
01. Introduction
Ch. 1, 2

2

Course Structure

Part I Structures

01 Introduction

02 Protection

Part II CPU

03 Processes

04 Scheduling

05 Scheduling Algorithms

Part III Memory

06 Memory Management

Part III Memory (continued)

07 Paging

08 Virtual Memory

Part IV Input/Output and Storage

09 I/O Subsystem

10 Storage & File Management

Part V Case Study

11 Case Study I: UNIX (Linux)

12 Case Study II: UNIX (Linux)

01. Introduction

3

Objectives

• To describe the basic organisation of computer systems
• To give an abstract view of the operating system
• To introduce some key concepts in (operating) systems
• To give a brief tour of the major functions of the operating system

• Recall Part 2 of Introduction to Microprocessors in IA Digital
Electronics
• Fetch-Decode-Execute cycle, Pipelining

01. Introduction

4

Outline

• System organisation
• System operation
• System concepts
• What is an Operating System?

01. Introduction

5

Outline

• System organisation
• Hardware resources
• Fetch-Execute Cycle
• Buses

• System operation
• System concepts
• What is an Operating System?

01. Introduction

6

Computer system organisation

1. Hardware provides basic
computing resources: CPU,
memory, I/O devices

2. Operating system controls and
coordinates use of those
resources

3. Application programs define
how those resources are used to
solve the computing problems of
the users

4. Users motivate the whole thing!

01. Introduction

7

Hardware resources

• Processor (CPU) executes programs using
• Memory to store both programs & data,

effectively a large byte-addressed array,
• Devices for input and output, and
• Bus to transfer information between

• CPUs operate on data obtained from
input devices and held in memory
• CPUs and devices are concurrently active,

competing for memory cycles and bus
access

• Computer logically
• Reads values from main memory into

registers,
• Performs operations, and
• Stores results back

01. Introduction

8

Fetch-Execute Cycle

• CPU repeatedly
• Fetches & decodes next instruction,
• Generating control signals and operand

information

• Inside the Execution Unit (EU), control
signals select the Functional Unit (FU)
(“instruction class”) and operation
• If Arithmetic Logic Unit (ALU), read one/two registers, perform operation,

(probably) write result back
• If Branch Unit (BU), test condition and (maybe) add value to PC
• If Memory Access Unit (MAU), generate address (“addressing mode”) and use

bus to read/write value
01. Introduction

9

• Shared communication wires
• Don’t need wires everywhere!
• Low cost, versatile
• Potential bottleneck

• Typically comprises:
• address lines determine how many devices on bus,
• data lines determine how many bits transferred at once, and
• control lines indicate target devices and selected operations

• Operates in a initiator-responder manner, e.g.,
• Initiator decides to read data
• Initiator puts address onto bus and asserts read
• Responder reads address from bus, retrieves data, and puts onto bus
• Initiator reads data from bus

Buses

01. Introduction

10

Bus hierarchy

• Different buses with different characteristics
• E.g., data width, max number of devices, max

length
• Most are synchronous, i.e. share a clock signal

• Processor bus is the fastest and often the
widest for CPU to talk to cache

• Memory bus to communicate with memory
• PCI buses to communicate with devices

• Other legacy buses also seen: ISA, EISA etc

• Bridges forwards from one side to the other
• E.g., to access a device on ISA bus, CPU generates

magic [physical] address which is sent to memory
bridge, then to PCI bridge, and then to ISA bridge,
and finally to ISA device

01. Introduction

11

Outline

• System organisation
• System operation
• Booting
• Interrupts
• Storage

• System concepts
• What is an Operating System?

01. Introduction

12

Booting the computer

• Bootstrap program (bootloader) executes when machine powered on
• Traditionally ROM containing BIOS, now more complex UEFI
• Initialises all parts of the system: memory, device controllers
• Finds, loads, and executes the kernel, possibly in stages

• Operating system starts in stages
• Kernel enables processes to be

created, devices to be read/written,
file system to be accessed
• Then system processes start,

beginning with init on Unix

01. Introduction

13

System operation

• I/O devices and CPU execute
concurrently
• Each device controller

• responsible for a particular device type
• has a local buffer

• CPU moves data from/to main memory
to/from local buffers
• I/O is from the device to local buffer of

controller

• Device controller informs CPU that it
has finished its operation by raising an
interrupt
• OS is interrupt driven

01. Introduction

14

Interrupts

• Device controllers communicate
with CPU via interrupts
• Controller controls interaction

between device and local buffer
• CPU moves data between main

memory and device buffer

• Interrupts decouple CPU requests from device responses
• Reading a block of data from a hard-disk might take 2ms, which could be

5×106 clock cycles!

• Controller informs CPU it is finished by raising an interrupt

01. Introduction

15

Interrupt handling

• A raised interrupt must be handled
• Transfer control to the interrupt service routine (ISR) via
• The interrupt vector, a table containing addresses of all the ISRs
• Interrupt architecture saves the address of the interrupted instruction
• After reading from device, CPU resumes using a special instruction, e.g., rti

• Interrupts can happen at any time
• Typically deferred to an instruction boundary
• ISRs must not trash registers, and must know where to resume
• CPU thus typically saves values of all (or most) registers, restoring on return

• A trap or exception is a software-generated interrupt
• Can be caused either by an error or a deliberate user request

01. Introduction

16

Storage definitions

• Basic unit of computer storage is the bit, containing either 0 or 1
• A byte (or octet) is 8 bits, typically the smallest convenient chunk of storage

• E.g., most computers can refer to a byte in memory but not a single bit

• A word is a given computer architecture’s native unit of data, one or more bytes
• E.g., a computer with 64-bit registers and 64-bit memory addressing typically has 64-bit (8-byte)

words

• Storage generally measured and manipulated collections of bytes; in this course
• A kilobyte (kB) is 1,024 bytes, a megabyte (MB) is 1,0242 bytes, a gigabyte (GB) is 1,0243 bytes

• A terabyte (TB) is 1,0244 bytes, a petabyte (PB) is 1,0245 bytes

• Strictly, IEC defines kilobyte etc as 1000, 10002, 10003, … bytes, and kibibyte etc as 1024,
10242, 10243, … bytes

• Usage is not consistent, e.g., memory vs hard disks

01. Introduction

17

Storage hierarchy

• Storage systems organized in hierarchy
• Speed, cost, volatility

• Main memory that the CPU can access directly
• Large, random access, typically volatile

• Secondary storage extends main memory
• Very large, non-volatile
• Hard disks (HDs), rigid metal or glass platters

covered with magnetic recording material divided
logically into tracks, which are subdivided into
sectors

• Solid-state disks (SSDs), faster than hard disks,
non-volatile

• Device Driver for each device controller to
manage I/O provides a uniform interface
between controller and kernel

01. Introduction

18

Storage performance

01. Introduction

19

Outline

• System organisation
• System operation
• Concepts
• Layering, multiplexing
• Latency, bandwidth, jitter
• Caching, buffering
• Bottlenecks, tuning, 80/20 rule
• Data structures

• What is an Operating System?

01. Introduction

20

Layering, multiplexing

• Layering is a means to manage complexity by
controlling interactions between components:
• arrange components in a stack and restrict a component

at layer X from
• relying on any other component except the one at layer

X-1 and
• providing service to any component except the one at

layer X+1

• Multiplexing is where one resource is being
consumed by multiple consumers simultaneously
• Traditionally, the combination of multiple (analogue)

signals into a single signal over a shared medium
01. Introduction

Application

Application

Presentation

Session

Transport Transport

Internet Network

Physical
Data Link

Physical

Internet OSI

21

Latency, bandwidth, jitter

• Different metrics of concern to systems designers
• Latency is how long something takes

E.g., “This read took 3ms”

• Bandwidth is the rate at which something occurs (~ throughput)
• E.g., “This disk transfers data at 2Gb/s”

• Jitter is the variation (statistical dispersal) in latency (frequency)
• E.g., “Scheduling was periodic with jitter 50 μsec”

• Be aware
• is it the absolute or relative value that matters, and
• is the distribution of values also of interest

01. Introduction

22

Caching, buffering

• Often need to handle two components operating at different speeds
(latencies, bandwidths) – so-called impedance mismatch
• Caching, where a small amount of higher-performance storage is used to

mask the performance impact of a lower-performance component. Relies
on locality in time (finite resource) and space (non-zero cost)
• E.g., CPU has registers, L1 cache, L2 cache, L3 cache, main memory

• Buffering, where memory of some kind is introduced between two
components to soak up small, variable imbalances in bandwidth
• E.g., A hard disk will have on-board memory into which the disk controller reads

data, and from which the OS reads data out
• No use if long-term average bandwidth of one component simply exceeds the other!

01. Introduction

23

Bottlenecks, tuning, the 80/20 rule

• The bottleneck is typically the most constrained resource in a system
• Performance optimisation and tuning focuses on determining and

eliminating bottlenecks
• Often introducing new ones in the process

• A perfectly balanced system has all resources simultaneously bottlenecked
• Impossible to actually achieve
• Often find that optimising the common case gets most of the benefit anyway

• Means that measurement is a prerequisite to performance tuning!
• The 80/20 rule — 80% time spent in 20% code
• No matter how much you optimise a very rare case, it will make no difference

01. Introduction

24

Common data structures
Binary tree

Hash map

Linked list

Doubly-linked list

Circularly-linked list

01. Introduction

25

Outline

• System organisation
• System operation
• System concepts
• What is an Operating System?
• Resource protection
• CPU, memory, I/O

01. Introduction

26

What is an Operating System?

• Just a program – a piece of software that (efficiently) provides
• Control, over the execution of all other programs
• Multiplexing, of resources between programs
• Abstraction, over the complexity and low-level details
• Extensibility, enabling evolution to meet changing demands and constraints

• Typically involves libraries and tools provided as part of the OS
• Kernel – but also a libc, a language runtime, a web browser, …
• Thus no-one really agrees precisely what the OS is
• In this course we will focus on the kernel

• OS provides mechanisms that are used to implement policies
• Policies may be deliberately designed, or accidents of implementation

01. Introduction

27

Resource management

• Running program executes instructions sequentially to completion using resources
• CPU

• OS multiplexes many running programs (threads) over the CPU(s)
• Lifecycle management, synchronisation, communication

• Memory
• Running programs require code and data in memory
• Tracking memory ownership, managing de/allocation

• Storage
• Abstracting different storage media and their characteristics
• Creating, deleting, manipulating files, directories and free space

• I/O Subsystem
• Abstracting peculiarities of different devices
• Providing device drivers, managing I/O buffering, caching, spooling

01. Introduction

28

Protecting the CPU

• Need to ensure that the OS stays in control, able to prevent any
application from “hogging” the CPU the whole time
• Means using a timer, usually a countdown timer, e.g.,
• Set timer to initial value (e.g. 0xFFFF)
• Every tick (nowadays programmable), timer decrements value
• When value hits zero, interrupt

• Ensures the OS runs periodically provided
• only OS can load timer, and
• timer interrupt cannot be masked

• Also enables implementation of time-sharing

01. Introduction

29

Protecting memory

• Define a base and a limit for each program, and
protect access outside allowed range
• Have hardware check every memory reference:
• Access out of range causes exception, vectored into

OS
• Only allow update of base and limit registers by OS
• Can disable memory protection in kernel mode

(but this is a bad idea)

• In reality, more complex protection
hardware is used

01. Introduction

30

Protecting I/O

• Initially, tried to make I/O instructions privileged:
• Applications can’t mask interrupts (that is, turn one or many off)
• Applications can’t control I/O devices

• Unfortunately, some devices are accessed via memory, not special
instructions
• Applications can rewrite interrupt vectors

• Hence protecting I/O relies on memory protection mechanisms

01. Introduction

31

Summary

• System organisation
• Hardware resources
• Fetch-execute cycle
• Buses

• System operation
• Booting
• Interrupts
• Storage

01. Introduction

• Concepts
• Layering, multiplexing
• Latency, bandwidth, jitter
• Caching, buffering
• Bottlenecks, tuning, 80/20 rule
• Data structures

• What is an Operating System?
• Resource protection
• CPU, memory, I/O

	01. Introduction
	Course Structure
	Objectives
	Outline
	Outline (2)
	Computer system organisation
	Hardware resources
	Fetch-Execute Cycle
	Buses
	Bus hierarchy
	Outline (3)
	Booting the computer
	System operation
	Interrupts
	Interrupt handling
	Storage definitions
	Storage hierarchy
	Storage performance
	Outline (4)
	Layering, multiplexing
	Latency, bandwidth, jitter
	Caching, buffering
	Bottlenecks, tuning, the 80/20 rule
	Common data structures
	Outline (5)
	What is an Operating System?
	Resource management
	Protecting the CPU
	Protecting memory
	Protecting I/O
	Summary

