

• Message passing vs Shared memory
• Signals
• Pipes
• Shared memory segments

03. Processes



17

Inter-Process Communication (IPC)

• All communications require some protocol, with data transfer
• …in a commonly-understood format (syntax) 
• …having mutually-agreed meaning (semantics) 
• …taking place according to agree rules (synchronisation) 
• (Ignore problems of discovery, identification, errors, etc. for now)

• Communication between hosts is IB Computer Networking 
• Separate hosts means handling reliability and asynchrony

• Communication between threads is IB Concurrent & Distributed Systems
• Shared data structures can suffer corruption, deadlock, etc.

• IPC basic requirement: access to shared memory on same host

03. Processes



18

Message passing vs Shared memory

• Two fundamental models for IPC
• Shared memory

• Communicating processes establish some part of memory both can access
• Requires removing usual restriction that processes have memory protection

• Message passing
• Processes send messages to each other mediated by the kernel
• Requires support for processes to 

• name each other or a shared mailbox (direct vs indirect communication)
• send and receive synchronously or asynchronously (blocking vs non-blocking)
• buffer messages to match rates if non-blocking (zero, finite, unbounded buffers)

03. Processes



19

Message passing vs Shared memory

03. Processes



20

Signals

• Simple message passing: asynchronous notifications on another process 
• kill system call sends a signal to a specified process/es
• sigaction examines or changes a signal handler disposition (terminate, ignore, etc)
• pause suspends process until signal is caught

• Each signal mapped to an integer, different between architectures
• https://www.man7.org/linux/man-pages/man7/signal.7.html 

• Among the more commonly encountered: 
• SIGHUP: hangup detected on terminal / death of controlling process (1)
• SIGINT: terminal interrupt (2)
• SIGILL: illegal instruction (4)
• SIGKILL: terminate the process [cannot be caught or ignored] (9) 
• SIGTERM: politely terminate process (15)
• SIGSEGV: segmentation fault (11) — process made an invalid memory reference
• SIGUSR1/2: two user defined signals [system defined numbers] 

03. Processes

https://www.man7.org/linux/man-pages/man7/signal.7.html


21

Pipes

• Simple form of shared memory 
IPC

• pipe returns a pair of file 
descriptors, (fd[0], fd[1])

• fork creates child process

• Parent and child can now 
communicate

• read/write on the pair of 
(read, write) fds 

• Named pipes (FIFOs) extend 
beyond parent/child relation

• Appear as files in the filesystem

03. Processes



22

Shared memory segments

• Obtain a segment of memory shared between two (or more) 
processes 

• shmget to get a segment 
• shmat to attach to it 

• Simply read and write via pointers into the shared memory segment
• Need to impose controls to avoid collisions when simultaneously reading and 

writing

• When finished,
• shmdt to detach, and
• shmctl to destroy once you know no-one still using it

03. Processes



23

Summary

• What is a process?
• Process Control Block (PCB)
• Threads of execution
• Context switching

• Process lifecycle
• Process states
• Process creation
• Process termination

03. Processes

• Inter-Process Communication 
(IPC)

• Message passing vs Shared memory
• Signals
• Pipes
• Shared memory segments


	03. Processes
	Objectives
	Outline
	Outline (2)
	What is a process?
	What is a process? (2)
	Process Control Block (PCB)
	Threads of execution
	Context switching
	Outline (3)
	Process states
	Process creation
	Process creation (2)
	Process creation (3)
	Process termination
	Outline (4)
	Inter-Process Communication (IPC)
	Message passing vs Shared memory
	Message passing vs Shared memory (2)
	Signals
	Pipes
	Shared memory segments
	Summary

