Introduction to Probability
Lecture 7: Independence, Covariance and Correlation
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Independence of Random Variables

This definition covers the discrete and continuous case!
Definition of Independence
Two random variables X and Y are independent if for all values a, b :

$$
\mathbf{P}[X \leq a, Y \leq b]=\mathbf{P}[X \leq a] \cdot \mathbf{P}[Y \leq b] .
$$

For two discrete random variables, an equivalent definition is:

$$
\mathbf{P}[X=a, Y=b]=\mathbf{P}[X=a] \cdot \mathbf{P}[Y=b] .
$$

This is useless for continuous random variables.
Remark
Using the joint probability distribution, the above is equivalent to for all a, b,

$$
F(a, b)=F_{X}(a) \cdot F_{Y}(b)
$$

All these definitions extend in the natural way to more than two variables!

Factorisation

Factorisation

The definition of independence of X and Y implies the following factorisation formula: for any "suitable" sets A and B,

$$
\mathbf{P}[X \in A, Y \in B]=\mathbf{P}[X \in A] \cdot \mathbf{P}[Y \in B]
$$

For continuous distributions one obtains by differentiating both sides in the formula for the joint distribution:

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

Example

Let X and Y be two independent variables. Let $I=(a, b]$ be any interval and define $U:=\mathbf{1}_{X \in I}$ and $V:=\mathbf{1}_{Y \in I}$. Prove U and V are independent.

$$
\begin{aligned}
\mathbf{P}[U=0, V=1] & =\mathbf{P}\left[X \in I^{C}, Y \in I\right] \\
& =\mathbf{P}[X \notin I] \mathbf{P}[Y \in I]=\mathbf{P}[U=0] \mathbf{P}[V=1]
\end{aligned}
$$

Verification for other combination of values is similar $(U=1, V=0$ and $U=0, V=0$, etc $)$.

Buffon's Needle Problem (1/2)

Georges-Louis Leclerc de Buffon 1707-1788 (Source Wikipedia)

Source: Ross, Probability 8th ed.

- A table is ruled with equidistant, parallel lines a distance D apart.
- A needle of length L is thrown randomly on the table.
- What is the probability that the needle will intersect one of the two lines?

Let X be the distance of the middle point of the needle to the closest parallel line. Needle intersects a line if hypotenuse of the triangle is less than $L / 2$, i.e.,

$$
\frac{X}{\cos (\theta)}<\frac{L}{2} \quad \Leftrightarrow \quad X<\frac{L}{2} \cos (\theta)
$$

We assume that $X \in[0, D / 2]$ and $\theta \in[0, \pi / 2]$ are independent and uniform.
Can be thought of as: 1 . Sample the middle point of needle, 2. Sample the angle.

Buffon's Needle Problem (2/2)

Let us compute the probability that the line intersects:

$$
\begin{aligned}
\mathbf{P}\left[x<\frac{L}{2} \cdot \cos (\theta)\right] & =\iint_{x<(L / 2) \cos y} f_{X, \theta}(x, y) d x d y \\
& =\iint_{x<(L / 2) \cos y} f_{X}(x) f_{\theta}(y) d x d y \\
& =\frac{4}{\pi D} \int_{0}^{\pi / 2} \int_{0}^{L / 2 \cos (y)} d x d y \\
& =\frac{4}{\pi D} \int_{0}^{\pi / 2} \frac{L}{2} \cos (y) d y \\
& =\frac{2 L}{\pi D} .
\end{aligned}
$$

This gives us a method to estimate π !

Covariance

Definition of Covariance

Let X and Y be two random variables. The covariance is defined as:

$$
\operatorname{Cov}[X, Y]=\mathbf{E}[(X-\mathbf{E}[X]) \cdot(Y-\mathbf{E}[Y])]
$$

Interpretation:

- If $\operatorname{Cov}[X, Y]>0$ and X has a realisation larger (smaller) than $\mathbf{E}[X]$, then Y will likely have a realisation larger (smaller) than $\mathbf{E}[Y$].
- If $\operatorname{Cov}[X, Y]<0$, then it is the other way around.

Alternative Formula

Using the linearity of expectation rule, one has the equivalent definition:

$$
\operatorname{Cov}[X, Y]=\mathbf{E}[X \cdot Y]-\mathbf{E}[X] \cdot \mathbf{E}[Y]
$$

- Note that $\operatorname{Cov}[X, X]=\mathbf{V}[X]$.
- Two variables X, Y with $\operatorname{Cov}[X, Y]>0$ are positively correlated.
- Two variables X, Y with $\operatorname{Cov}[X, Y]<0$ are negatively correlated.
- Two variables X, Y with $\operatorname{Cov}[X, Y]=0$ are uncorrelated.

Illustration of 3 Cases for $\operatorname{Cov}[X, Y]$

500 outcomes of randomly generated pairs of RVs (X, Y) with different joint distributions

Fig. 10.1. Some scatterplots. Source: Textbook by Dekking

1. What is the covariance (positive, negative, neutral)?

- Left: set of sampled points has a circular shape, so uncorrelated.
- Middle: looks like ellipsoids with $y=x$ as main axis, so positively correlated.
- Right: looks like ellipsoids with $y=-x$ as main axis, so negatively correlated.

2. Where is the covariance the largest (in magnitude)?

- Right: points more closely concentrated, hence correlation is largest.

Example

Let X and Y be two independent random variables. Then X and Y are uncorrelated, i.e., $\operatorname{Cov}[X, Y]=0$.

We give a proof for the discrete case:

$$
\begin{aligned}
\mathbf{E}[X \cdot Y] & =\sum_{i} \sum_{j} a_{i} \cdot b_{j} \cdot \mathbf{P}\left[X=a_{i}, Y=b_{j}\right] \\
& =\sum_{i} \sum_{j} a_{i} \cdot b_{j} \cdot \mathbf{P}\left[X=a_{i}\right] \cdot \mathbf{P}\left[Y=b_{j}\right] \\
& =\left(\sum_{i} a_{i} \cdot \mathbf{P}\left[X=a_{i}\right]\right) \cdot\left(\sum_{j} b_{j} \cdot \mathbf{P}\left[Y=b_{j}\right]\right) \\
& =\mathbf{E}[X] \cdot \mathbf{E}[Y] .
\end{aligned}
$$

Uncorrelated may not imply Independence

Example

Find a (simple) example of two random variables X and Y which are uncorrelated but dependent.

- Let X be uniformly sampled from $\{-1,0,+1\}$ and $Y:=\mathbf{1}_{X=0}$.
$\Rightarrow X \cdot Y=0$ (for all outcomes), and thus

$$
\mathbf{E}[X \cdot Y]=0
$$

- Further, $\mathbf{E}[X]=0$ (and $\mathbf{E}[Y]=1 / 3$), and hence:

$$
\operatorname{Cov}[X, Y]=\mathbf{E}[X \cdot Y]-\mathbf{E}[X] \cdot \mathbf{E}[Y]=0
$$

- On the other hand, $\mathbf{P}[X=0]=1 / 3$ and $\mathbf{P}[Y=0]=2 / 3$, and thus

$$
1=\mathbf{P}[X \cdot Y=0]>\mathbf{P}[X=0] \cdot \mathbf{P}[Y=0]=2 / 9
$$

Variance of Sums and Covariances

Variance of Sum Formula

- For any two random variables X, Y,

$$
\mathbf{V}[X+Y]=\mathbf{V}[X]+\mathbf{V}[Y]+2 \cdot \mathbf{C o v}[X, Y]
$$

- Hence if X and Y are uncorrelated variables,

$$
\mathbf{V}[X+Y]=\mathbf{V}[X]+\mathbf{V}[Y] .\left\{\begin{array}{l}
\text { Generalisation of the case where } \\
X \text { and } Y \text { are even independent! }
\end{array}\right.
$$

- For any random variables $X_{1}, X_{2}, \ldots, X_{n}$:

$$
\mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right]+2 \cdot \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

Computing Variances of Sums of Uncorrelated Variables

Example

Recall the example where $X \in\{-1,0,+1\}$ uniformly and $Y:=\mathbf{1}_{X=0}$. Compute $\mathbf{V}[X+Y]$.

- We first compute $\mathbf{V}[X]$:

$$
\mathbf{V}[X]=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0^{2}+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}
$$

- Now for $\mathbf{V}[Y]$:

$$
\begin{aligned}
V[Y] & =\frac{1}{3} \cdot\left(1-\frac{1}{3}\right)^{2}+\frac{2}{3}\left(0-\frac{1}{3}\right)^{2} \\
& =\frac{2}{9} .
\end{aligned}
$$

\Rightarrow Hence:

$$
\begin{aligned}
\mathbf{V}[X+Y] & =\mathbf{V}[X]+\mathbf{V}[Y]+2 \cdot \operatorname{Cov}[X, Y] \\
& =\frac{2}{3}+\frac{2}{9}+0=\frac{8}{9} .
\end{aligned}
$$

Correlation Coefficient: Normalising the Covariance

The definition of covariance is not scaling invariant:

- If X increases by a factor of α, then $\operatorname{Cov}[X, Y]$ increases by a factor of α.
\Rightarrow Even if X and Y both increase by α, then $\operatorname{Cov}[X, Y]$ will change. (Exercise: It changes by?)

Correlation Coefficient

Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined as:

$$
\rho(X, Y)=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\mathbf{V}[X] \cdot \mathbf{V}[Y]}} .
$$

If $\mathrm{V}[X]=0$ or $\mathrm{V}[Y]=0$, then it is defined as 0 .

Properties:

1. The correlation coefficient is scaling-invariant, i.e., $\rho(X, Y)=\rho(\alpha \cdot X, \beta \cdot Y)$ for any $\alpha, \beta>0$.
2. For any two random variables $X, Y, \rho(X, Y) \in[-1,1]$.

Range of the Correlation Coefficient

Example

Verify that the correlation coefficients' range satisfies $\rho(X, Y) \in[-1,1]$.

- We will only prove $\rho(X, Y) \geq-1$ (the other direction follows in analogous way).
- Let σ_{x}^{2} and σ_{y}^{2} denote the variances of X and Y, and σ_{x} and σ_{y} their standard deviations.
- Then:

$$
\begin{aligned}
0 & \leq \mathbf{V}\left[\frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}}\right] \\
& =\mathbf{V}\left[\frac{X}{\sigma_{X}}\right]+\mathbf{V}\left[\frac{Y}{\sigma_{Y}}\right]+2 \mathbf{C o v}\left[\frac{X}{\sigma_{X}}, \frac{Y}{\sigma_{Y}}\right] \\
& =\frac{\mathbf{V}[X]}{\mathbf{V}[X]}+\frac{\mathbf{v}[Y]}{\mathbf{V}[Y]}+2 \cdot \frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \cdot \sigma_{X}} \\
& =2 \cdot(1+\rho(X, Y)) .
\end{aligned}
$$

