Introduction to Probability
Lecture 6: Marginals and Joint Distributions
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Motivation

Experiments often involve several random variables, and some of them may influence each other.

Motivation

Experiments often involve several random variables, and some of them may influence each other.

To this end, we will introduce:

- Joint/Marginal distribution of two (or more) variables
- Independence of two (or more) variables
- Covariance of two variables

Motivation

Experiments often involve several random variables, and some of them may influence each other.

To this end, we will introduce:

- Joint/Marginal distribution of two (or more) variables
- Independence of two (or more) variables
- Covariance of two variables

For simplicity, we will mainly focus on discrete random variables.

Warm-Up Exercise

Example

Let $X_{1}, X_{2} \in\{1,2, \ldots, 6\}$ be two independent rolls of an unbiased die. Let $S:=X_{1}+X_{2}$ and $M:=\max \left\{X_{1}, X_{2}\right\}$. List the elements of the event $\{S=7, M \leq 5\}$ and deduce the probability.

Joint Probability

Joint Probability Mass Function
The joint probability mass function of two discrete random variables X and Y is the function $p: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
p_{X, Y}(a, b)=\mathbf{P}[X=a, Y=b] \quad \text { for }-\infty<a, b<\infty .
$$

The joint probability mass function of two discrete random variables X and Y is the function $p: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
p_{X, Y}(a, b)=\mathbf{P}[X=a, Y=b] \quad \text { for }-\infty<a, b<\infty .
$$

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random variables X and Y is the function $F: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
F_{X, Y}(a, b)=\mathbf{P}[X \leq a, Y \leq b] \quad \text { for }-\infty<a, b<\infty
$$

The joint probability mass function of two discrete random variables X and Y is the function $p: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
p_{X, Y}(a, b)=\mathbf{P}[X=a, Y=b] \quad \text { for }-\infty<a, b<\infty .
$$

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random variables X and Y is the function $F: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
F_{X, Y}(a, b)=\mathbf{P}[X \leq a, Y \leq b] \quad \text { for }-\infty<a, b<\infty
$$

Marginal Distribution
Given a joint distribution $F_{X, Y}$ of two random variables X, Y, one obtains the marginal distribution of X for any a as follows:

$$
F_{X}(a)=\mathbf{P}[X \leq a]=\lim _{b \rightarrow \infty} F_{X, Y}(a, b)
$$

Joint Probability

Joint Probability Mass Function

The joint probability mass function of two discrete random variables X and Y is the function $p: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
p_{X, Y}(a, b)=\mathbf{P}[X=a, Y=b] \quad \text { for }-\infty<a, b<\infty .
$$

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random variables X and Y is the function $F: \mathbb{R}^{2} \rightarrow[0,1]$, defined by:

$$
F_{X, Y}(a, b)=\mathbf{P}[X \leq a, Y \leq b] \quad \text { for }-\infty<a, b<\infty
$$

Marginal Distribution
Given a joint distribution $F_{X, Y}$ of two random variables X, Y, one obtains the marginal distribution of X for any a as follows:

$$
F_{X}(a)=\mathbf{P}[X \leq a]=\lim _{b \rightarrow \infty} F_{X, Y}(a, b)
$$

Joint Distribution contains (much) more information than the two marginals!

Discrete Example 1

Example

Let $X_{1}, X_{2} \in\{1,2, \ldots, 6\}$ be independent rolls of an unbiased die. Let $S:=X_{1}+X_{2}$ and $M:=\max \left\{X_{1}, X_{2}\right\}$. Compute the joint probability mass function p of S and M and the marginal distributions of S and M.

Discrete Example 1

Example

Let $X_{1}, X_{2} \in\{1,2, \ldots, 6\}$ be independent rolls of an unbiased die. Let $S:=X_{1}+X_{2}$ and $M:=\max \left\{X_{1}, X_{2}\right\}$. Compute the joint probability mass function p of S and M and the marginal distributions of S and M.

	b						
a	1	2	3	4	5	6	
2	$1 / 36$	0	0	0	0	0	
3	0	$2 / 36$	0	0	0	0	
4	0	$1 / 36$	$2 / 36$	0	0	0	
5	0	0	$2 / 36$	$2 / 36$	0	0	
6	0	0	$1 / 36$	$2 / 36$	$2 / 36$	0	
7	0	0	0	$2 / 36$	$2 / 36$	$2 / 36$	
8	0	0	0	$1 / 36$	$2 / 36$	$2 / 36$	
9	0	0	0	0	$2 / 36$	$2 / 36$	
10	0	0	0	0	$1 / 36$	$2 / 36$	
11	0	0	0	0	0	$2 / 36$	
12	0	0	0	0	0	$1 / 36$	

Discrete Example 1

Example

Let $X_{1}, X_{2} \in\{1,2, \ldots, 6\}$ be independent rolls of an unbiased die. Let $S:=X_{1}+X_{2}$ and $M:=\max \left\{X_{1}, X_{2}\right\}$. Compute the joint probability mass function p of S and M and the marginal distributions of S and M.

	b						
a	1	2	3	4	5	6	$p_{S}(a)$
2	$1 / 36$	0	0	0	0	0	$1 / 36$
3	0	$2 / 36$	0	0	0	0	$2 / 36$
4	0	$1 / 36$	$2 / 36$	0	0	0	$3 / 36$
5	0	0	$2 / 36$	$2 / 36$	0	0	$4 / 36$
6	0	0	$1 / 36$	$2 / 36$	$2 / 36$	0	$5 / 36$
7	0	0	0	$2 / 36$	$2 / 36$	$2 / 36$	$6 / 36$
8	0	0	0	$1 / 36$	$2 / 36$	$2 / 36$	$5 / 36$
9	0	0	0	0	$2 / 36$	$2 / 36$	$4 / 36$
10	0	0	0	0	$1 / 36$	$2 / 36$	$3 / 36$
11	0	0	0	0	0	$2 / 36$	$2 / 36$
12	0	0	0	0	0	$1 / 36$	$1 / 36$
$p_{M}(b)$	$1 / 36$	$3 / 36$	$5 / 36$	$7 / 36$	$9 / 36$	$11 / 36$	1

Discrete Example 2

Example

Suppose an urn contains balls numbered $1,2, \ldots, N$. We draw $1 \leq n \leq N$ balls uniformly and without replacement from the urn. Let $X_{i} \in\{1,2, \ldots, N\}$ be the number of the ball drawn in the i-th step. What is the marginal distribution of X_{i} ?

Discrete Example 2

Example

Suppose an urn contains balls numbered $1,2, \ldots, N$. We draw $1 \leq n \leq N$ balls uniformly and without replacement from the urn. Let $X_{i} \in\{1,2, \ldots, N\}$ be the number of the ball drawn in the i-th step. What is the marginal distribution of X_{i} ?

We first compute the joint distribution. For distinct $a_{1}, a_{2}, \ldots, a_{n}$,

Fix i and consider the marginal distribution of X_{i} :

Joint Distributions of Continuous Variables

Definition
Random variables X and Y have a joint continuous distribution if for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and for all numbers $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$,

$$
\mathbf{P}\left[a_{1} \leq X \leq b_{1}, a_{2} \leq Y \leq b_{2}\right]=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y
$$

The function f has to satisfy $f(x, y) \geq 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$. We call f the joint probability density.

Joint Distributions of Continuous Variables

Definition
Random variables X and Y have a joint continuous distribution if for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and for all numbers $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$,

$$
\mathbf{P}\left[a_{1} \leq X \leq b_{1}, a_{2} \leq Y \leq b_{2}\right]=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y
$$

The function f has to satisfy $f(x, y) \geq 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$. We call f the joint probability density.

As in one-dimensional case we switch from F to f by differentiating (or integrating):

$$
F(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f(x, y) d x d y \quad \text { and } \quad f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

Example of a Joint Distribution of Continuous Random Variables

- Consider the density:

$$
f(x, y)=\frac{30}{\pi} \cdot e^{-50 x^{2}-50 y^{2}+80 x y}
$$

where $-\infty<x, y<\infty$.

Example of a Joint Distribution of Continuous Random Variables

- Consider the density:

$$
f(x, y)=\frac{30}{\pi} \cdot e^{-50 x^{2}-50 y^{2}+80 x y}
$$

where $-\infty<x, y<\infty$.

- This is an example of a so-called bivariate normal probability density function.

Example of a Joint Distribution of Continuous Random Variables

- Consider the density:

$$
f(x, y)=\frac{30}{\pi} \cdot e^{-50 x^{2}-50 y^{2}+80 x y}
$$

where $-\infty<x, y<\infty$.

- This is an example of a so-called bivariate normal probability density function.

Source: Modern Introduction to Statistics

Dealing with Continuous Variables

Example (1/2)

Suppose that the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}2 e^{-x} e^{-2 y} & \text { for } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute (i) $\mathbf{P}[X>1, Y<1]$ and (ii) $\mathbf{P}[X<Y]$.
(i) We first compute:

$$
\mathbf{P}[X>1, Y<1]=\int_{0}^{1} \int_{1}^{\infty} 2 e^{-x} e^{-2 y} d x d y
$$

Dealing with Continuous Variables (cont.)

Example (2/2)

Suppose that the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}2 e^{-x} e^{-2 y} & \text { for } 0<x<\infty, 0<y<\infty, \\ 0 & \text { otherwise } .\end{cases}
$$

Compute (i) $\mathbf{P}[X>1, Y<1]$ and (ii) $\mathbf{P}[X<Y]$.
(ii) We have:

$$
\mathbf{P}[X<Y]=\int_{0}^{\infty} \int_{0}^{y} 2 e^{-x} e^{-2 y} d x d y
$$

