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Objectives

• To describe the evolution of the operating system
• To understand how the OS protects itself from user programs
• To understand how the OS protects user programs from each other
• To know some different ways the OS can be structured
• To be aware of some security considerations
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Operating system evolution

• Open shop: One machine, one CPU, one user, one program – the user is the programmer is 
the operator, all programming is in machine code
• E.g., EDSAC, 1947—1955

• Batch systems: tape drives collate and run a 
set of programs in a batch, increasing efficiency
• Spooling allowed overlap of I/O with computation

• Multiprogramming: one machine, one CPU, 
one running program but many loaded programs
• Job scheduling: select jobs to load and then which

resident job to run

• Timesharing: switching jobs so frequently that users have the illusion many jobs are 
running simultaneously
• CPU scheduling: select which job to run from many that are ready
• Enables interactive computing

02. Protection
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Single-tasking OS: MS-DOS

02. Protection

 • Command interpreter receives input 
from user
• Program is loaded, overwriting much of the 

command interpreter
• Instruction pointer set to the start of 

program

• Once finished, termination causes 
command interpreter stub to reload 
command interpreter
• Exit error code available to user
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Dual-mode operation

• Allows OS to stop malicious or 
buggy code from doing bad things
• Use hardware – a mode bit – to 

distinguish (at least) two modes of operation
• User mode when executing on behalf of a user (i.e. application programs)
• Kernel mode when executing on behalf of the OS
• Some instructions designated as privileged, only executable in kernel mode

• Increasingly CPUs support multi-mode operations
• i.e. virtual machine manager (VMM) mode for guest VMs

• Often “nested” e.g., x86 rings 0—3; further inside can do strictly more
• Not ideal, but disjoint/overlapping permissions is complex

02. Protection
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Kernels

• Protection prevents applications doing I/O – kernel 
does it for them
• Thus we need an unprivileged instruction to transition from 

user to kernel mode 
• Generally called a trap or a software interrupt since 

operates similarly to (hardware) interrupt

• OS services are accessible via system calls 
• Invoked by a trap with OS having vectors to handle
• Vector enforces code run when mode switch occurs
• Prevents application from switching to kernel mode and 

then just doing whatever it likes

• Alternative is for OS to emulate for application, and 
check every instruction before execution as used in 
some virtualisation systems, e.g., QEMU 

02. Protection
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System calls

• Provide a (language agnostic) standard 
interface to the OS services
• Accessed via a high-level (language 

specific) Application Programming 
Interface (API) rather than called directly
• E.g., glibc

02. Protection

Raw system calls in Rust
https://github.com/strake/system-call.rs/ 

https://github.com/strake/system-call.rs/
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System call invocation

• Typically each system call is 
associated by a number that 
indexes a system call table
• Invoked by putting the relevant 

number and any required parameters 
in the right places and trapping

• Return status and any values made 
available to application in user space

• Usually managed by run-time 
support library, a set of functions 
built into libraries automatically 
linked by your compiler

02. Protection
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System call parameters

• Three main ways to pass 
parameters:

1. Load into registers
2. Place onto stack for the kernel to 

pop off
3. Place into a block of memory and 

put the block’s address into a 
register

• One of the latter two usually 
preferred
• Registers limited in number and size

int
open(const char *path, int oflag, ...);

ssize_t
read(int fildes, void *buf, size_t nbyte);
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Microkernels

• OS interfaces must be extremely stable
• Makes them difficult to extend with new calls
• Even more difficult to remove calls

• Alternative is microkernels
• Move OS services into local, sometimes privileged, servers
• Increases modularity and extensibility 

• Message passing used to access servers
• Replaces trapping so must be extremely efficient 

• Many common OSs blur the distinction between 
kernel and microkernel, e.g.,
• Linux has kernel modules and some servers
• Windows NT 3.5 originally a microkernel but performance 

concerns caused NT 4.0 to move some services back into 
the kernel

02. Protection
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Virtualisation

• More recently, trend towards 
encapsulating applications differently
• Make the system appear to be supporting just 

one application
• Particularly relevant when building systems 

using microservices
• Protection, or isolation at a different level 

• Virtualisation: allows operating systems 
to be run alongside each other above a hypervisor
• Type 1 runs directly on the host hardware, possibly using hardware extensions (VT-x)
• Type 2 runs above a full OS kernel
• Can support cross-architecture using emulation (slow) or interpretation (if not natively 

compiled)

02. Protection
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Virtual machines vs Containers

• Virtual Machines encapsulate an entire running system, including the OS, and 
then boot the VM over a hypervisor 
• E.g., Xen, VMWareESX, Hyper-V 

• Containers expose functionality in the OS so that each container acts as a 
separate entity even though they all share the same underlying OS 
functionality 
• E.g., Linux Containers, FreeBSD Jails, Solaris Zones 

• Use cases include
• Laptops and desktops running multiple OSes for exploration or compatibility
• Developing apps for multiple OSes without having multiple systems
• QA testing applications without having multiple systems
• Executing and managing compute environments within datacenters

02. Protection
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Outline

• OS evolution
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• Authentication
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Security

• Defence of the system against internal and external attacks
• Huge range of attacks, including denial-of-service, worms, viruses, identity theft, 

theft of service

• Systems generally first distinguish among users, to determine who can do 
what
• User identities (user IDs, security IDs) include name and associated number, one per 

user
• User ID then associated with all files, processes of that user to determine access 

control
• Group identifier (group ID) allows set of users to be defined and controls managed, 

then also associated with each process, file

• Privilege escalation allows user to change to effective ID with more rights

02. Protection
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Principle of least privilege

• Objects should be given just enough privileges to perform their tasks
• Hardware objects (e.g., devices) and software objects (e.g., files, programs, semaphores)

• Properly set permissions can limit damage if object has a bug and gets abused
• Can be static (during life of system, during life of process) 
• Or dynamic (changed by process as needed) by domain switching, privilege escalation

• Compartmentalization a derivative concept regarding access to data 
• Process of protecting each individual system component through the use of specific permissions and 

access restrictions
• More granular, more complex, more protective

• Covert channels leak information using side-effects
• Hardware include wire tapping or receiving electromagnetic radiation from devices 
• Software include page fault statistics or input-dependent timing
• E.g., lowest layer of recent OCaml TLS library had to be written in C to avoid the garbage collector 

becoming a covert channel

02. Protection
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Domain of protection

• Domain limits access to (and operations on) objects
• access-right = < object-name, rights-set > where rights-set is a subset of all 

valid operations that can be performed on object-name 
• A domain is then a set of access-rights 
• In UNIX a domain is a user id

 

02. Protection
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Access matrix

• A matrix of domains (subjects, principals) against objects
• Rows represent domains, columns represent objects
• Operations a process in domain  can invoke on object 
• Operations can include adding/deleting entries in matrix

• Example of separation 
of policy from 
mechanism

02. Protection
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Implementing the access matrix

• The access matrix is a table of triples < domain, object, rights-set >
• For a domain to invoke an operation on an object involves searching to see if 

that operation is in any rights-set for the pair < domain, object >

• Table is large so may not fit in memory – but sparse
• Two common representations

1. By object, storing list of domains and rights with each object – Access 
Control List (ACL)

2. By domain, storing list of objects and rights with each domain – 
Capabilities

02. Protection
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Access Control Lists (ACLs)

• Each column is an access list for one object
• Results in a per-object ordered list of < domain, rights-set >

• Often used in storage systems 
• System naming scheme provides for ACL to be inserted in naming path, e.g., 

files

• If ACLs stored on disk, check is in software so use only on low duty 
cycle – for higher duty cycle must cache results of check
• E.g., ACL checked when file opened for read or write, or when code file is to 

be executed 

• In (e.g.) UNIX access control is by program allowing arbitrary policies 

02. Protection
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Capabilities

02. Protection

• Each row is a capability for one domain, indicating the permitted operations on 
a set of objects
• To execute operation M on object O, process requests operation and passes the 

capability as parameter
• Possession of capability means operation is allowed
• Capability is a protected object, maintained by the OS and unmodifiable by the application 

– like a “secure pointer”

• Hardware capabilities, e.g., CHERI
• Have special machine instructions to modify (restrict) capabilities 
• Support passing of capabilities on procedure (program) call 

• Software capabilities are protected by encryption
• Nice for distributed systems 
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Authentication

• User to system: required as protection systems depend on user ID
• Typically established through use of password (or passphrase or key)
• Need to be managed, kept secure
• Hashed with a salt (easy to compute, hard to invert)
• Multi-factor authentication adds a second (or more) component
• Failed access attempts usually logged

• System to user: avoid user talking to the wrong computer / program
• In the old days with directly wired terminals, make login character same as 

terminal attention, or always do a terminal attention before trying login
• E.g., Windows NT’s Ctrl-Alt-Del to login — no-one else can trap it 
• (When your bank phones, how do you know it’s them?) 

02. Protection
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Summary

• OS evolution
• Single-tasking
• Dual-mode operation

• Kernels
• System calls
• Microkernels
• Virtualisation

02. Protection

• Security
• Principle of least privilege
• Domain of protection
• Access matrix
• Access Control Lists (ACLs)
• Capabilities
• Authentication
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