
02. Protection
9th ed: Ch. 2.7+, 14, 15, 16

10th ed: Ch. 2.7+, 16, 17, 19

2

Objectives

• To describe the evolution of the operating system
• To understand how the OS protects itself from user programs
• To understand how the OS protects user programs from each other
• To know some different ways the OS can be structured
• To be aware of some security considerations

02. Protection

3

Outline

• OS evolution
• Kernels
• Security

02. Protection

4

Outline

• OS evolution
• Single-tasking
• Dual-mode operation

• Kernels
• Security

02. Protection

5

Operating system evolution

• Open shop: One machine, one CPU, one user, one program – the user is the programmer is
the operator, all programming is in machine code
• E.g., EDSAC, 1947—1955

• Batch systems: tape drives collate and run a
set of programs in a batch, increasing efficiency
• Spooling allowed overlap of I/O with computation

• Multiprogramming: one machine, one CPU,
one running program but many loaded programs
• Job scheduling: select jobs to load and then which

resident job to run

• Timesharing: switching jobs so frequently that users have the illusion many jobs are
running simultaneously
• CPU scheduling: select which job to run from many that are ready
• Enables interactive computing

02. Protection

6

Single-tasking OS: MS-DOS

02. Protection

 • Command interpreter receives input
from user
• Program is loaded, overwriting much of the

command interpreter
• Instruction pointer set to the start of

program

• Once finished, termination causes
command interpreter stub to reload
command interpreter
• Exit error code available to user

7

Dual-mode operation

• Allows OS to stop malicious or
buggy code from doing bad things
• Use hardware – a mode bit – to

distinguish (at least) two modes of operation
• User mode when executing on behalf of a user (i.e. application programs)
• Kernel mode when executing on behalf of the OS
• Some instructions designated as privileged, only executable in kernel mode

• Increasingly CPUs support multi-mode operations
• i.e. virtual machine manager (VMM) mode for guest VMs

• Often “nested” e.g., x86 rings 0—3; further inside can do strictly more
• Not ideal, but disjoint/overlapping permissions is complex

02. Protection

8

Outline

• OS evolution
• Kernels
• System calls
• Microkernels
• Virtualisation

• Security

02. Protection

9

Kernels

• Protection prevents applications doing I/O – kernel
does it for them
• Thus we need an unprivileged instruction to transition from

user to kernel mode
• Generally called a trap or a software interrupt since

operates similarly to (hardware) interrupt

• OS services are accessible via system calls
• Invoked by a trap with OS having vectors to handle
• Vector enforces code run when mode switch occurs
• Prevents application from switching to kernel mode and

then just doing whatever it likes

• Alternative is for OS to emulate for application, and
check every instruction before execution as used in
some virtualisation systems, e.g., QEMU

02. Protection

10

System calls

• Provide a (language agnostic) standard
interface to the OS services
• Accessed via a high-level (language

specific) Application Programming
Interface (API) rather than called directly
• E.g., glibc

02. Protection

Raw system calls in Rust
https://github.com/strake/system-call.rs/

https://github.com/strake/system-call.rs/

11

System call invocation

• Typically each system call is
associated by a number that
indexes a system call table
• Invoked by putting the relevant

number and any required parameters
in the right places and trapping

• Return status and any values made
available to application in user space

• Usually managed by run-time
support library, a set of functions
built into libraries automatically
linked by your compiler

02. Protection

12

System call parameters

• Three main ways to pass
parameters:

1. Load into registers
2. Place onto stack for the kernel to

pop off
3. Place into a block of memory and

put the block’s address into a
register

• One of the latter two usually
preferred
• Registers limited in number and size

int
open(const char *path, int oflag, ...);

ssize_t
read(int fildes, void *buf, size_t nbyte);

02. Protection

13

Microkernels

• OS interfaces must be extremely stable
• Makes them difficult to extend with new calls
• Even more difficult to remove calls

• Alternative is microkernels
• Move OS services into local, sometimes privileged, servers
• Increases modularity and extensibility

• Message passing used to access servers
• Replaces trapping so must be extremely efficient

• Many common OSs blur the distinction between
kernel and microkernel, e.g.,
• Linux has kernel modules and some servers
• Windows NT 3.5 originally a microkernel but performance

concerns caused NT 4.0 to move some services back into
the kernel

02. Protection

14

Virtualisation

• More recently, trend towards
encapsulating applications differently
• Make the system appear to be supporting just

one application
• Particularly relevant when building systems

using microservices
• Protection, or isolation at a different level

• Virtualisation: allows operating systems
to be run alongside each other above a hypervisor
• Type 1 runs directly on the host hardware, possibly using hardware extensions (VT-x)
• Type 2 runs above a full OS kernel
• Can support cross-architecture using emulation (slow) or interpretation (if not natively

compiled)

02. Protection

15

Virtual machines vs Containers

• Virtual Machines encapsulate an entire running system, including the OS, and
then boot the VM over a hypervisor
• E.g., Xen, VMWareESX, Hyper-V

• Containers expose functionality in the OS so that each container acts as a
separate entity even though they all share the same underlying OS
functionality
• E.g., Linux Containers, FreeBSD Jails, Solaris Zones

• Use cases include
• Laptops and desktops running multiple OSes for exploration or compatibility
• Developing apps for multiple OSes without having multiple systems
• QA testing applications without having multiple systems
• Executing and managing compute environments within datacenters

02. Protection

16

Outline

• OS evolution
• Kernels
• Security
• Principle of least privilege
• Domain of protection
• Access matrix
• Access Control Lists (ACLs)
• Capabilities
• Authentication

02. Protection

17

Security

• Defence of the system against internal and external attacks
• Huge range of attacks, including denial-of-service, worms, viruses, identity theft,

theft of service

• Systems generally first distinguish among users, to determine who can do
what
• User identities (user IDs, security IDs) include name and associated number, one per

user
• User ID then associated with all files, processes of that user to determine access

control
• Group identifier (group ID) allows set of users to be defined and controls managed,

then also associated with each process, file

• Privilege escalation allows user to change to effective ID with more rights

02. Protection

18

Principle of least privilege

• Objects should be given just enough privileges to perform their tasks
• Hardware objects (e.g., devices) and software objects (e.g., files, programs, semaphores)

• Properly set permissions can limit damage if object has a bug and gets abused
• Can be static (during life of system, during life of process)
• Or dynamic (changed by process as needed) by domain switching, privilege escalation

• Compartmentalization a derivative concept regarding access to data
• Process of protecting each individual system component through the use of specific permissions and

access restrictions
• More granular, more complex, more protective

• Covert channels leak information using side-effects
• Hardware include wire tapping or receiving electromagnetic radiation from devices
• Software include page fault statistics or input-dependent timing
• E.g., lowest layer of recent OCaml TLS library had to be written in C to avoid the garbage collector

becoming a covert channel

02. Protection

19

Domain of protection

• Domain limits access to (and operations on) objects
• access-right = < object-name, rights-set > where rights-set is a subset of all

valid operations that can be performed on object-name
• A domain is then a set of access-rights
• In UNIX a domain is a user id

02. Protection

20

Access matrix

• A matrix of domains (subjects, principals) against objects
• Rows represent domains, columns represent objects
• Operations a process in domain can invoke on object
• Operations can include adding/deleting entries in matrix

• Example of separation
of policy from
mechanism

02. Protection

21

Implementing the access matrix

• The access matrix is a table of triples < domain, object, rights-set >
• For a domain to invoke an operation on an object involves searching to see if

that operation is in any rights-set for the pair < domain, object >

• Table is large so may not fit in memory – but sparse
• Two common representations

1. By object, storing list of domains and rights with each object – Access
Control List (ACL)

2. By domain, storing list of objects and rights with each domain –
Capabilities

02. Protection

22

Access Control Lists (ACLs)

• Each column is an access list for one object
• Results in a per-object ordered list of < domain, rights-set >

• Often used in storage systems
• System naming scheme provides for ACL to be inserted in naming path, e.g.,

files

• If ACLs stored on disk, check is in software so use only on low duty
cycle – for higher duty cycle must cache results of check
• E.g., ACL checked when file opened for read or write, or when code file is to

be executed

• In (e.g.) UNIX access control is by program allowing arbitrary policies

02. Protection

23

Capabilities

02. Protection

• Each row is a capability for one domain, indicating the permitted operations on
a set of objects
• To execute operation M on object O, process requests operation and passes the

capability as parameter
• Possession of capability means operation is allowed
• Capability is a protected object, maintained by the OS and unmodifiable by the application

– like a “secure pointer”

• Hardware capabilities, e.g., CHERI
• Have special machine instructions to modify (restrict) capabilities
• Support passing of capabilities on procedure (program) call

• Software capabilities are protected by encryption
• Nice for distributed systems

24

Authentication

• User to system: required as protection systems depend on user ID
• Typically established through use of password (or passphrase or key)
• Need to be managed, kept secure
• Hashed with a salt (easy to compute, hard to invert)
• Multi-factor authentication adds a second (or more) component
• Failed access attempts usually logged

• System to user: avoid user talking to the wrong computer / program
• In the old days with directly wired terminals, make login character same as

terminal attention, or always do a terminal attention before trying login
• E.g., Windows NT’s Ctrl-Alt-Del to login — no-one else can trap it
• (When your bank phones, how do you know it’s them?)

02. Protection

25

Summary

• OS evolution
• Single-tasking
• Dual-mode operation

• Kernels
• System calls
• Microkernels
• Virtualisation

02. Protection

• Security
• Principle of least privilege
• Domain of protection
• Access matrix
• Access Control Lists (ACLs)
• Capabilities
• Authentication

	02. Protection
	Objectives
	Outline
	Outline (2)
	Operating system evolution
	Single-tasking OS: MS-DOS
	Dual-mode operation
	Outline (3)
	Kernels
	System calls
	System call invocation
	System call parameters
	Microkernels
	Virtualisation
	Virtual machines vs Containers
	Outline (4)
	Security
	Principle of least privilege
	Domain of protection
	Access matrix
	Implementing the access matrix
	Access Control Lists (ACLs)
	Capabilities
	Authentication
	Summary

