Introduction to Probability

Lecture 7: Independence, Covariance and Correlation Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Definition of Independence ——

Two random variables X and Y are independent if for all values a, b:

$$P[X \le a, Y \le b] = P[X \le a] \cdot P[Y \le b].$$

Definition of Independence -

Two random variables *X* and *Y* are independent if for all values *a*, *b*:

$$P[X \le a, Y \le b] = P[X \le a] \cdot P[Y \le b].$$

For two discrete random variables, an equivalent definition is:

$$P[X = a, Y = b] = P[X = a] \cdot P[Y = b].$$

Definition of Independence -

Two random variables *X* and *Y* are independent if for all values *a*, *b*:

$$P[X \le a, Y \le b] = P[X \le a] \cdot P[Y \le b].$$

For two discrete random variables, an equivalent definition is:

$$P[X = a, Y = b] = P[X = a] \cdot P[Y = b].$$

This is useless for continuous random variables.

This definition covers the discrete and continuous case!

Definition of Independence —

Two random variables X and Y are independent if for all values a, b:

$$\mathbf{P}[X \leq a, Y \leq b] = \mathbf{P}[X \leq a] \cdot \mathbf{P}[Y \leq b].$$

For two discrete random variables, an equivalent definition is:

$$P[X = a, Y = b] = P[X = a] \cdot P[Y = b].$$

This is useless for continuous random variables.

This definition covers the discrete and continuous case!

Definition of Independence ———

Two random variables X and Y are independent if for all values a, b:

$$P[X \le a, Y \le b] = P[X \le a] \cdot P[Y \le b].$$

For two discrete random variables, an equivalent definition is:

$$P[X = a, Y = b] = P[X = a] \cdot P[Y = b].$$

This is useless for continuous random variables.

Remark

Using the joint probability distribution, the above is equivalent to for all a, b,

$$F(a,b) = F_X(a) \cdot F_Y(b).$$

This definition covers the discrete and continuous case!

Definition of Independence ———

Two random variables *X* and *Y* are independent if for all values *a*, *b*:

$$P[X \le a, Y \le b] = P[X \le a] \cdot P[Y \le b].$$

For two discrete random variables, an equivalent definition is:

$$P[X = a, Y = b] = P[X = a] \cdot P[Y = b].$$

This is useless for continuous random variables.

Remark

Using the joint probability distribution, the above is equivalent to for all a, b,

$$F(a,b) = F_X(a) \cdot F_Y(b).$$

All these definitions extend in the natural way to more than two variables!

Factorisation

Factorisation -

The definition of independence of X and Y implies the following factorisation formula: for any "suitable" sets A and B,

$$\mathbf{P}[X \in A, Y \in B] = \mathbf{P}[X \in A] \cdot \mathbf{P}[Y \in B]$$

Factorisation

Factorisation

The definition of independence of X and Y implies the following factorisation formula: for any "suitable" sets A and B,

$$\mathbf{P}[X \in A, Y \in B] = \mathbf{P}[X \in A] \cdot \mathbf{P}[Y \in B]$$

For continuous distributions one obtains by differentiating both sides in the formula for the joint distribution:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

Factorisation

Factorisation

The definition of independence of *X* and *Y* implies the following factorisation formula: for any "suitable" sets *A* and *B*,

$$P[X \in A, Y \in B] = P[X \in A] \cdot P[Y \in B]$$

For continuous distributions one obtains by differentiating both sides in the formula for the joint distribution:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

Example

Let X and Y be two independent variables. Let I = (a, b] be any interval and define $U := \mathbf{1}_{X \in I}$ and $V := \mathbf{1}_{Y \in I}$. Prove U and V are independent.

Answer

Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

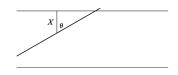
• A table is ruled with equidistant, parallel lines a distance *D* apart.

Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

- A table is ruled with equidistant, parallel lines a distance D apart.
- A needle of length *L* is thrown randomly on the table.

Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

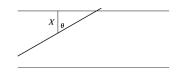
- A table is ruled with equidistant, parallel lines a distance D apart.
- A needle of length *L* is thrown randomly on the table.
- What is the probability that the needle will intersect one of the two lines?



Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

Source: Ross, Probability 8th ed.

- A table is ruled with equidistant, parallel lines a distance D apart.
- A needle of length *L* is thrown randomly on the table.
- What is the probability that the needle will intersect one of the two lines?



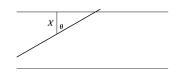
Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

Source: Ross, Probability 8th ed.

- A table is ruled with equidistant, parallel lines a distance D apart.
- A needle of length *L* is thrown randomly on the table.
- What is the probability that the needle will intersect one of the two lines?

Let X be the distance of the middle point of the needle to the closest parallel line. Needle intersects a line if hypotenuse of the triangle is less than L/2, i.e.,

$$\frac{X}{\cos(\theta)} < \frac{L}{2} \qquad \Leftrightarrow \qquad X < \frac{L}{2}\cos(\theta).$$



Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

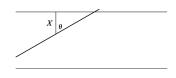
Source: Ross, Probability 8th ed.

- A table is ruled with equidistant, parallel lines a distance *D* apart.
- A needle of length *L* is thrown randomly on the table.
- What is the probability that the needle will intersect one of the two lines?

Let X be the distance of the middle point of the needle to the closest parallel line. Needle intersects a line if hypotenuse of the triangle is less than L/2, i.e.,

$$\frac{X}{\cos(\theta)} < \frac{L}{2} \qquad \Leftrightarrow \qquad X < \frac{L}{2}\cos(\theta).$$

We assume that $X \in [0, D/2]$ and $\theta \in [0, \pi/2]$ are independent and uniform.



Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

Source: Ross, Probability 8th ed.

- A table is ruled with equidistant, parallel lines a distance D apart.
- A needle of length L is thrown randomly on the table.
- What is the probability that the needle will intersect one of the two lines?

Let X be the distance of the middle point of the needle to the closest parallel line. Needle intersects a line if hypotenuse of the triangle is less than L/2, i.e.,

$$\frac{X}{\cos(\theta)} < \frac{L}{2} \qquad \Leftrightarrow \qquad X < \frac{L}{2}\cos(\theta).$$

We assume that $X \in [0, D/2]$ and $\theta \in [0, \pi/2]$ are independent and uniform.

Can be thought of as: 1. Sample the middle point of needle, 2. Sample the angle.

$$\mathbf{P}\left[X<\frac{L}{2}\cdot\cos(\theta)\right]$$

$$\mathbf{P}\left[X<\frac{L}{2}\cdot\cos(\theta)\right]=\iint\limits_{x<(L/2)\cos y}f_{X,\theta}(x,y)\,dx\,dy$$

$$\mathbf{P}\left[X < \frac{L}{2} \cdot \cos(\theta)\right] = \iint\limits_{x < (L/2)\cos y} f_{X,\theta}(x,y) \, dx \, dy$$
$$= \iint\limits_{x < (L/2)\cos y} f_X(x) f_{\theta}(y) \, dx \, dy$$

$$\mathbf{P}\left[X < \frac{L}{2} \cdot \cos(\theta)\right] = \iint\limits_{x < (L/2)\cos y} f_{X,\theta}(x,y) \, dx \, dy$$
$$= \iint\limits_{x < (L/2)\cos y} f_X(x) f_{\theta}(y) \, dx \, dy$$
$$= \frac{4}{\pi D} \int_0^{\pi/2} \int_0^{L/2\cos(y)} dx \, dy$$

$$\mathbf{P}\left[X < \frac{L}{2} \cdot \cos(\theta)\right] = \iint\limits_{x < (L/2)\cos y} f_{X,\theta}(x,y) \, dx \, dy$$

$$= \iint\limits_{x < (L/2)\cos y} f_X(x) f_{\theta}(y) \, dx \, dy$$

$$= \frac{4}{\pi D} \int_0^{\pi/2} \int_0^{L/2\cos(y)} dx \, dy$$

$$= \frac{4}{\pi D} \int_0^{\pi/2} \frac{L}{2} \cos(y) \, dy$$

$$\mathbf{P}\left[X < \frac{L}{2} \cdot \cos(\theta)\right] = \iint\limits_{x < (L/2)\cos y} f_{X,\theta}(x,y) \, dx \, dy$$

$$= \iint\limits_{x < (L/2)\cos y} f_{X}(x) f_{\theta}(y) \, dx \, dy$$

$$= \frac{4}{\pi D} \int_{0}^{\pi/2} \int_{0}^{L/2\cos(y)} dx dy$$

$$= \frac{4}{\pi D} \int_{0}^{\pi/2} \frac{L}{2} \cos(y) dy$$

$$= \frac{2L}{\pi D}.$$

Let us compute the probability that the line intersects:

$$\mathbf{P}\left[X < \frac{L}{2} \cdot \cos(\theta)\right] = \iint\limits_{x < (L/2)\cos y} f_{X,\theta}(x,y) \, dx \, dy$$

$$= \iint\limits_{x < (L/2)\cos y} f_{X}(x) f_{\theta}(y) \, dx \, dy$$

$$= \frac{4}{\pi D} \int_{0}^{\pi/2} \int_{0}^{L/2\cos(y)} dx dy$$

$$= \frac{4}{\pi D} \int_{0}^{\pi/2} \frac{L}{2} \cos(y) dy$$

$$= \frac{2L}{\pi D}.$$

This gives us a method to estimate π !

Definition of Covariance —

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$\mathbf{Cov}\left[X,Y\right] = \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right) \cdot \left(Y - \mathbf{E}\left[Y\right]\right)\right].$$

Interpretation:

Definition of Covariance -

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Interpretation:

 If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X], then Y will likely have a realisation larger (smaller) than E[Y].

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Interpretation:

- If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X], then Y will likely have a realisation larger (smaller) than E[Y].
- If Cov [X, Y] < 0, then it is the other way around.

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Interpretation:

- If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X], then Y will likely have a realisation larger (smaller) than E[Y].
- If Cov[X, Y] < 0, then it is the other way around.

- Alternative Formula

$$\mathbf{Cov}\left[X,Y\right] = \mathbf{E}\left[X\cdot Y\right] - \mathbf{E}\left[X\right]\cdot\mathbf{E}\left[Y\right].$$

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$\mathbf{Cov}\left[X,Y \right] = \mathbf{E}\left[\left(X - \mathbf{E}\left[X \right] \right) \cdot \left(Y - \mathbf{E}\left[Y \right] \right) \right].$$

Interpretation:

- If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X],
 then Y will likely have a realisation larger (smaller) than E[Y].
- If Cov[X, Y] < 0, then it is the other way around.

- Alternative Formula

Using the linearity of expectation rule, one has the equivalent definition:

$$Cov[X,Y] = E[X \cdot Y] - E[X] \cdot E[Y].$$

• Note that $\mathbf{Cov}[X, X] = \mathbf{V}[X]$.

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Interpretation:

- If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X], then Y will likely have a realisation larger (smaller) than E[Y].
- If Cov[X, Y] < 0, then it is the other way around.

Alternative Formula

$$Cov[X,Y] = E[X \cdot Y] - E[X] \cdot E[Y].$$

- Note that $\mathbf{Cov}[X, X] = \mathbf{V}[X]$.
- Two variables X, Y with Cov [X, Y] > 0 are positively correlated.

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Interpretation:

- If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X], then Y will likely have a realisation larger (smaller) than E[Y].
- If Cov[X, Y] < 0, then it is the other way around.

Alternative Formula

$$Cov[X,Y] = E[X \cdot Y] - E[X] \cdot E[Y].$$

- Note that $\mathbf{Cov}[X, X] = \mathbf{V}[X]$.
- Two variables X, Y with Cov [X, Y] > 0 are positively correlated.
- Two variables X, Y with Cov [X, Y] < 0 are negatively correlated.

Definition of Covariance

Let *X* and *Y* be two random variables. The covariance is defined as:

$$Cov[X, Y] = E[(X - E[X]) \cdot (Y - E[Y])].$$

Interpretation:

- If Cov [X, Y] > 0 and X has a realisation larger (smaller) than E[X], then Y will likely have a realisation larger (smaller) than E[Y].
- If Cov [X, Y] < 0, then it is the other way around.

Alternative Formula

$$Cov[X,Y] = E[X \cdot Y] - E[X] \cdot E[Y].$$

- Note that $\mathbf{Cov}[X, X] = \mathbf{V}[X]$.
- Two variables X, Y with Cov [X, Y] > 0 are positively correlated.
- Two variables X, Y with Cov[X, Y] < 0 are negatively correlated.
- Two variables X, Y with Cov [X, Y] = 0 are uncorrelated.

Illustration of 3 Cases for Cov[X, Y]

500 outcomes of randomly generated pairs of RVs (X, Y) with different joint distributions

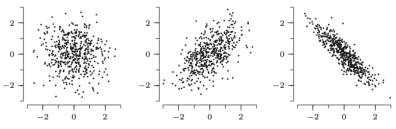


Fig. 10.1. Some scatterplots. Source: Textbook by Dekking

1. What is the covariance (positive, negative, neutral)?

2. Where is the covariance the largest (in magnitude)?

Independence implies Uncorrelated

Example .

Let X and Y be two independent random variables. Then X and Y are uncorrelated, i.e., $\mathbf{Cov}[X, Y] = 0$.

Answer

We give a proof for the discrete case:

Uncorrelated may not imply Independence

Example —	
Find a (simple) example of two random variables correlated but dependent.	X and Y which are un-
	- Answer

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

Answer

• Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y := \mathbf{1}_{X=0}$.

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

Answer

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y := \mathbf{1}_{X=0}$.
- $\Rightarrow X \cdot Y = 0$ (for all outcomes), and thus

.

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y := \mathbf{1}_{X=0}$.
- $\Rightarrow X \cdot Y = 0$ (for all outcomes), and thus

$$\mathbf{E}[X\cdot Y]=0.$$

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

Answer

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y:=\mathbf{1}_{X=0}$.
- $\Rightarrow X \cdot Y = 0$ (for all outcomes), and thus

$$\mathbf{E}[X\cdot Y]=0.$$

• Further, $\mathbf{E}[X] = 0$ (and $\mathbf{E}[Y] = 1/3$), and hence:

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

Answer

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y:=\mathbf{1}_{X=0}$.
- $\Rightarrow X \cdot Y = 0$ (for all outcomes), and thus

$$\mathbf{E}[X\cdot Y]=0.$$

• Further, $\mathbf{E}[X] = 0$ (and $\mathbf{E}[Y] = 1/3$), and hence:

$$\mathbf{Cov}\left[X,Y\right] = \mathbf{E}\left[X\cdot Y\right] - \mathbf{E}\left[X\right]\cdot\mathbf{E}\left[Y\right] = 0.$$

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

Answer

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y:=\mathbf{1}_{X=0}$.
- $\Rightarrow X \cdot Y = 0$ (for all outcomes), and thus

$$\mathbf{E}[X\cdot Y]=0.$$

• Further, $\mathbf{E}[X] = 0$ (and $\mathbf{E}[Y] = 1/3$), and hence:

$$\mathbf{Cov}\left[X,Y\right] = \mathbf{E}\left[X\cdot Y\right] - \mathbf{E}\left[X\right]\cdot\mathbf{E}\left[Y\right] = 0.$$

• On the other hand, P[X = 0] = 1/3 and P[Y = 0] = 2/3, and thus

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

Answer

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y := \mathbf{1}_{X=0}$.
- $\Rightarrow X \cdot Y = 0$ (for all outcomes), and thus

$$\mathbf{E}[X\cdot Y]=0.$$

• Further, $\mathbf{E}[X] = 0$ (and $\mathbf{E}[Y] = 1/3$), and hence:

$$\mathbf{Cov}\left[X,Y\right] = \mathbf{E}\left[X\cdot Y\right] - \mathbf{E}\left[X\right]\cdot\mathbf{E}\left[Y\right] = 0.$$

• On the other hand, P[X = 0] = 1/3 and P[Y = 0] = 2/3, and thus

$$1 = \mathbf{P}[X \cdot Y = 0] > \mathbf{P}[X = 0] \cdot \mathbf{P}[Y = 0] = 2/9.$$

Variance of Sum Formula -

• For any two random variables X, Y,

$$V[X + Y] = V[X] + V[Y] + 2 \cdot Cov[X, Y].$$

Variance of Sum Formula -

For any two random variables X, Y,

$$V[X + Y] = V[X] + V[Y] + 2 \cdot Cov[X, Y].$$

• Hence if *X* and *Y* are uncorrelated variables,

$$V[X + Y] = V[X] + V[Y].$$

Variance of Sum Formula -

For any two random variables X, Y,

$$V[X + Y] = V[X] + V[Y] + 2 \cdot Cov[X, Y].$$

Hence if X and Y are uncorrelated variables,

$$\mathbf{V}[X+Y] = \mathbf{V}[X] + \mathbf{V}[Y].$$

Generalisation of the case where $\mathbf{V}[X+Y] = \mathbf{V}[X] + \mathbf{V}[Y].$ \prec x and Y are even independent!

Variance of Sum Formula

For any two random variables X, Y,

$$V[X + Y] = V[X] + V[Y] + 2 \cdot Cov[X, Y].$$

Hence if X and Y are uncorrelated variables.

$$\mathbf{V}[X+Y] = \mathbf{V}[X] + \mathbf{V}[Y].$$

 $\mathbf{V}[X+Y] = \mathbf{V}[X] + \mathbf{V}[Y]$. Generalisation of the case where X and Y are even independent!

• For any random variables X_1, X_2, \ldots, X_n :

$$\mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{V}[X_{i}] + 2 \cdot \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbf{Cov}[X_{i}, X_{j}].$$

Computing Variances of Sums of Uncorrelated Variables

Recall the example where $X \in \{-1,0,+1\}$ uniformly and $Y := \mathbf{1}_{X=0}$. Compute $\mathbf{V}[X+Y]$.

The definition of covariance is not scaling invariant:

The definition of covariance is not scaling invariant:

• If X increases by a factor of α , then **Cov** [X, Y] increases by a factor of α .

The definition of covariance is not scaling invariant:

- If X increases by a factor of α , then $\mathbf{Cov}[X, Y]$ increases by a factor of α .
- \Rightarrow Even if X and Y both increase by α , then $\mathbf{Cov}[X,Y]$ will change. (Exercise: It changes by?)

The definition of covariance is not scaling invariant:

- If X increases by a factor of α , then **Cov** [X, Y] increases by a factor of α .
- \Rightarrow Even if X and Y both increase by α , then $\mathbf{Cov}[X, Y]$ will change. (Exercise: It changes by?)

Correlation Coefficient

Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined as:

$$\rho(X,Y) = \frac{\mathbf{Cov}[X,Y]}{\sqrt{\mathbf{V}[X] \cdot \mathbf{V}[Y]}}.$$

If $\mathbf{V}[X] = 0$ or $\mathbf{V}[Y] = 0$, then it is defined as 0.

The definition of covariance is not scaling invariant:

- If X increases by a factor of α , then **Cov** [X, Y] increases by a factor of α .
- \Rightarrow Even if X and Y both increase by α , then Cov[X, Y] will change. (Exercise: It changes by?)

Correlation Coefficient

Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined as:

$$\rho(X,Y) = \frac{\mathbf{Cov}[X,Y]}{\sqrt{\mathbf{V}[X] \cdot \mathbf{V}[Y]}}.$$

If V[X] = 0 or V[Y] = 0, then it is defined as 0.

Properties:

The definition of covariance is not scaling invariant:

- If X increases by a factor of α , then **Cov** [X, Y] increases by a factor of α .
- \Rightarrow Even if X and Y both increase by α , then $\mathbf{Cov}[X, Y]$ will change. (Exercise: It changes by?)

Correlation Coefficient

Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined as:

$$\rho(X,Y) = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\operatorname{V}\left[X\right] \cdot \operatorname{V}\left[Y\right]}}.$$

If $\mathbf{V}[X] = 0$ or $\mathbf{V}[Y] = 0$, then it is defined as 0.

Properties:

1. The correlation coefficient is scaling-invariant, i.e., $\rho(X, Y) = \rho(\alpha \cdot X, \beta \cdot Y)$ for any $\alpha, \beta > 0$.

The definition of covariance is not scaling invariant:

- If X increases by a factor of α , then $\mathbf{Cov}[X, Y]$ increases by a factor of α .
- \Rightarrow Even if X and Y both increase by α , then Cov[X, Y] will change. (Exercise: It changes by?)

Correlation Coefficient

Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined as:

$$\rho(X,Y) = \frac{\mathbf{Cov}[X,Y]}{\sqrt{\mathbf{V}[X] \cdot \mathbf{V}[Y]}}.$$

If V[X] = 0 or V[Y] = 0, then it is defined as 0.

Properties:

- 1. The correlation coefficient is scaling-invariant, i.e., $\rho(X, Y) = \rho(\alpha \cdot X, \beta \cdot Y)$ for any $\alpha, \beta > 0$.
- 2. For any two random variables $X, Y, \rho(X, Y) \in [-1, 1]$.

Example —	
Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.	
	Answer —

Example -

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.

Answer

• We will only prove $\rho(X, Y) \ge -1$ (the other direction follows in analogous way).

Example -

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.

- We will only prove $\rho(X, Y) \ge -1$ (the other direction follows in analogous way).
- Let σ_x^2 and σ_y^2 denote the variances of X and Y, and σ_x and σ_y their standard deviations.

Example

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.

- We will only prove ρ(X, Y) ≥ −1 (the other direction follows in analogous way).
- Let σ_x^2 and σ_y^2 denote the variances of X and Y, and σ_x and σ_y their standard deviations.
- Then:

$$0 \le \mathbf{V} \left[\frac{X}{\sigma_X} + \frac{Y}{\sigma_Y} \right]$$

Example

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.

- We will only prove ρ(X, Y) ≥ −1 (the other direction follows in analogous way).
- Let σ_x^2 and σ_y^2 denote the variances of X and Y, and σ_x and σ_y their standard deviations.
- Then:

$$0 \le \mathbf{V} \left[\frac{X}{\sigma_{X}} + \frac{Y}{\sigma_{Y}} \right]$$

$$= \mathbf{V} \left[\frac{X}{\sigma_{X}} \right] + \mathbf{V} \left[\frac{Y}{\sigma_{Y}} \right] + 2 \mathbf{Cov} \left[\frac{X}{\sigma_{X}}, \frac{Y}{\sigma_{Y}} \right]$$

Example

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.

- We will only prove $\rho(X, Y) \ge -1$ (the other direction follows in analogous way).
- Let σ_x^2 and σ_y^2 denote the variances of X and Y, and σ_x and σ_y their standard deviations.
- Then:

$$\begin{aligned} &0 \leq \mathbf{V} \left[\frac{X}{\sigma_{X}} + \frac{Y}{\sigma_{Y}} \right] \\ &= \mathbf{V} \left[\frac{X}{\sigma_{X}} \right] + \mathbf{V} \left[\frac{Y}{\sigma_{Y}} \right] + 2 \operatorname{Cov} \left[\frac{X}{\sigma_{X}}, \frac{Y}{\sigma_{Y}} \right] \\ &= \frac{\mathbf{V} \left[X \right]}{\mathbf{V} \left[X \right]} + \frac{\mathbf{V} \left[Y \right]}{\mathbf{V} \left[Y \right]} + 2 \cdot \frac{\operatorname{Cov} \left[X, Y \right]}{\sigma_{X} \cdot \sigma_{X}} \end{aligned}$$

Example

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in [-1, 1]$.

- We will only prove $\rho(X, Y) \ge -1$ (the other direction follows in analogous way).
- Let σ_x^2 and σ_y^2 denote the variances of X and Y, and σ_x and σ_y their standard deviations.
- Then:

$$0 \le \mathbf{V} \left[\frac{X}{\sigma_{X}} + \frac{Y}{\sigma_{Y}} \right]$$

$$= \mathbf{V} \left[\frac{X}{\sigma_{X}} \right] + \mathbf{V} \left[\frac{Y}{\sigma_{Y}} \right] + 2 \mathbf{Cov} \left[\frac{X}{\sigma_{X}}, \frac{Y}{\sigma_{Y}} \right]$$

$$= \frac{\mathbf{V} [X]}{\mathbf{V} [X]} + \frac{\mathbf{V} [Y]}{\mathbf{V} [Y]} + 2 \cdot \frac{\mathbf{Cov} [X, Y]}{\sigma_{X} \cdot \sigma_{X}}$$

$$= 2 \cdot (1 + \rho(X, Y)).$$