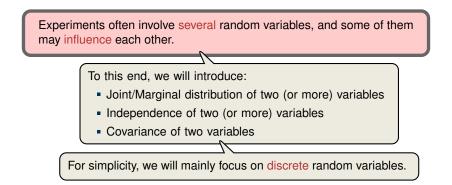
# Introduction to Probability

Lecture 6: Marginals and Joint Distributions Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk









#### Example

Let  $X_1, X_2 \in \{1, 2, ..., 6\}$  be two independent rolls of an unbiased die. Let  $S := X_1 + X_2$  and  $M := \max\{X_1, X_2\}$ . List the elements of the event  $\{S = 7, M \le 5\}$  and deduce the probability.

Answer

The elements are  $\{(2,5), (3,4), (4,3), (5,2)\}$ . Since each of these elements has a probability of  $1/6 \cdot 1/6 = 1/36$ , the sought probability is 4/36 = 1/9.



# **Joint Probability**

— Joint Probability Mass Function ———

The joint probability mass function of two discrete random variables *X* and *Y* is the function  $p : \mathbb{R}^2 \to [0, 1]$ , defined by:

$$p_{X,Y}(a,b) = \mathbf{P}[X = a, Y = b]$$
 for  $-\infty < a, b < \infty$ .

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random variables *X* and *Y* is the function  $F : \mathbb{R}^2 \to [0, 1]$ , defined by:

 $F_{X,Y}(a,b) = \mathbf{P}[X \le a, Y \le b]$  for  $-\infty < a, b < \infty$ .

Marginal Distribution

Given a joint distribution  $F_{X,Y}$  of two random variables X, Y, one obtains the marginal distribution of X for any a as follows:

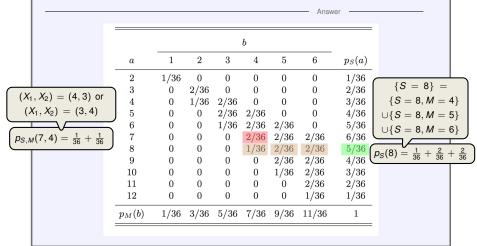
$$F_X(a) = \mathbf{P}[X \le a] = \lim_{b \to \infty} F_{X,Y}(a,b).$$

Joint Distribution contains (much) more information than the two marginals!

#### Discrete Example 1

Example

Let  $X_1, X_2 \in \{1, 2, ..., 6\}$  be independent rolls of an unbiased die. Let  $S := X_1 + X_2$  and  $M := \max\{X_1, X_2\}$ . Compute the joint probability mass function p of S and M and the marginal distributions of S and M.





### Discrete Example 2

Example

Suppose an urn contains balls numbered 1, 2, ..., N. We draw  $1 \le n \le N$  balls uniformly and without replacement from the urn. Let  $X_i \in \{1, 2, ..., N\}$  be the number of the ball drawn in the *i*-th step. What is the marginal distribution of  $X_i$ ?

Answei

We first compute the joint distribution. For distinct 
$$a_1, a_2, \ldots, a_n$$
  
 $p(a_1, a_2, \ldots, a_n) = \mathbf{P} [X_1 = a_1, X_2 = a_2, \ldots, X_n = a_n]$   
 $= \frac{1}{N(N-1)\cdots(N-n+1)}.$ 

Fix *i* and consider the marginal distribution of  $X_i$ :

$$p_{X_i}(k) = \sum_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n} p(a_1,\ldots,a_{i-1},k,a_{i+1},\ldots,a_n)$$

The  $X_i$ 's are **not** independent, yet their marginals are identical!  $= \frac{1}{N}$ Same argument applies to the hypergeometric distribution, with balls of two different colours. Definition Random variables X and Y have a joint continuous distribution if for some function  $f : \mathbb{R}^2 \to \mathbb{R}$  and for all numbers  $a_1 \le b_1$  and  $a_2 \le b_2$ ,  $\mathbf{P}[a_1 \le X \le b_1, a_2 \le Y \le b_2] = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, dx \, dy.$ The function f has to satisfy  $f(x, y) \ge 0$  for all x and y, and  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$ . We call f the joint probability density.

As in one-dimensional case we switch from F to f by differentiating (or integrating):

$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy$$
 and  $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$ 



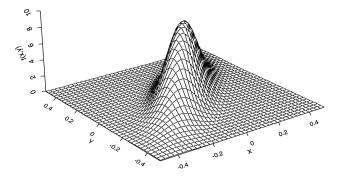
## Example of a Joint Distribution of Continuous Random Variables

Consider the density:

$$f(x,y) = \frac{30}{\pi} \cdot e^{-50x^2 - 50y^2 + 80xy},$$

where  $-\infty < x, y < \infty$ .

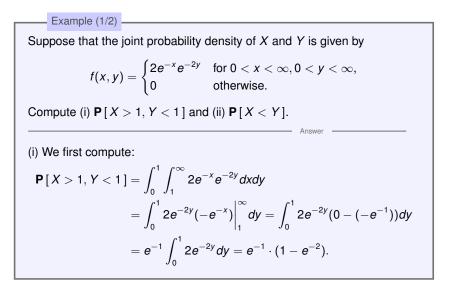
• This is an example of a so-called bivariate normal probability density function.



Source: Modern Introduction to Statistics



## **Dealing with Continuous Variables**





## Dealing with Continuous Variables (cont.)

