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Concurrent and Distributed Systems

• One course, two parts

– 8 lectures on concurrent systems

– 8 further lectures of distributed systems

• Similar interests and concerns:

– Scalability given parallelism and distributed systems

– Mask local or distributed communica琀椀ons latency

– Importance in observing (or enforcing) execu琀椀on orders

– Correctness in the presence of concurrency (+debugging).

• Important di昀昀erences

– Underlying primi琀椀ves: shared memory vs. message passing

– Distributed systems experience communica琀椀ons failure

– Distributed systems (may) experience unbounded latency

– (Further) di昀케culty of distributed 琀椀me.

2



3
h琀琀ps://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

log scale



Concurrent systems outline

1. Introduc琀椀on to concurrency, threads, and mutual exclusion.

2. Automata composi琀椀on - safety and liveness.

3. Semaphores and associated design pa琀琀erns.

4. CCR, monitors and concurrency in programming languages.

5. Deadlock, liveness and priority inversion and limits on 

parallelism.

6. Concurrency without shared data – message passing, 

composite opera琀椀ons (transac琀椀ons).

7. Further transac琀椀ons.

8. Crash recovery; lock-free programming; (Transac琀椀onal 

memory).
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See the ‘Learner’s Guide’ on the course pages for additional notes as well.



Recommended reading
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• “Opera琀椀ng Systems, Concurrent and Distributed So昀琀ware Design“, Jean 

Bacon and Tim Harris, Addison-Wesley 2003

• “Designing Data-Intensive Applica琀椀ons”, Mar琀椀n Kleppmann O’Reilly 

Media 2017

• “Modern Opera琀椀ng Systems”, Andrew Tannenbaum, Pren琀椀ce-Hall 2007 

etc and free pdf online.

• “Java Concurrency in Prac琀椀ce”, Brian Goetz and others, Addison-Wesley 

2006

Look in books for more detailed explana琀椀ons of algorithms; lectures only 

present sketches.

See the “Learner’s Guide” on the course pages for additional notes as well.

“Modern SoC Design on Arm” by DJ Greaves has some relevant content!



What is concurrency?

• Computers appear to do many things at once 

– E.g. running mul琀椀ple programs on a laptop

– E.g. wri琀椀ng back data bu昀昀ered in memory to the hard disk while 

the program(s) con琀椀nue to execute

• In the 昀椀rst case, this may actually be an illusion 

– E.g. processes 琀椀me sharing a single-cored CPU

• In the second, there is true parallelism

– E.g. Direct Memory Access (DMA) transfers data between memory 

and I/O devices (e.g., NIC, SATA) at the same 琀椀me as the CPU 

executes code

– E.g., several CPU cores execute code at the same 琀椀me

• In both cases, we have a concurrency

– Many things are occurring “at the same 琀椀me”
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In this course we will

• Inves琀椀gate concurrency in computer systems

– Processes, threads, interrupts, hardware

• Consider how to control concurrency

– Mutual exclusion (locks, semaphores), condi琀椀on synchroniza琀椀on,  

HLL primi琀椀ves and lock-free programming

• Learn about deadlock, livelock, priority inversion

– And preven琀椀on, avoidance, detec琀椀on, recovery 

• See how abstrac琀椀on can provide support for correct  & fault-tolerant 

concurrent execu琀椀on

– Transac琀椀ons, serialisability, concurrency control

• Later, we will extend these ideas to distributed systems.
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Recall: Processes and threads

• Processes are instances of programs in execu琀椀on

– OS unit of protec琀椀on & resource alloca琀椀on 

– Has a virtual address space; and one or more threads

• Threads are en琀椀琀椀es managed by the scheduler 

– Represents an individual execu琀椀on context

– A thread control block (TCB) holds the saved context (registers, 

including stack pointer), scheduler info, etc

• Threads run in the address spaces of their process

– (and also in the kernel address space on behalf of user code) 

• Context switches occur when the OS saves the state of one thread 

and restores the state of another

– If a switch is between threads in di昀昀erent processes, then process 

state is also switched – e.g., the address space.
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Concurrency with a single CPU (1)

• Process / OS concurrency 

– Process X runs for a while (un琀椀l blocks or interrupted)

– OS runs for a while (e.g. does some TCP processing)

– Process X resumes where it le昀琀 o昀昀…

• Inter-process concurrency 

– Process X runs for a while; then OS; then Process Y; then OS; then 

Process Z; etc

• Intra-process concurrency 

– Process X has mul琀椀ple threads X1, X2, X3, …

– X1 runs for a while; then X3; then X1; then X2; then …
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Concurrency with a single CPU (2)

• With just one CPU, can think of concurrency as 

interleaving of di昀昀erent execu琀椀ons, e.g.

Proc(A) OS Proc(B) Proc(C) Proc(A)OS Proc(B) OS OS

琀椀me

琀椀mer interrupt disk interrupt system call page fault

• Exactly where execu琀椀on is interrupted and 

resumed is not usually known in advance…

• this makes concurrency challenging!

• Generally should assume worst case behaviour
10Non-determinis琀椀c or so complex as to be unpredictable



Concurrency with mul琀椀ple CPUs (aka cores) 

• Many modern systems have mul琀椀ple CPUs

– And even if don’t, have other processing elements.

• Hence things occur in parallel, e.g. 

Proc(A) OS Proc(B) Proc(C)

Proc(A)

OS Proc(B) OS OS

琀椀me

CPU0

CPU1 Proc(A)OS Proc(D)Proc(C) OS

• No琀椀ce that the OS runs on both CPUs: tricky!

• More generally, can have di昀昀erent threads of the same process 

execu琀椀ng on di昀昀erent CPUs too. 
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What might this code do?
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void main(void) {
threadid_t threads[NUMTHREADS];      // Thread IDs
int i;                               // Counter

for (i = 0; i < NUMTHREADS; i++)
threads[i] = thread_create(threadfn, i);

for (i = 0; i < NUMTHREADS; i++)
thread_join(threads[i]);

}

void threadfn(int threadnum) {
sleep(rand(2));   // Sleep 0 or 1 seconds
printf(“%s %d\n”, threadstr, threadnum);

}

What orders could 

the printfs run in?

#de昀椀ne NUMTHREADS 4
char *threadstr = “Thread”;

Global variables are 

shared by all threads

Each thread has its 

own local variables

Addi琀椀onal threads 

are started explicitly



Possible orderings of this program

• What order could the printf()s occur in?

• Two sources of non-determinism in example:

– Program non-determinism: Threads randomly sleep 0 or 1 

seconds before prin琀椀ng

– Thread scheduling non-determinism: Arbitrary order for 

unpriori琀椀sed, concurrent wakeups, preemp琀椀ons

• There are 4! (factorial) valid permuta琀椀ons

– Assuming prin琀昀() is indivisible

– Is prin琀昀() indivisible? Maybe.

• Even more poten琀椀al 琀椀mings of printf()s
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Mul琀椀ple threads within a process
• A single-threaded process has code, a 

heap, a stack, a sta琀椀c global segment 

and register set (including $pc).

• Addi琀椀onal threads have their own 

registers and stacks

– Per-thread program counters ($pc) 

allow execu琀椀on 昀氀ows to di昀昀er

– Per-thread stack pointers ($sp) allow 

call stacks, local variables to di昀昀er

• Heap and code (+global variables) are 

shared between all threads

• Access to another thread’s stack is 

possible in some languages – but 

deeply discouraged!
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Code

Process 

address 

space

Heap

Thread 1 

registers

$pc

$t0

$sp

$a0

$a1
Stack

Thread 2 

registers

$pc

$t0

$sp

$a0

$a1

Stack



1:N - user-level threading

• Kernel only knows about (and schedules) 

processes.

• A userspace library implements threads, 

context switching, scheduling, 

synchronisa琀椀on, …

– Eg. original JVM or a threading library

• Co-rou琀椀ne variant supports voluntary 

yield only.

• Advantages:

– Lightweight crea琀椀on/termina琀椀on + 

context switch; applica琀椀on-speci昀椀c 

scheduling; OS independence.

• Disadvantages:

– Awkward to handle blocking system 

calls or page faults, preemp琀椀on; cannot 

use mul琀椀ple CPUs.

• Very early 1990s! 15

Kernel
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1:1 - kernel-level threading

• Kernel provides threads directly

– By default, a process has one thread… 

– …but can create further via system calls

• Kernel implements threads, thread 

context switching, scheduling, etc..

• Userspace thread `library’ 1:1 maps user 

threads into kernel threads

• Advantages:

– Handles preemp琀椀on, blocking syscalls,

– Straigh琀昀orward to use mul琀椀ple CPUs.

• Disadvantages:

– Higher overhead (trap to kernel); less 

昀氀exible; less portable.

• Model of choice across major OSes

– Windows, Linux, MacOS, FreeBSD, 

Solaris, …
16
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Kernel

P1

Core 1 … Core n

P1

T1

T2
T3 T2

M:N - hybrid threading

• All sorts of other minor varia琀椀ons exist.

• Aim for best of all possible worlds.

• Advantages:
● Lightweight thread switching en琀椀rely in 

user space is supported.
● A custom scheduller can understand user-

space inter-thread communica琀椀on 

primi琀椀ves (eg. message passing).

• Disadvantages:
● Need a 琀椀mer signal (user-space interrupt) 

to implement 琀椀me sharing? Perhaps be琀琀er 

to just use another kernel thread.
● Kernel threads are the only ones that can 

block in a system call, so they are also 

needed for that, and so on.

 
[… any further discussion would be an MPhil topic.]17



Advantages of concurrency

• Allows us to overlap computa琀椀on and I/O on a single machine.

• Can simplify code structuring and/or improve responsiveness 

– E.g. one thread redraws the GUI, another handles user input, and 

another computes game logic

– E.g. one thread per HTTP request

– E.g. background GC thread in JVM/CLR 

• Enables the seamless (?!) use of mul琀椀ple CPUs –greater performance 

through parallel processing.
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Concurrent systems

• In general, have some number of processes…

– … each with some number of threads,

– … each with some number of CPU cores,

– … distributed over some number of computers.

• For this half of the course we’ll mostly focus on a single computer running a 

mul琀椀-threaded process

– most problems & solu琀椀ons generalize to mul琀椀ple processes, CPUs, and 

machines, but impera琀椀ve programming for them becomes harder

– (we’ll look at distributed systems later in the term)

• Challenge of the thread model: threads will access shared resources 

concurrently via their common address space leading to races.

• Concurrent programming disciplines without shared memory are generally 

much ‘cleaner’ : easier to reason about and automa琀椀cally map to available 

cores or other execu琀椀on resources (GPU, FPGA, Cloud).
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Example: Housemates Buying Beer

• Thread 1 (person 1)
1.Look in fridge

2.If no beer, go buy beer

3.Put beer in fridge 

• In most cases, this works just 昀椀ne…

• But if both people look (step 1) before either re昀椀lls the fridge (step 

3)… we’ll end up with too much beer!

• Obviously more worrying if “look in fridge” is “check reactor”, and 

“buy beer” is “toggle safety system” ;-)

• Thread 2 (person 2)
1.Look in fridge

2.If no beer, go buy beer

3.Put beer in fridge 

20



Solu琀椀on #1: Leave a Note

• Thread 1 (person 1)
1.Look in fridge

2.If no beer & no note
1.Leave note on fridge

2.Go buy beer

3.Put beer in fridge

4.Remove note

• Thread 2 (person 2)
1.Look in fridge

2.If no beer & no note
1.Leave note on fridge

2.Go buy beer

3.Put beer in fridge

4.Remove note

• Probably works for human beings…

• But computers are stooopid!

• Can you see the problem?

21



Non-Solu琀椀on #1: Leave a Note

// thread 1
beer = checkFridge();
if(!beer) { 
  if(!note) {
     note = 1;
     buyBeer();
     note = 0;
  }
}

// thread 2
beer = checkFridge();
if(!beer) { 
  if(!note) {
     note = 1;
     buyBeer();
     note = 0;
  }
}

• Easier to see with pseudo-code… 

22



Non-Solu琀椀on #1: Leave a Note

// thread 1
beer = checkFridge();
if(!beer) { 
  if(!note) {

     

     note = 1;
     buyBeer();
     note = 0;
  }
}

// thread 2

beer = checkFridge();
if(!beer) { 
  if(!note) {
     note = 1;
     buyBeer();
     note = 0;

  }
}

• Easier to see with pseudo-code… 

context switch

context switch
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Non-Solu琀椀on #1: Leave a Note

• Of course this won’t happen all the 琀椀me
–Need threads to interleave in the just the right way 

(or just the wrong way ;-).

• Unfortunately code that is ‘mostly correct’ is 

much worse than code that is ‘mostly wrong’! 
–Di昀케cult to catch in tes琀椀ng, as occurs rarely.

–May even go away when running under debugger
• e.g. only context switches threads when they block 

• (such bugs are some琀椀mes called Heisenbugs).
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Cri琀椀cal Sec琀椀ons & Mutual Exclusion

• The high-level problem here is that we have 

two threads trying to solve the same problem 
–Both execute buyBeer() concurrently

–Ideally want only one thread doing that at a 琀椀me.

• We call this code a cri琀椀cal sec琀椀on
–A piece of code which should never be concurrently 

executed by more than one thread.

• Ensuring this involves mutual exclusion
–If one thread is execu琀椀ng within a cri琀椀cal sec琀椀on, all 

other threads are prohibited from entering it. 

25



Achieving Mutual Exclusion

• One way is to let only one thread ever execute a par琀椀cular 

cri琀椀cal sec琀椀on – e.g. a nominated beer buyer – but this 

restricts concurrency 

• Alterna琀椀vely our (broken) solu琀椀on #1 was trying to provide 

mutual exclusion via the note

– Leaving a note means “I’m in the cri琀椀cal sec琀椀on”;

– Removing the note means “I’m done”

– But, as we saw, it didn’t work ;-)

• This was because we could experience a context switch 

between reading ‘note’, and se琀�ng it.  

26



Non-Solu琀椀on #1: Leave a Note

27

// thread 1
beer = checkFridge();
if(!beer) { 
  if(!note) {

     

     note = 1;
     buyBeer();
     note = 0;
  }
}

// thread 2

beer = checkFridge();
if(!beer) { 
  if(!note) {
     note = 1;
     buyBeer();
     note = 0;

  }
}

context switch

context switch

We decide to 

enter the cri琀椀cal 

sec琀椀on here… 
But only mark the 

fact here … 

These problems are referred to as race 

condi琀椀ons in which mul琀椀ple threads 

“race” with one another during 

con昀氀ic琀椀ng access to shared resources



Atomicity

• What we want is for the checking of note and the (condi琀椀onal) 

se琀�ng of note to happen without any other thread being 

involved

– We don’t care if another thread reads it a昀琀er we’re done; or 

sets it before we start our check

– But once we start our check, we want to con琀椀nue without 

any interrup琀椀on.

• If a sequence of opera琀椀ons (e.g. read-and-set) are made to 

occur as if one opera琀椀on, we call them atomic

– Since indivisible from the point of view of the program.

• An atomic read-and-set opera琀椀on is su昀케cient for us to 

implement a correct beer program.    

28



Solu琀椀on #2: Atomic Note

// thread 1
beer = checkFridge();
if(!beer) {
  if(read-and-set(note)) {
     buyBeer();
     note = 0;
  }
}

// thread 2
beer = checkFridge();
if(!beer) { 
  if(read-and-set(note)) {
     buyBeer();
     note = 0;
  }
}

• read-and-set(&address) atomically checks the value in 

memory and i昀昀 it is zero, sets it to one

– returns 1 i昀昀 the value was changed from 0 -> 1 

• This prevents the behavior we saw before, and is su昀케cient to 

implement a correct program…

– although this is not that program :-) 

29



Non-Solu琀椀on #2: Atomic Note

// thread 1
beer = checkFridge();
if(!beer) { 

  if(read-and-set(note)) {
     buyBeer();
     note = 0;
  }
}

// thread 2

beer = checkFridge();
if(!beer) { 
  if(read-and-set(note)) {
     buyBeer();
     note = 0;

  }
}

• Our cri琀椀cal sec琀椀on doesn’t cover enough! 

context switch

context switch

30



General mutual exclusion

• We would like the ability to de昀椀ne a region of 

code as a cri琀椀cal sec琀椀on e.g.

// thread 1
ENTER_CS();
beer = checkFridge();
if(!beer) 
     buyBeer();
LEAVE_CS();

// thread 2
ENTER_CS();
beer = checkFridge();
if(!beer) 
     buyBeer();
LEAVE_CS();

• This should work …

• … providing that our implementa琀椀on of 

ENTER_CS() / LEAVE_CS() is correct
31



Implemen琀椀ng mutual exclusion

• One op琀椀on is to prevent context switches

– e.g. disable interrupts (for kernel threads), or set an in-

memory 昀氀ag (for user threads)

– ENTER_CS() = “disable context switches”; 

• LEAVE_CS() = “re-enable context switches”

• Can work but:

– Rather brute force (stops all other threads, not just those 

who want to enter the cri琀椀cal sec琀椀on)

– Poten琀椀ally unsafe (if disable interrupts and then sleep 

wai琀椀ng for a 琀椀mer interrupt ;-)

– And doesn’t work across mul琀椀ple CPUs.  

32
Discuss: Does the in-memory flag set need to be atomic?



Implemen琀椀ng mutual exclusion

• Associate a mutual exclusion lock with each 

cri琀椀cal sec琀椀on, e.g. a variable L
–(must ensure use correct lock variable!)

–ENTER_CS() = “LOCK(L)”

LEAVE_CS() = “UNLOCK(L)”

• Can implement LOCK() using read-and-set():

LOCK(L) { 
  while(!read-and-set(L))
    continue; // spin, doing nothing
}

UNLOCK(L) { 
  L = 0;
}

33



Solu琀椀on #3: mutual exclusion locks

// thread 1
LOCK(fridgeLock); 
beer = checkFridge();
if(!beer)
     buyBeer();
UNLOCK(fridgeLock);

// thread 2
LOCK(fridgeLock); 
beer = checkFridge();
if(!beer)
     buyBeer();
UNLOCK(fridgeLock);

• This is – 昀椀nally! – a correct program

• S琀椀ll not perfect 

– Lock might be held for quite a long 琀椀me (e.g. imagine another person 

wan琀椀ng to get the milk!)

– Wai琀椀ng threads waste CPU 琀椀me (or worse) 

– Conten琀椀on occurs when consumers have to wait for locks.

• Mutual exclusion locks o昀琀en known as mutexes

– But we will prefer this term for sleepable locks – see Lecture 2

– So think of the above as a spin lock.
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Summary + next 琀椀me

• De昀椀ni琀椀on of a concurrent system

• Origins of concurrency within a computer

• Processes and threads

• Challenge: concurrent access to shared resources

• Cri琀椀cal sec琀椀ons, mutual exclusion, race condi琀椀ons, atomicity

• Mutual exclusion locks (mutexes)

• Next 琀椀me:

– Opera琀椀ng System and hardware instruc琀椀ons and structures,  

– Interac琀椀ng automata view of concurrency,

– Introduc琀椀on to formal modelling of concurrency.
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Concurrent systems
Lecture 2:  Hardware, OS and Automaton Views

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)
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From last 琀椀me ...

• Concurrency exploits parallel and distributed 

computa琀椀on.

• Concurrency is also a useful programming 

paradigm and a virtualisa琀椀on means.

• Race condi琀椀ons arise with impera琀椀ve 

languages in shared memory (sadly(?) the 

predominant paradigm of last 15 years).

• Concurrency bugs are hard to an琀椀cipate.
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This 琀椀me

• Computer architecture and O/S summary

• Hardware support for atomicity

• Basic Automata Theory/Jargon and 

interac琀椀ons.

• Simple model checking

• Dining Philosophers Taster

• Primi琀椀ve-free atomicity (Lamport Bakery) 
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General comments

• Concurrency is essen琀椀al in modern systems

– overlapping I/O with computa琀椀on

– building distributed systems

– But throws up a lot of challenges

• need to ensure safety, allow synchroniza琀椀on, and avoid issues of liveness 

(deadlock, livelock, …)

• A major risk of over-engineering exists: pu琀�ng in too many locks not really 

needed.

• Also its possible to get accidental, excessive serialisa琀椀on, killing the 

expected parallel speedup.

• Generally worth building a sequen琀椀al system 昀椀rst

– and worth using exis琀椀ng libraries, tools and design pa琀琀erns rather than 

rolling your own!
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Computer Architecture Reference Models

Even on a uniprocessor, 
interrupt routines will ‘magically’ 
change stored values in memory.

Stop-the-world atomic
operations are undesirable on 
parallel hardware.

https://www.cl.cam.ac.uk/~djg11/socdam-patterns-hls-touchstones/soc-design-patterns/sp1-socparts/zhp6c8e57449.html



Opera琀椀ng System Behaviour

- TCB contains saved registers for non-running tasks.
- Ready-to-run tasks are in a nominal queue.
- Blocked TCBs reference a  semaphore (or similar) they are awaiting.
- Most interrupt routines will invoke scheduller as they return.
- If nothing is ready-to-run, the core executes a ‘halt’ instruction, putting 
it in low power mode until the next hardware interrupt arrives.



Hardware founda琀椀ons for atomicity 1

• On a simple uni-processor, without DMA devices, the 
crudest mechanism is to disable interrupts.  

• We bracket cri琀椀cal sec琀椀on with ints_o昀昀 and ints_on 
instruc琀椀ons. This guarantees no preemp琀椀on.

• Can disrupt real-琀椀me response

• Not suitable when other CPUs and DMA exist

• Requires supervisor privilege.
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Hardware founda琀椀ons for atomicity 2

• How can we implement atomic read-and-set?

• Simple pair of load and store instruc琀椀ons fail 

the atomicity test (obviously divisible!)

• Need a new ISA primi琀椀ve for protec琀椀on against 

parallel access to memory from another CPU

• Two common 昀氀avours:

– Atomic Compare and Swap (CAS)

– Load Linked, Store Condi琀椀onal (LL/SC)

– (But we also 昀椀nd atomic increment, bitset etc..)

8



Atomic Compare and Swap (CAS)
• Instruc琀椀on operands: memory address, prior + new values

– If prior value matches in-memory value, new value stored

– If prior value does not match in-memory value, instruc琀椀on fails

– So昀琀ware checks return value, can loop on failure

• Found on CISC systems such as x86 (cmpxchg)?

9

mov %edx, 1 # New value -> register
spin:

mov %eax, [foo_lock] # Load prior value
test %eax, %eax # If non-zero (owned),
jnz spin #   loop
lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,
test %eax, %eax        # swap in value from 
jnz spin              # %edx; else loop

• Atomic Test and Set (TAS) is another varia琀椀on



Load Linked-Store Condi琀椀onal (LL/SC)

• Found on RISC systems (MIPS, RISC-V, ARM, …)

– Load value from memory loca琀椀on with LL

– Manipulate value in register (e.g., add, assign, …)

– SC fails if memory neighbourhood modi昀椀ed (or interrupt) since LL

– SC writes back register and indicates success (or not)

– So昀琀ware checks SC return value and typically loops on failure

– An example of op琀椀mis琀椀c concurrency.

• Preferred since it does not lock up whole memory system 

while one core makes an atomic opera琀椀on. 
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test_and_set_bit:    ! RISC-V code
spin:
 movli.l        @mutex, %r_tmp1  ! Load linked
 mov            %r_tmp1, %r_tmp2   ! Copy to second register
 or             %r_bitno, %r_tmp1  ! Set the desired bit
 movco.l        %r_tmp1, @mutex    ! Store-conditional
 bf             spin               ! If store failed, try again
 and            %r_bitno, %r_tmp2  ! Return old value of the bit.
 ret

Code below requires a 
further outer loop
to become an acquire.



Finite State Machine Revision and Terminology

FSM is tuple:  (Q, q
0
, Σ,  Δ)  being states, start state, input alphabet, transition function.

A live state is one that can be returned to infinitely often in the future.

A dead(lock) state has no successors – machine stops if we enter it.

Start-up states are those before the main live behaviour.

‘Bad’ states are those that lead away from the main alive behaviour.

In this course, live states typically encompass/denote the normal/ongoing operation of our system.



Finite State Machine: Fairness and Livelock Syphons

Ignoring the ‘F’, the live states of this FSM include Q5 and Q6.

F has been labelled as a ‘fair’ state. If we also discard the start-up ‘lasso 
stem’, its existence changes the live states to just Q2, Q3, Q4.  Manual 
labelling defines the intended system behaviour.

Any fair state is live and states from which any fair state cannot be reached 
are not live. [ Hence if we also labelled Q5 as F, fairness cannot be achieved.]

Although more rigorous definitions exist, this is sufficient terminology for us to 
define livelock as: we have not deadlocked but cannot make ‘useful’ progress. 



Finite State Machine: FSM view of thread control 昀氀ow.

FSM expresses program control flow per thread.
FSM arcs have ‘condition / action’ annotations.
Conditions and actions range over shared global state.



Finite State Machine: Product of Machines 1

Product of uncoupled machines simply multiplies state arities.
Product may be synchronous or asynchronous. 
We shall not always show self arcs from now on.



Finite State Machine: Product of Machines 2

Asynchronous product: one machine steps at a time. Interleaving order is  
undefined (not strict alternation but so-called stuttering).

Synchronous product: all machines step at once (lock-step).  We see 
‘diagonal’ arcs.

Synchronous product corresponds to synchronous hardware in digital logic.

Asynchronous product is relevant for this course.

Note, in the small example, on the next slide, 
the coupling between machines involves one
 looking at the ‘PC’ of another. This is unrealistic. 
In real software, one thread  will examine the 
state of variables mutated by another.`



Finite State Machine: Product of Machines 3

Coupling of FSMs reduces behaviour.

Arc removal can lead to deadlock.

Couple FSMs by making input of one 
depend on the state of the other. 

Example coupling 1:
   Half coupled: 
     let y = M1 in state A.
 
  

In practice, coupling tends to be 
through shared variables: those written by 
one FSM appearing in edge guards of 
another.



Finite State Machine: Product of Machines 4

   Example coupling 2:
     fully-coupled:
        let y = M1 in state A
        and x = M2 in state 0.

Composite machine has
no remaining external inputs.



Forward reference to seman琀椀cs course nota琀椀on

• The seman琀椀cs course models a computer as a program (expression) 

e and a memory (store) s; 

• It uses the ver琀椀cal bar to denote stu琀琀ering parallel composi琀椀on.
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This slide says if either e1 or e2 is able to advance, one of them will go forward, 

upda琀椀ng its PC (e becomes e’) and changing the shared memory (s becomes s’).

[This slide content not examinable on this course.]



Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

19

while(true) {        // philosopher i
   think();
   wait(fork[i]);
   wait(fork[(i+1) % 5];
   eat(); 
   signal(fork[i]);
   signal(fork[(i+1) % 5];
}

Semaphore forks[] = new Semaphore[5];

• For now, read ‘wait’ as ‘pick up’ and ‘signal’ as `put down’

• See next 琀椀me for de昀椀ni琀椀ons.

• Exercise: Draw out FSM product for 2 or 3 philosophers.



Reachable State Space Algorithm

• 0. Input FSM = (Q, q
0
, Σ, Δ)

• 1. Ini琀椀alise reachable R = { q
0 
}  

• 2. while(changes)

R = R ∪ { q’| q’ = Δ(q, σ), q ∈R, σ ∈Σ } 

20

The `while(changes)’ construct makes this a fixed-point 
iteration.

A common requirement is to check that a condition holds in 
all reachable states.  This is called a safety property.  

A model checker tool can either check the condition on each 
iteration for early violation detection, or else check after R is 
fully computed.



Live States Algorithm

• 0. Input FSM = (Q, q
0
, Σ, Δ)

• 1. Ini琀椀alise live set L = Q (or perhaps R)  

• 2. while(changes)
– L = L ∩ { q| q’ = Δ(q, σ), q’ ∈L, σ ∈Σ } 

21

Premise: A state is live or a start-up state if it has a successor 
that is live.

This finds the whole ‘lasso’.

To discard start-up states intersect the result with the same
computation on the inverse transition function.

(This slide for interest only: not examinable.)



Cri琀椀cal without Atomic Ac琀椀ons

• A global array indexed by thread id (琀椀d) can be used instead 

of atomic primi琀椀ves under appropriate use protocol.

• Bakery algorithm provides n-way exclusion.

• Dekker (non-examinable) and others are similar.

• Not very important for SMP compu琀椀ng right now, but 

poten琀椀ally useful for distributed compu琀椀ng.

• They serve as lovely toy examples for model checking!

• They need fence instruc琀椀ons on modern architectures, so 

might as well use built-in atomics.

22



Lamport Bakery Algorithm

23

void lock(tid)        // tid=thread identifier
{  
   Enter[tid] = true;
   Number[tid] = 1 + max

j
 (Number[j]);

   Enter[tid] = false;
   for (j in 0..N

tid
-1) 

      { while (Enter[j]) continue; 
        while (Number[j] && (Number[j], j)<(Number[tid], tid)) continue;
      }
}    

void unlock(tid)
{  
   Number[tid] = 0;
}    

Take a ticket on entry to bakery, one
greater than maximum issued (or in use).

Wait for all lower tickets to be served and
discarded… Now it is my turn.

If the same ticket gets issued twice, resolve
by tid priority using lexographical comparison. 

The spin on Enter flag resolves the intrinsic race.

Note, the continue
statements operate
on their `whiles’ 
not the outer ‘for’.
They are `spins’.



Model Checking Quick Demo

• If 琀椀me permits, CBMC demo in lectures.

• Materials are (will be) on course site and 

developed a li琀琀le further next 琀椀me.

• Otherwise try in your own 琀椀me.

24



Summary + next 琀椀me

• We looked at underlying hardware structures (but this 

was for completeness rather than for examina琀椀on 

purposes) 

• We looked at 昀椀nite-state models of programs and a 

model checker, but do note that today’s tools can 

cope only with highly-abstracted models or small sub-

systems of real-world applica琀椀ons.

• Next 琀椀me
– Access to hardware primi琀椀ves via O/S

– Mutual exclusion using semaphores

– Producer/consumer and one generalisa琀椀on
25



Concurrent systems
Lecture 2: Mutual exclusion, semaphores,

and producer-consumer rela琀椀onships

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

1



Reminder from last 琀椀me

• Automata models of concurrent systems

• Concurrency hardware mechanisms

• Challenge: concurrent access to shared resources

• Mutual exclusion, race condi琀椀ons, and atomicity

• Mutual exclusion locks (mutexes)

2



From last 琀椀me: beer-buying example

• Thread 1 (person 1)

1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge 

• In most cases, this works just 昀椀ne…

• But if both people look (step 1) before either re昀椀lls the fridge (step 3)… we’ll end up with 

too much beer!

• Obviously more worrying if “look in fridge” is “check reactor”, and “buy beer” is “toggle 

safety system” ;-)

• Thread 2 (person 2)

1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge 

3

We spo琀琀ed race condi琀椀ons in obvious concurrent implementa琀椀ons.

Ad hoc solu琀椀ons (e.g., leaving a note) failed.

Even naïve applica琀椀on of atomic opera琀椀ons failed.

Mutexes provide a general mechanism for mutual exclusion.

From 昀椀rst lecture



This 琀椀me

• Implemen琀椀ng mutual exclusion

• Semaphores for mutual exclusion, condi琀椀on 

synchronisa琀椀on, and resource alloca琀椀on

• Two-party and generalised producer-

consumer rela琀椀onships

4



Implemen琀椀ng mutual exclusion

• Associate a mutual exclusion lock with each 

cri琀椀cal sec琀椀on, e.g. a variable L

– (must ensure use correct lock variable!)

ENTER_CS() = “LOCK(L)”

LEAVE_CS() = “UNLOCK(L)”

• Can implement LOCK() using read-and-set():

LOCK(L) { 
 while(!read-and-set(L))
   continue; // spin, doing nothing
}

UNLOCK(L) { 
  L = 0;
}

5



Semaphores

• Despite with atomic ops, busy wai琀椀ng remains ine昀케cient…

– Lock conten琀椀on with spinning-based solu琀椀on wastes CPU cycles.

– Be琀琀er to sleep un琀椀l resource available.

• Dijkstra (THE, 1968) proposed semaphores

– New type of variable

– Ini琀椀alized once to an integer value (o昀琀en 0). 

• Supports two opera琀椀ons: wait() and signal()

– Some琀椀mes called down() and up()

– (and originally called P() and V() ... blurk!).

• Can be used for mutual exclusion with sleeping

• Can also be used for condi琀椀on synchronisa琀椀on

– Wake up another wai琀椀ng thread on a condi琀椀on or event

– E.g. “There is an item available for processing in a queue.”
6



Semaphore implementa琀椀on

• Implemented as an integer and a queue 
wait(sem) { 
  if(sem > 0) {
     sem = sem - 1;
   } else suspend caller & add thread to queue for sem 
}

signal(sem) {
  if no threads are waiting {
     sem = sem + 1;
  } else wake up some thread on queue 
} 

• Method bodies are implemented atomically  

• Think of “sem” as count of the number of available “items”

• “suspend” and “wake” invoke threading APIs
7



Hardware support for wakeups: IPIs

• CAS/LLSC/… support atomicity via shared memory

• But what about “wake up thread”?

– E.g., no琀椀fy waiter of resources now free, work now wai琀椀ng, …

– Generally known as condi琀椀on synchronisa琀椀on

– On a single CPU, wakeup triggers context switch

– How to wake up a thread on another CPU that is already busy doing something 

else?

• Inter-Processor Interrupts (IPIs)            (aka Inter-Core Interrupt ICI)

– Mark thread as “runnable”

– Send an interrupt to the target CPU

– IPI handler runs thread scheduler, preempts running thread, triggers context 

switch.

• Together, shared memory and IPIs support atomicity and condi琀椀on 

synchronisa琀椀on between processors.

8



Mutual exclusion with a semaphore

• Ini琀椀alize semaphore to 1; wait() is lock(), signal() is unlock()

aSem

CS

A B

wait (aSem)

wait (aSem)

CS

1

0

1

0 B

C

wait (aSem)0 B, C

0 C

0 signal (aSem)

signal (aSem)

B  blocked

C  blocked

CS

signal (aSem)
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Condi琀椀on synchronisa琀椀on

• Ini琀椀alize semaphore to 0; A proceeds only a昀琀er B signals

aSem
A B

                wait before signal                                                  signal before wait

0

wait (aSem)

1

0 A

0

0 signal (aSem)
0

A B

wait (aSem)

signal (aSem)

A blocked “wake-up wai琀椀ng”

aSem

A con琀椀nues
A con琀椀nues
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N-resource alloca琀椀on

• Suppose there are N instances of a resource

– e.g. N printers a琀琀ached to a print server daemon.

• Can manage alloca琀椀on with a semaphore sem, 

ini琀椀alized to N 

– Any job wan琀椀ng a printer does wait(sem)

– A昀琀er N jobs get a printer, next will sleep

– To release resource a昀琀er last page, signal(sem)

• Will wake some job if any job is wai琀椀ng.

• Will typically also require mutual exclusion

– E.g. to decide which printers are free and hand them work.

11

*

* Can initialise to 0 and increment as printers are installed.



Semaphore design pa琀琀erns

• Semaphores are quite powerful

– Can solve mutual exclusion… 

– Can also provide condi琀椀on synchroniza琀椀on

• Thread waits un琀椀l some condi琀椀on set by another thread

• Let’s look at three common examples:

– One producer thread, one consumer thread, with a 
N-slot shared memory bu昀昀er

– Any number of producer and consumer threads,  
again using an N-slot shared memory bu昀昀er

– Mul琀椀ple reader, single writer synchroniza琀椀on (next 

琀椀me) fo

12



Producer-consumer problem

• General “pipe” concurrent programming paradigm

– E.g. pipelines in Unix; staged servers; work stealing;

download thread vs. rendering thread in web browser

• Shared bu昀昀er B[] with N slots, ini琀椀ally empty

• Producer thread wants to:

– Produce an item

– If there’s room, insert into next slot; 

– Otherwise, wait un琀椀l there is room

• Consumer thread wants to: 

– If there’s anything in bu昀昀er, remove an item (+consume it)

– Otherwise, wait un琀椀l there is something

• Maintain order, use parallelism, avoid context switches.

13

If producer thread paused while buffer
is full, this is called ‘backpressure’.

Overall structure is similar for LIFO and FIFO disciplines.



Producer-consumer pseudo solu琀椀on

// producer thread
while(true) {
  item = produce(); 
  if there is space { 
     buffer[in] = item;
     in = (in + 1) % N;
  }
}

// consumer thread 
while(true) {
  if there is an item { 
     item = buffer[out]; 
     out  = (out + 1) % N;
  }
  consume(item);
}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N); 
items  = new Semaphore(0);  

g h i j k l

out in0 N-1

bu昀昀er

14Shaded pseudocode spins?



OO-style producer-consumer FIFO

// producer thread(s)
while(true) {
  item = produce(); 
  the_fifo.enqueue(item);
}

// consumer thread(s) 
while(true) {
 item = the_fifo/dequeue(); 
 consume(item);
}

class FIFO<DT> {
  DT buffer[N]; int in = 0, out = 0;
  spaces = new Semaphore(N); 
  items  = new Semaphore(0);

  public void enqueue(DT item) { as before … };
  public DT dequeue()  { as before … };
}  

15

The buffer is often coded/refactored as a class like the above. 
The code shape is different, but the executed code is identical.
Note: both exported methods are blocking.
Out method implementations will shortly be generalised to be re-entrant.

(Starting to
look like
a monitor!)



Producer-consumer solu琀椀on

// producer thread
while(true) {
  item = produce(); 
  wait(spaces); 
     buffer[in] = item;
     in = (in + 1) % N;
  signal(items);
}

// consumer thread 
while(true) {
  wait(items); 
     item = buffer[out]; 
     out  = (out + 1) % N;
  signal(spaces);
  consume(item);
}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N); 
items  = new Semaphore(0);  

g h i j k l

out in0 N-1

bu昀昀er

16



Producer-consumer solu琀椀on

• Use of semaphores for N-resource alloca琀椀on

– In this case, resource is a slot in the bu昀昀er

– spaces allocates empty slots (for producer)

– items allocates full slots (for consumer).

• No explicit mutual exclusion

– Threads will never try to access the same slot at the 

same 琀椀me; if “in == out” then either

• bu昀昀er is empty (and consumer will sleep on items), or

• bu昀昀er is full (and producer will sleep on spaces)

– NB: in and out are each accessed solely in one of the 

producer (in) or consumer (out).
17Generalise: how can we support more than one producer or consumer thread?



Generalized producer-consumer

• Previously had exactly one producer thread, and 

exactly one consumer thread.

• More generally might have many threads adding 

items, and many removing them

• If so, we do need explicit mutual exclusion

– E.g. to prevent two consumers from trying to remove 

(and consume) the same item

– (Race condi琀椀ons due to concurrent use of in or out 

precluded when just one thread on each end)

• Can implement with one more semaphore…
18



Generalized P-C solu琀椀on

• Exercise: Can we modify this design to allow concurrent access by 1 

producer and 1 consumer by adding one further semaphore?

// producer threads
while(true) {
  item = produce(); 
  wait(spaces);
  wait(guard);
     buffer[in] = item;
     in = (in + 1) % N;
  signal(guard);
  signal(items);
}

// consumer threads 
while(true) {
  wait(items);
  wait(guard); 
     item = buffer[out]; 
     out  = (out + 1) % N;
  signal(guard);
  signal(spaces);
  consume(item);
}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N); 
items  = new Semaphore(0);
guard  = new Semaphore(1);   // for mutual exclusion 

19



Semaphores: summary

• Powerful abstrac琀椀on for implemen琀椀ng concurrency 

control:

– Mutual exclusion & condi琀椀on synchroniza琀椀on

• Be琀琀er than read-and-set()… but correct use requires 

considerable care 

– E.g. forget to wait(), can corrupt data

– E.g. forget to signal(), can lead to in昀椀nite delay

– Generally get more complex as add more semaphores

• Used internally in some OSes and libraries, but 

generally deprecated for other mechanisms…

20



Mutual exclusion and invariants

• One important goal of locking is to avoid exposing 

inconsistent intermediate states to other threads

• This suggests an invariants-based strategy:

– Invariants hold as mutex is acquired

– Invariants may be violated while mutex is held

– Invariants must be restored before mutex is released.

• E.g. dele琀椀on from a doubly linked list:

– Invariant: an entry is in the list, or not in the list.

– Individually non-atomic updates of forward and backward 

pointers around a deleted object are 昀椀ne as long as the lock isn’t 

released in between the pointer updates

21
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Summary + next 琀椀me

• Implemen琀椀ng mutual exclusion: hardware support for 

atomicity and inter-processor interrupts

• Semaphores for mutual exclusion, condi琀椀on synchronisa琀椀on, 

and resource alloca琀椀on

• Two-party and generalised producer-consumer rela琀椀onships

• Invariants and locks

• Next 琀椀me:

– Mul琀椀-Reader Single-Writer (MRSW) locks

– Starva琀椀on and fairness

– Alterna琀椀ves to semaphores/locks

– Concurrent primi琀椀ves in prac琀椀ce
22



Summary + next 琀椀me

• Implemen琀椀ng mutual exclusion: hardware support for 

atomicity and inter-processor interrupts

• Semaphores for mutual exclusion, condi琀椀on synchronisa琀椀on, 

and resource alloca琀椀on

• Two-party and generalised producer-consumer rela琀椀onships

• Invariants and locks

• Next 琀椀me:

– Mul琀椀-Reader Single-Writer (MRSW) locks

– Starva琀椀on and fairness

– Alterna琀椀ves to semaphores/locks

– Concurrent primi琀椀ves in prac琀椀ce
23



Concurrent systems
Lecture 2: CCR, monitors, and

concurrency in prac琀椀ce.

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

1



Reminder from last 琀椀me

• Implemen琀椀ng mutual exclusion: hardware 

support for atomicity and inter-processor 

interrupts

• Semaphores for mutual exclusion, condi琀椀on 

synchronisa琀椀on, and resource alloca琀椀on

• Two-party and generalised producer-

consumer rela琀椀onships

• Invariants and locks

2



From last 琀椀me: Semaphores summary

• Powerful abstrac琀椀on for implemen琀椀ng concurrency control:

– mutual exclusion & condi琀椀on synchroniza琀椀on

• Be琀琀er than read-and-set()… but correct use requires 

considerable care 

– e.g. forget to wait(), can corrupt data

– e.g. forget to signal(), can lead to in昀椀nite delay

– generally get more complex as add more semaphores

• Used internally in some OSes and libraries, but generally 

deprecated for other mechanisms…

3

Semaphores are a low-level implementa琀椀on 

primi琀椀ve – they say what to do, rather than 

describing programming goals



This 琀椀me

• Mul琀椀-Reader Single-Writer (MRSW) locks
– Starva琀椀on and fairness

• Alterna琀椀ves to semaphores/locks:
– Condi琀椀onal cri琀椀cal regions (CCRs)

– Monitors

– Condi琀椀on variables

– Signal-and-wait vs. signal-and-con琀椀nue seman琀椀cs

• Concurrency primi琀椀ves in prac琀椀ce

• Concurrency primi琀椀ves wrap-up

4



Mul琀椀ple-Readers Single-Writer (MRSW)

• Another common synchronisa琀椀on paradigm is MRSW
– Shared resource accessed by a set of threads

• e.g. cached set of DNS results 

– Safe for many threads to read simultaneously, but a writer 

(upda琀椀ng) must have exclusive access

– MRSW locks have read lock and write lock opera琀椀ons

– Mutual exclusion vs. data stability

• Simple implementa琀椀on uses two semaphores

• First semaphore is a mutual exclusion lock (mutex)
– Any writer must wait to acquire this

• Second semaphore protects a reader count
– Reader count incremented whenever a reader enters

– Reader count decremented when a reader exits

– First reader acquires mutex; last reader releases mutex.
5



Simplest MRSW solu琀椀on

// a writer thread 
wait(wSem);
.. perform update to data
signal(wSem);

// a reader thread
wait(rSem);
nr = nr + 1;
if (nr == 1)  // 昀椀rst in
  wait(wSem); 
signal(rSem);
.. read data
wait(rSem);
nr = nr - 1;
if (nr == 0) // last out 
  signal(wSem);
signal(rSem);

int nr = 0;                 // number of readers 
rSem   = new Semaphore(1);  // protects access to nr
wSem   = new Semaphore(1);  // protects writes to data

Code for writer is simple…

.. but reader case more complex: must 

track number of readers, and acquire or 

release overall lock as appropriate
6



Simplest MRSW solu琀椀on

• Solu琀椀on on previous slide is “correct”
– Only one writer will be able to access data structure, 

but – providing there is no writer – any number of 

readers can access it

• However writers can starve
– If readers con琀椀nue to arrive, a writer might wait 

forever (since readers will not release wSem)

– Would be fairer if a writer only had to wait for all 

current readers to exit…

– Can implement this with an addi琀椀onal semaphore.

7



A fairer MRSW solu琀椀on

// a writer thread 
wait(turn);
wait(wSem);
.. perform update to data
signal(turn);
signal(wSem);

// a reader thread
wait(turn);
signal(turn);
wait(rSem);
nr = nr + 1;
if (nr == 1)  // 昀椀rst in
  wait(wSem); 
signal(rSem);
.. read data
wait(rSem);
nr = nr - 1;
if (nr == 0) // last out 
  signal(wSem);
signal(rSem);

int nr = 0;                 // number of readers 
rSem   = new Semaphore(1);  // protects access to nr
wSem   = new Semaphore(1);  // protects writes to data
turn   = new Semaphore(1);  // write is awaiting a turn

Once a writer tries to enter,

it will acquire turn… 

… which prevents any further 

readers from entering

8



Condi琀椀onal Cri琀椀cal Regions

shared int A, B, C; 
region A, B {
    await( /* arbitrary condition */); 
    // critical code using A and B
}

9

• Compiler automa琀椀cally declares and manages underlying primi琀椀ves 

for mutual exclusion or synchroniza琀椀on 
– e.g. wait/signal, read/await/advance, … 

• Easier for programmer (c/f previous implementa琀椀ons).

• Implemen琀椀ng synchronisa琀椀on with locks is di昀케cult

• Only the developer knows what data is protected by 

which locks

• One early (1970s) e昀昀ort to address this problem was CCRs
– Variables can be explicitly declared as ‘shared’

– Code can be tagged as using those variables, e.g.



CCR example: Producer-Consumer

• Explicit (scoped) declara琀椀on of  cri琀椀cal sec琀椀ons
– automa琀椀cally acquire mutual exclusion lock on region entry

• Powerful await(): any evaluable predicate. 
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// producer thread
while(true) {
  item = produce(); 
  region in, out, bu昀昀er {
    await((in–out) < N);
    bu昀昀er[in % N] = item;
    in = in + 1;
  }
}

// consumer thread 
while(true) {
  region in, out, bu昀昀er {  
    await((in-out) > 0); 
    item = bu昀昀er[out % N]; 
    out  = out + 1;
  }
  consume(item);
}

shared int bu昀昀er[N]; 
shared int in = 0; shared int out = 0;



CCR pros and cons

• On the surface seems like a de昀椀nite step up
– Programmer focuses on variables to be protected, 

compiler generates appropriate semaphores (etc)

– Compiler can also check that shared variables are 

never accessed outside a CCR

– (s琀椀ll rely on programmer annota琀椀ng correctly ?)

• But await(<expr>) is problema琀椀c…
– What to do if the (arbitrary) <expr> is not true? 

– very di昀케cult to work out when it becomes true?

– Solu琀椀on was to leave region & try to re-enter: this is 

busy wai琀椀ng (aka spinning), which is very ine昀케cient…

11



Monitors

• Monitors are similar to CCRs (implicit mutual exclusion), 

but modify them in two ways
– Wai琀椀ng is limited to explicit condi琀椀on variables

– All related rou琀椀nes are combined together, along with 

ini琀椀aliza琀椀on code, in a single construct

• Idea is that only one thread can ever be execu琀椀ng 

‘within’ the monitor
– If a thread calls a monitor method, it will block (enqueue) 

if another thread is holding the monitor

– Hence all methods within the monitor can proceed on the 

basis that mutual exclusion has been ensured

• Java’s synchronized primi琀椀ve implements monitors.

12



Example Monitor syntax
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monitor <foo> {

 // declarations of shared variables 

 // set of procedures (or methods) 
 procedure P1(...) { ... }
 procedure P2(...) { ... }
 ...
 procedure PN(...) { ... }

 { 
    /* monitor initialization code */ 
 }

}

All related data and 

methods kept together

Shared variables can be 

ini琀椀alized here

Invoking any procedure 

causes an [implicit] mutual 

exclusion lock to be taken

Shared variables only 

accessible from within 

monitor methods



Condi琀椀on Variables (Queues)

• Mutual exclusion not always su昀케cient
– Condi琀椀on synchroniza琀椀on -- e.g., wait for a condi琀椀on to occur

• Monitors allow condi琀椀on variables (aka condi琀椀on queues)
– Explicitly declared and managed by programmer

– NB: No integrated counter – not a stateful semaphore!

– Support three opera琀椀ons:
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wait(cv) { 
   suspend thread and add it to the queue for CV,
   release monitor lock; 
}
signal(cv) { 
   if any threads queued on CV, wake one thread;
}
broadcast(cv) { 
   wake all threads queued on CV;
}



Monitor Producer-Consumer solu琀椀on? 
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monitor ProducerConsumer {
 int in, out, bu昀昀er[N]; 
 condition notfull = TRUE, notempty = FALSE; 

 procedure produce(item) { 
   if ((in-out) == N) wait(notfull); 
   bu昀昀er[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   if ((in-out) == 0) wait(notempty); 
   item = bu昀昀er[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

If bu昀昀er is full,

wait for consumer

If bu昀昀er was full,

signal the producer

If bu昀昀er is empty,

wait for producer

If bu昀昀er was empty,

signal the consumer



Does this work?

• Depends on implementa琀椀on of wait() & signal()

• Imagine two threads, T1 and T2
– T1 enters the monitor and calls wait(C) – this suspends T1, 

places it on the queue for C, and unlocks the monitor

– Next T2 enters the monitor, and invokes signal(C)

– Now T1 is unblocked (i.e. capable of running again)… 

– … but can only have one thread ac琀椀ve inside a monitor!

• If we let T2 con琀椀nue (signal-and-con琀椀nue), T1 must queue for 

re-entry to the monitor 
– And no guarantee it will be Mext to enter

• Otherwise T2 must be suspended (signal-and-wait), allowing 

T1 to con琀椀nue…

16

Note: C is either of our two condition variables.



Signal-and-Wait (“Hoare Monitors”)

• Consider the queue E to enter the monitor
– If monitor is occupied, threads are added to E

– May not be FIFO, but should be fair.

• If thread T1 waits on C, added to queue C

• If T2 enters monitor & signals, waking T1
– T2 is added to a new queue S “in front of” E

– T1 con琀椀nues and eventually exits (or re-waits)

• Some thread on S chosen to resume 
– Only admit a thread from E when S is empty.

17

Note: C is one of our two condition queues (aka condition variables).

Note: E is the thread entry queue associated with the mutex present in all monitors.

Note: S is a further entry queue for this form of monitor.



Signal-and-Wait pros and cons

• We call signal() exactly when condi琀椀on is true, then 

directly transfer control to waking thread
– Hence condi琀椀on will s琀椀ll be true! 

• But more di昀케cult to implement… 

• And can be complex to reason about (a call to signal may 

or may not result in a context switch)
– Hence we must ensure that any invariants are maintained 

at 琀椀me we invoke signal()

• With these seman琀椀cs, our example is broken:
– We signal() before incremen琀椀ng in/out. 

18



Monitor Producer-Consumer solu琀椀on? 
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monitor ProducerConsumer {
 int in, out, buf[N]; 
 condition notfull,notempty; 

 procedure produce(item) { 
   if ((in-out) == N) wait(notfull); 
   bu昀昀er[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   if ((in-out) == 0) wait(notempty); 
   item = bu昀昀er[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

Same code as slide 15

Race

Race

If bu昀昀er is full,

wait for consumer

If bu昀昀er was full,

signal the producer

If bu昀昀er is empty,

wait for producer

If bu昀昀er was empty,

signal the consumer



Signal-and-Con琀椀nue

• Alterna琀椀ve seman琀椀cs introduced by Mesa 

programming language (Xerox PARC).

• An invoca琀椀on of signal() moves a thread from the 

condi琀椀on queue C to the entry queue E
– Invoking threads con琀椀nues un琀椀l exits (or waits).

• Simpler to build…  but now not guaranteed that 

condi琀椀on holds (is true) when resume!
– Other threads may have executed a昀琀er the signal, but 

before you con琀椀nue.

20



Signal-and-Con琀椀nue example (1)
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P1

P2

Thread in monitor

Thread waits for condi琀椀on

Bu昀昀er

Bu昀昀er is full - !(not full)

full

C1

Thread waits for monitor

not full

P1 enters
P1 waits 

as !(not 

full)

C1 enters

P2 tries to enter, 

enqueued on E

C1 removes item, 

signals not full

full

P1 tries to enter,

enqueued on E

P2 inserts item, 

sets !(not full)

P1 wakes up 

despite !(not full)

P2 enters

Bu昀昀er has space - (not full)

With signal-and-con琀椀nue seman琀椀cs, 

must use while instead of if in case the 

condi琀椀on becomes false while wai琀椀ng



Signal-and-Con琀椀nue example (2)

• Consider mul琀椀ple producer-consumer threads

1. P1 enters. Bu昀昀er is full so blocks on queue for C

2. C1 enters.

3. P2 tries to enter; occupied, so queues on E

4. C1 con琀椀nues, consumes, and signals C (“no琀昀ull”)

5. P1 unblocks; monitor occupied, so queues on E

6. C1 exits, allowing P2 to enter

7. P2 昀椀lls bu昀昀er, and exits monitor

8. P1 resumes and tries to add item – BUG!

• Hence must re-test condi琀椀on: 

 i.e. while( (in - out) == N) wait(not full);

22



Monitor Producer-Consumer solu琀椀on? 
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monitor ProducerConsumer {
 int in, out, buf[N]; 
 condition notfull, notempty; 

 procedure produce(item) { 
   while ((in-out) == N) wait(notfull); 
   buf[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   while ((in-out) == 0) wait(notempty); 
   item = buf[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

if() replaced with while() for condi琀椀ons

While bu昀昀er is full,

wait for consumer

If bu昀昀er was full,

signal the producer

While bu昀昀er is empty,

wait for producer

If bu昀昀er was empty,

signal the consumer

With signal-and-con琀椀nue 

seman琀椀cs, increment a昀琀er 

signal does not race.



Monitors: summary

• Structured concurrency control
– groups together shared data and methods

– (today we’d call this object-oriented)

• Considerably simpler than semaphores, but s琀椀ll perilous 

in places

• May be overly conserva琀椀ve some琀椀mes: 
– e.g. for MRSW cannot have >1 reader in monitor

– Typically must work around with entry and exit methods 

(5eginRead(), EndRead(), BeginWrite(), etc)

• Exercise: sketch a working MRSW monitor 

implementa琀椀on.
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Concurrency in prac琀椀ce

• Seen a number of abstrac琀椀ons for concurrency 

control 
– Mutual exclusion and condi琀椀on synchroniza琀椀on 

• Next let’s look at some concrete examples:
– POSIX pthreads (C/C++ API) 

– FreeBSD kernels

– Java.

25



Example: pthreads (1)

• A thread calling lock() blocks if the mutex is held
– trylock() is a non-blocking variant: returns immediately; 

returns 0 if lock acquired, or non-zero if not. 

26

int pthread_mutex_init(pthread_mutex_t *mutex, ...);
int pthread_mutex_lock(pthread_mutex_t *mutex); 
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Standard (POSIX) threading API for C, C++, etc
• mutexes, condi琀椀on variables, and barriers

• Mutexes are essen琀椀ally binary semaphores:



Example: pthreads (2)

• No proper monitors: must manually code e.g. 

27

• Condi琀椀on variables are Mesa-style:

int pthread_cond_init(pthread_cond_t *cond, ...); 
int pthread_cond_wait(pthread_cond_t *cond,

  pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_mutex_lock(&M); 
while (!condition)
    pthread_cond_wait(&C,&M);
// do stuff 
if (condition)
    pthread_cond_broadcast(&C);
pthread_mutex_unlock(&M);

No琀椀ce: while() and not if() due to 

signal-and-con琀椀nue seman琀椀cs



Example: pthreads (3)
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• Barriers: explicit synchroniza琀椀on mechanism

• Wait un琀椀l all threads reach some point

• E.g., in discrete event simula琀椀on, all parallel threads 

must complete one epoch before any begin on the next

pthread_barrier_init(&B, ..., NTHREADS); 
for(i=0; i<NTHREADS; i++) 
   pthread_create(..., worker, ...);

worker() { 
   while(!done) {  
     // do work for this round 
     pthread_barrier_wait(&B);
   }
}

int pthread_barrier_init(pthread_barrier_t *b, ...,  N);
int pthread_barrier_wait(pthread_barrier_t *b);



Example: FreeBSD kernel

• Kernel provides spin locks, mutexes, condi琀椀onal variables, 

reader-writer + read-mostly locks
– Seman琀椀cs (roughly) modelled on POSIX threads

• A variety of deferred work primi琀椀ves
• “Fully preemp琀椀ve” and highly threaded

– (e.g., interrupt processing in threads)

– Interes琀椀ng debugging tools

– such as DTrace, lock

– conten琀椀on measurement,

• lock-order checking

• Further details are in 2019’s

lecture 8 ...

29

 For modern C++ support, see https://en.cppreference.com/w/cpp/thread



Example: Java synchroniza琀椀on (1)
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public synchronized void myMethod() throws ...{
    // This code runs with the intrinsic lock held.
}

public void myMethod() throws ...{
    synchronized(this) {     
        // This code runs with the intrinsic lock held.
}}

• Inspired by monitors – objects have intrinsic locks

• Synchronized methods:

• Synchronized statements:

• Method return / statement exit release lock.

• Locks are reentrant: a single thread can reenter synchronized statements/methods 

without wai琀椀ng.

• synchronized() can accept other objects than this.



Example: Java synchroniza琀椀on (2)

• Objects have condi琀椀on variables for guarded blocks

• wait() puts the thread to sleep:

• no琀椀fy() and no琀椀fyAll() wake threads up:

• As with Mesa, signal-and-con琀椀nue seman琀椀cs
• As with locks, can name object (thatObject.wait())
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public synchronized void waitDone() {
    while (!done) {
        wait();
    }
}

public synchronized void notifyDone() {
    done = true;
    notifyAll();
}



Example: Java synchroniza琀椀on (3)

• Java also speci昀椀es memory consistency and atomicity 

proper琀椀es that make some lock-free concurrent access safe – 

if used very carefully
– We will consider lock-free structures later in the term

• java.u琀椀l.concurrent (especially as of Java 8) includes many 

higher-level primi琀椀ves –for example, thread pools, concurrent 

collec琀椀ons, semaphores, cyclic barriers, …

• Because Java is a type-safe, managed language, it is a much 

safer place to experiment with concurrent programming than 

(for example) C.

32



Parallel C++ Extensions: Cilk and OpenMP

• Cilk allowed a func琀椀on call to be ‘spawned’ to another worker 

and requires all the results to be ready at the ‘sync’ boundary.

• OpenMP embeds parallelisa琀椀on sugges琀椀ons in #pragma 

direc琀椀ves.
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// Cilk C/C++
cilk int fib(int n) {
    if (n < 2) return n;
    else 
      { int x = spawn fib(n-1);
        int y = spawn fib(n-2);
       sync;
       return x + y;
    }

// OpenMP C/C++
double sum_array(double A[], int len)
{  double sum = 0.0;
   #pragma omp parallel for
   for (int i = 0; i < len; i++) 
        Sum += Normalise(a[i]);
 
   return sum;
}

Or in a functional language, without assigns, the compiler
can infer parallelism without source code modification: 
    ML:  let rec fib n = if n<2 then n else fib(n-1)+fib(n-2) 



The local iteration initial partial 
result (as a unit lambda)

Parallel Itera琀椀on in Modern HLLs

• C# Example using Parallel.ForEach to sum an array of doubles.

• Localised itera琀椀ons (without locks) from each worker are 

combined (under a lock) into the 昀椀nal result.
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double[] sequence = …

Parallel.ForEach(sequence,
    () => 0.0d,
    (x, loopState, partialResult) =>  { return Normalize(x) + partialResult; },
    (localPartialSum) => { lock (lockObject) { sum += localPartialSum; }}
    );
  return sum;

[From ‘Parallel programming with .net’ from Microsoft]

The thread-safe final step of
each local context   

The worker’s loop body

Or in ML:  foldl (fun c x -> c + Normalize x) (0.0) sequence  



Concurrency Primi琀椀ves: Summary

• Concurrent systems require means to ensure:
– Safety (mutual exclusion in cri琀椀cal sec琀椀ons), and

– Progress (condi琀椀on synchroniza琀椀on)

• Spinlocks (busy wait); semaphores; MRSWs, CCRs, and 

monitors
– Signal-and-Wait vs. Signal-and-Con琀椀nue

• Many of these are used in prac琀椀ce
– Subtle minor di昀昀erences can be dangerous

– Much care required to avoid bugs, especially where concurrency 

is a bolt-on to an exis琀椀ng impera琀椀ve language.

– E.g., failing to take out a lock or failing to release it,

– E.g., “lost wakeups” – signal w/o waiter.
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Summary + next 琀椀me

• Mul琀椀-Reader Single-Writer (MRSW) locks

• Alterna琀椀ves to semaphores/locks:
– Condi琀椀onal cri琀椀cal regions (CCRs)

– Monitors

– Condi琀椀on variables

– Signal-and-wait vs. signal-and-con琀椀nue seman琀椀cs

• Concurrency primi琀椀ves in prac琀椀ce

• Concurrency primi琀椀ves wrap-up

• Next 琀椀me:
– Problems with concurrency: deadlock, livelock, priori琀椀es

– Resource alloca琀椀on graphs; deadlock {preven琀椀on, detec琀椀on, recovery}

– Priority and scheduling; priority inversion; (auto) parallelism limits.
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Concurrent systems
Lecture 2: Liveness and Priority Guarantees

1

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)



Reminder from last 琀椀me

• Mul琀椀-Reader Single-Writer (MRSW) locks

• Alterna琀椀ves to semaphores/locks:

– Condi琀椀onal cri琀椀cal regions (CCRs)

– Monitors

– Condi琀椀on variables

– Signal-and-wait vs. signal-and-con琀椀nue seman琀椀cs

• Concurrency primi琀椀ves in prac琀椀ce

• Concurrency primi琀椀ves wrap-up
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From last 琀椀me: primi琀椀ves summary

• Concurrent systems require means to ensure:

– Safety (mutual exclusion in cri琀椀cal sec琀椀ons), and

– Progress (condi琀椀on synchroniza琀椀on)

• Spinlocks (busy wait); semaphores; CCRs and monitors

– Hardware primi琀椀ves for synchronisa琀椀on

– Signal-and-Wait vs. Signal-and-Con琀椀nue

• Many of these are s琀椀ll used in prac琀椀ce

– Subtle minor di昀昀erences can be dangerous

– Require care to avoid bugs – e.g., “lost wakeups”

• More detail on implementa琀椀on in addi琀椀onal material on web page.
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Progress is par琀椀cularly di昀케cult, in large part because of 

primi琀椀ves themselves, which is the topic of this lecture



This 琀椀me

• Liveness proper琀椀es

• Deadlock

– Requirements

– Resource alloca琀椀on graphs and detec琀椀on

– Preven琀椀on – the Dining Philosophers Problem – and 

recovery

• Thread priority and the scheduling problem

• Priority inversion and priority inheritance

• Limits to parallelisa琀椀on and automa琀椀on. 

4



Liveness proper琀椀es

• From a theore琀椀cal viewpoint must ensure that 

we eventually make progress, i.e. want to avoid

– Deadlock (threads sleep wai琀椀ng for one another), and

– Livelock (threads execute but make no progress)

• Prac琀椀cally speaking, also want good performance

– No starva琀椀on (single thread must make progress)

– (more generally may aim for fairness) 

– Minimality (no unnecessary wai琀椀ng or signalling)

• The proper琀椀es are o昀琀en at odds with safety :-(
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(Composi琀椀onal) Deadlock

• Set of k threads go asleep and cannot wake up

– each can only be woken by another who’s asleep!

• Real-life example (Kansas, 1920s): 

“When two trains approach each other at a crossing, both shall come to 

a full stop and neither shall start up again un琀椀l the other has gone.”

• In concurrent programs, tends to involve the taking of mutual 

exclusion locks, e.g.:
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// thread 2
lock(Y);
  ... 
  if(<cond>) {
    lock(X); 
    ...

// thread 1
lock(X);
 ...
 lock(Y); 
 // critical section    
 unlock(Y); 

Risk of deadlock if 

both threads get here 

simultaneously



Requirements for deadlock

• Like all concurrency bugs, deadlock may be rare (e.g. imagine 

<cond> is mostly false)

• In prac琀椀ce there are four necessary condi琀椀ons

1. Mutual Exclusion: resources have bounded #owners

2. Hold-and-Wait: can acquire Rx and wait for Ry

3. No Preemp琀椀on: keep Rx un琀椀l you release it

4. Circular Wait: cyclic dependency

• Require all four to hold for deadlock

–. But most modern systems always sa琀椀sfy 1, 2, 3 

• Temp琀椀ng to think that this applies only to locks …

–. But it also can occur for many other resource classes whose 

alloca琀椀on meets condi琀椀ons: memory, CPU 琀椀me, …
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Resource alloca琀椀on graphs
• Graphical way of thinking about deadlock:

– Circles are threads (or processes)

– Boxes are single-owner resources (e.g. mutexes)

– Edges show lock hold and wait condi琀椀ons

– A cycle means we (will) have deadlock.
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T1 T3T2

Ra Rb Rc Rd

Thick line R->T means

T holds resource R

Dashed line T->R

T wants resource R

Deadlock!



Resource alloca琀椀on graphs (2)

• Can generalize to resources which can have K 

dis琀椀nct users (c/f semaphores)

• Absence of a cycle means no deadlock…

– but presence only means may encounter deadlock, e.g.
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Ra(1) Rb(2) Rc(2) Rd(1)

T1 T3T2 T4

Resource in 

quan琀椀ty 1

Resource in quan琀椀ty 2
No deadlock: If T1 releases Rb, then 

T2’s acquire of Rb can be sa琀椀s昀椀ed



Resource alloca琀椀on graphs (3)

• Another generalisa琀椀on is for threads to have several 

possible ways forward and that are able to select 

according to which locks have already been taken.

• Read up on generalised AND-OR wait-for graphs for 

those interested (link will be on course web site).

• [This slide non-examinable].



Deadlock Design Approaches

1. Ensure it never happens

– Deadlock (sta琀椀c) preven琀椀on (using code structure rules)

– Deadlock (dynamic) avoidance (cycle 昀椀nding or Banker’s Alg)

2. Let it happen, but recover

– Deadlock (dynamic) detec琀椀on & recovery

3. Ignore it! 

– The so-called “Ostrich Algorithm” ;-)

– “Have you tried turning it o昀昀 and back on again?”

– Very widely used in prac琀椀ce! 
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Deadlock Sta琀椀c Preven琀椀on

1. Mutual Exclusion: resources have bounded #owners

– Could always allow access… but probably unsafe ;-(

– However can help e.g. by using MRSW locks 

2. Hold-and-Wait: can get Rx and wait for Ry

– Require that we request all resources simultaneously; deny the 

request if any resource is not available now

– But must know maximal resource set in advance = hard?

3. No Preemp琀椀on: keep Rx un琀椀l you release it

– Stealing a resource generally unsafe (but see later)

4. Circular Wait: cyclic dependency

– Impose a par琀椀al order on resource acquisi琀椀on,

– Can work: but requires programmer discipline.

– Lock order enforcement rules used in many systems e.g., FreeBSD 

WITNESS – sta琀椀c and dynamic orders checked.
12



Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…
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while(true) {        // philosopher i
   think();
   wait(fork[i]);
   wait(fork[(i+1) % 5];
   eat(); 
   signal(fork[i]);
   signal(fork[(i+1) % 5];
}

Semaphore forks[] = new Semaphore[5];

• Possible for everyone to acquire ‘le昀琀’ fork

• Q: what happens if we swap order of wait()s? 



Example: Dining Philosophers

• (one) Solu琀椀on: always take lower fork 昀椀rst 
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while(true) {        // philosopher i 
   think();
   first = MIN(i, (i+1) % 5);
   second = MAX(i, (i+1) % 5); 
   wait(fork[first]);
   wait(fork[second];
   eat(); 
   signal(fork[second]);
   signal(fork[first]);
}

Semaphore forks[] = new Semaphore[5];

• Now even if 0, 1, 2, 3 are held, 4 will not acquire 昀椀nal fork.



Deadlock Dynamic Avoidance

• Preven琀椀on aims for deadlock-free “by design”.

• Deadlock avoidance is a dynamic scheme: 

– Assump琀椀on: We know maximum possible resource alloca琀椀on 

for every process / thread,

– Assump琀椀on: A process granted all desired resources will 

complete, terminate, and free its resources.

– Track actual alloca琀椀ons in real-琀椀me,

– When a request is made, only grant  if guaranteed no deadlock 

even if all others take max resources.

• E.g. Banker’s Algorithm 

– Not really useful in general as need a priori knowledge of 

#processes/threads, and their max resource needs.

15



Deadlock detec琀椀on (an琀椀cipa琀椀on)

• Deadlock detec琀椀on is a dynamic scheme that determines if deadlock 

exists (or would exist if we granted a request).

– Principle: At speci昀椀c moments in execu琀椀on, examine resource alloca琀椀ons and 

graph.

– Determine if there is at least one plausible sequence of events in which all 

threads could make progress.

– I.e., check that we are not in an unsafe state in which no further sequences can 

complete without deadlock.

• When only a single instance of each resource, can explicitly check for a 

cycle:

– Keep track which object each thread is wai琀椀ng for,

– From 琀椀me to 琀椀me, iterate over all threads and build the resource alloca琀椀on 

graph,

– Run a cycle detec琀椀on algorithm on graph O(n2). 

• Or use Banker’s Alg if have mul琀椀-instance resources (more di昀케cult)
16



Banker’s Algorithm (1)

• Have m dis琀椀nct resources and n threads

• V[0:m-1], vector of currently available resources

• A, the m x n resource alloca琀椀on matrix, and

R, the m x n (outstanding) request matrix

– Ai,j is the number of objects of type j owned by i

– Ri,j is the number of objects of type j further needed by i

• Proceed by successively marking rows in A for 

threads that are not part of a deadlocked set. 

– If we cannot mark all rows of A we have deadlock.

17

Op琀椀mis琀椀c assump琀椀on: if we can ful昀椀l thread i’s request R
i
, then it will run to 

comple琀椀on and release held resources for other threads to allocate.



Banker’s Algorithm (2)

• Mark all zero rows of A (since a thread holding zero 

resources can’t be part of deadlock set)

• Ini琀椀alize a working vector W[0:m-1] to V

– W[] describes any free resources at start, plus any 

resources released by a hypothesized sequence of 

sa琀椀s昀椀ed threads freeing and termina琀椀ng 

• Select an unmarked row i of A s.t. R[i] <= W

– (i.e. 昀椀nd a thread who’s request can be sa琀椀s昀椀ed)

– Set W = W + A[i]; mark row i, and repeat

• Terminate when no such row can be found

– Unmarked rows (if any) are in the deadlock set 18



Banker’s Algorithm: Example 1

• Five threads and three resources (none free)

19

     X Y Z     X Y Z     X Y Z 
T0   0 1 0     0 0 0     0 0 0 
T1   2 0 0     2 0 2 
T2   3 0 3     0 0 0 
T3   2 1 1     1 0 0 
T4   0 0 1     0 0 2

       A         R         V

• Find an unmarked row, mark it, and update W

• T0, T2, T3, T4, T1 

  W

X Y Z
0 0 0 
X Y Z
0 1 0 
X Y Z
3 1 3 
X Y Z
5 2 4 
X Y Z
5 2 5 
X Y Z
7 2 5 

At the end of the algorithm, all rows are marked:

the deadlock set is empty.



Banker’s Algorithm: Example 2

• Five threads and three resources (none free)

20

     X Y Z     X Y Z     X Y Z 
T0   0 1 0     0 0 0     0 0 0 
T1   2 0 0     2 0 2 
T2   3 0 3     0 0 1 
T3   2 1 1     1 0 0 
T4   0 0 1     0 0 2

       A         R         V

• One minor tweak to T2’s request vector…

  W

X Y Z
0 0 0 
X Y Z
0 1 0 

Cannot 昀椀nd a row in 

R <= W!!

Now wants one unit 

of  resource Z
Threads T1, T2, T3 & 

T4 in deadlock set



Deadlock recovery

• What can we do when we detect deadlock?

• Simplest solu琀椀on: kill something!

– Ideally someone in the deadlock set ;-)

• Brutal, and not guaranteed to work 

– But some琀椀mes the best (only) thing we can do 

– E.g. Linux OOM killer (be琀琀er than system reboot?)

– … Or not – o昀琀en kills the X server! 

• Could also resume from checkpoint

– Assuming we have one

• In prac琀椀ce computer systems seldom detect or recover 

from deadlock: rely on programmer.

21
Note: “kill someone” breaks the no preemp琀椀on precondi琀椀on for deadlock.



Livelock

• Deadlock is at least ‘easy’ to detect by humans

– System basically blocks & stops making any progress

• Livelock is less easy to detect as threads con琀椀nue to run… 

but do nothing useful

• O昀琀en occurs from trying to be clever, e.g.:

22

// thread 2
lock(Y);
  ... 
  while(!trylock(X)) {
    unlock(Y); 
    yield();
    lock(Y);
  }
  ...

// thread 1
lock(X);
 ...
 while (!trylock(Y)) {
   unlock(X); 
   yield();
   lock(X); 
 } 
 ...

Livelock if both 

threads get here 

simultaneously



Scheduling and thread priori琀椀es
• Which thread should run when >1 runnable? E.g., if:

– A thread releases a contended lock and con琀椀nues to run,

– CV broadcast wakes up several wai琀椀ng threads.

• Many possible scheduling policies:

– Round robin – rotate between threads to ensure progress,

– Fixed priori琀椀es – assign priori琀椀es to threads, schedule highest– 

e.g., real-琀椀me > interac琀椀ve >  bulk > idle-琀椀me

– Dynamic priori琀椀es – adjust priori琀椀es to balance goals – e.g. 

boost priority a昀琀er I/O to improve interac琀椀vity,

– Gang scheduling – schedule for pa琀琀erns such as P-C

– A昀케nity – schedule for e昀케cient resource use (e.g. caches).

• Goals: latency vs. throughput, energy, “fairness”, …

– NB: These compe琀椀ng goals cannot generally all be sa琀椀s昀椀ed.
23



Priority inversion

• Another liveness problem…

– Due to interac琀椀on between locking and scheduler.

• Consider three threads: T1, T2, T3

– T1 is high priority, T2 medium priority, T3 is low

– T3 gets lucky and acquires lock L… 

– … T1 preempts T3 and sleeps wai琀椀ng for L…

– … then T2 runs, preven琀椀ng T3 from releasing L!

– Priority inversion: despite having higher priority and no shared 

lock, T1 waits for lower priority thread T2

• This is not deadlock or livelock

– But not desirable (par琀椀cularly in real-琀椀me systems)!

– Disabled Mars Path昀椀nder robot for several months.
24



Priority inheritance

• Typical solu琀椀on is priority inheritance: 

– Temporarily boost priority of lock holder to that of the 

highest wai琀椀ng thread

– T3 would have run with T1’s priority while holding a lock 

T1 was wai琀椀ng for – preven琀椀ng T2 from preemp琀椀ng T3

– Concrete bene昀椀ts to system interac琀椀vity 

– (some RT systems (like VxWorks) allow you specify on a 

per-mutex basis [to Rover’s detriment ;-])

• Windows “solu琀椀on”

– Check if any ready thread hasn’t run for 300 琀椀cks

– If so, double its quantum and boost its priority to 15

– ☺ 25



Problems with priority inheritance

• Hard to reason about resul琀椀ng behaviour: heuris琀椀c

• Works for locks

– More complex than it appears: propaga琀椀on might need to be 

propagated across chains containing mul琀椀ple locks

– (How might we handle reader-writer locks?)

• How about condi琀椀on synchronisa琀椀on, res. alloca琀椀on?

– With locks, we know what thread holds the lock

– Semaphores do not record which thread might issue a signal or 

release an allocated resource

– Must compose across mul琀椀ple wai琀椀ng types: e.g. “wai琀椀ng for a 

signal while holding a lock.”

• Where possible, avoid the need for priority inheritance

– Avoid sharing between threads of di昀昀ering priori琀椀es.
26



Limits to Parallelisa琀椀on

• No dependencies (embarassingly parallel): No dependencies 

between work units, such as Mandelbrot pixel or JPEG 琀椀le.

• Data dependencies: where the result of one computa琀椀on is 

needed for others.

• Control dependencies: where its not known if a result will be 

needed.

• One can speculate on both types of dependency, guessing the 

outcome, but some amount of work will be wasted and 

results must not be commi琀琀ed.
27

Depending on how it is coded, a program or task can exhibit 
various levels of dependency between its parts:



Available Parallelism of a task.

• With one worker/core, this uses 35 units of 琀椀me.

• On an in昀椀nite number of cores (or 4) it uses 4+8+2=14.

• (Can be schedulled on 3 cores in 16 units, 2 in ...)

• Available parallelism is 35/14 = 2.5.

28(From section 4.2 of “Modern SoC Design on Arm” by DJ Greaves.)

Example for parallel speedup. 35 units of work run across four servers, showing
data dependency arcs as typically found.  Arcs implicitly exist between all 
adjacent work unit boxes.



Auto-parallelisa琀椀on possibili琀椀es

• A lot of old code and classic algorithms are expressed impera琀椀vely and 

designed for single-threaded execu琀椀on.

• Automa琀椀c parallelisa琀椀on of legacy so昀琀ware is some琀椀mes a problem, but there

are pi琀昀alls (that allegedly do not arise with declara琀椀ve expression).

29(Corrected from section 6.9 of ‘Modern SoC Design on Arm’ by DJ Greaves.)

public static int associative_reduction_example(int starting)
{  int vr = 0;
   for (int i=0;i<15;i++) // or also i+=4
   {  int vx = xf0(i+starting)*(i+5);  // Mapped computation
      vr ^= ((vx&128)>0 ? 1:0);       // Associative reduction
   }    
  return vr; }

double loop_carried_example(double arg0)
{  double vd = 0.0;
   for (int i=0;i<15;i++)
   {  double vl = xf1(i*arg0);  // Parallelisable
      vd = xf2(vd + vl) * 3.14;   // Non-parallelisable
   }
  return vd; }

Map reduce style works nicely:
  - Map: a function or expression is 
applied at each index point or for 
each member of a set.
  - Reduce: an associative operator
(xor) joins up all of the results using an
arbitrary tree structure.

Where one iteration depends on a value 
computed in another iteration we have a 
‘loop-carried data dependency’ ,  here
carried in  vd.  Parallelism is restricted
when xf2 is much more complex than xf1.



Mutable arrays (and collec琀椀ons) are the biggest pain for 

auto-parallelisa琀椀on.

• The main memory of a computer is a powerful mechanism: random access to any 

loca琀椀on is exploitable in an HLL using the `array’ construct:

         double sequence[] = new double [100000000];

• Algorithm design for early computers was in昀氀uenced by small memories and tape 

drives but then moved to using the array as much as possible.

• Pure func琀椀onal/declara琀椀ve programming cannot use a mutable array and this 

caused a fundamental problem for e昀케cient coding in these styles, given that  array 

access is such a powerful hardware primi琀椀ve.

• Arrays and other collec琀椀ons cause the ‘name alias’ limita琀椀on for auto-

parallelisa琀椀on.  This is not being able to know at compile 琀椀me whether two 

opera琀椀ons on an array will de昀椀nitely be the same or de昀椀nitely be di昀昀erent. It 

means that data dependencies have to resolved at run 琀椀me, limi琀椀ng sta琀椀c 

schedulling and par琀椀琀椀oning decisions.

• Modern computers do not o昀昀er uniform random access to main memory anyway, 

and they have mul琀椀ple cores, so tradi琀椀onal algorithms are becoming less 

signi昀椀cant. Thread-safe and distributed alterna琀椀ves are now used for big data.

30This slide is a just a personal rant and is not examinable in part I.



Summary + next 琀椀me

• Liveness proper琀椀es

• Deadlock

– Requirements

– Resource alloca琀椀on graphs and detec琀椀on

– Preven琀椀on – the Dining Philosophers Problem – and recovery

• Thread priority and the scheduling problem

• Priority inversion and inheritance

• Limits to parallelisa琀椀on.

• Next 琀椀me:

– Concurrency without shared data

– Ac琀椀ve objects; message passing

– Composite opera琀椀ons; transac琀椀ons

– ACID proper琀椀es; isola琀椀on; serialisability 31



Concurrent systems
Lecture 6: Concurrency without shared data, composite opera琀椀ons

 and transac琀椀ons, and serialisability

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)
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Reminder from last 琀椀me

• Liveness proper琀椀es

• Deadlock (requirements; resource alloca琀椀on graphs; detec琀椀on; 

preven琀椀on; recovery)

• The Dining Philosophers

• Priority inversion

• Priority inheritance

2

Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent 

computa琀椀on without…

(1) the hassles of shared memory concurrency

(2) blocking synchronisa琀椀on primi琀椀ves



This 琀椀me

• Concurrency without shared data

– Use same hardware+OS primi琀椀ves, but expose higher-level models via 

so昀琀ware libraries or programming languages

• Ac琀椀ve objects

– Ada

• Message passing; the Actor model

– Occam, Erlang

• Composite opera琀椀ons

– Transac琀椀ons, ACID proper琀椀es

– Isola琀椀on and serialisability

• History graphs; good (and bad) schedules

3

This material has signi昀椀cant overlap with databases and distributed 

systems – but is presented here from a concurrency perspec琀椀ve



Concurrency without shared data

• The examples so far have involved threads which can 

arbitrarily read & write shared data

– A key need for mutual exclusion has been to avoid race-

condi琀椀ons (i.e. ‘collisions’ on access to this data)

• An alterna琀椀ve approach is to have only one thread 

access any par琀椀cular piece of data

– Di昀昀erent threads can own dis琀椀nct chunks of data

• Retain concurrency by allowing other threads to ask for 

opera琀椀ons to be done on their behalf

– This ‘asking’ of course needs to be concurrency safe…

4

Fundamental design dimension: concurrent access via

shared data vs. concurrent access via explicit communica琀椀on



Example: Ac琀椀ve objects

• A monitor with an associated server thread

– Exports an entry for each opera琀椀on it provides

– Other (client) threads ‘call’ methods

– Call returns when opera琀椀on is done

• All complexity bundled up in an ac琀椀ve object

– Must manage mutual exclusion where needed

– Must queue requests from mul琀椀ple threads

– May need to delay requests pending condi琀椀ons

• E.g. if a producer wants to insert but bu昀昀er is full.

5

Observa琀椀on: the code of exactly one thread, and the data that 

only it accesses, e昀昀ec琀椀vely experience mutual exclusion



Producer-Consumer in Ada

6

task-body ProducerConsumer is 
  ...
  loop 
    SELECT 
      when count < buffer-size
        ACCEPT insert(item) do
          // insert item into buffer
        end;
      count++; 
    or
      when count > 0
        ACCEPT consume(item) do
          // remove item from buffer
        end;
      count--;
    end SELECT
  end loop

Non-determinis琀椀c choice 

between a set of 

guarded ACCEPT clauses

Clause is ac琀椀ve only 

when condi琀椀on is true

ACCEPT dequeues a 

client request and 

performs the opera琀椀on

Single thread: no need 

for mutual exclusion

Head-of-line blocking leads to deadlock?



Message passing

• Dynamic invoca琀椀ons between threads can be thought of 

as general message passing

– Thread X can send a message to Thread Y

– Contents of message can be arbitrary data values

• Can be used to build Remote Procedure Call (RPC)

– Message includes name of opera琀椀on to invoke along with as 

any parameters 

– Receiving thread checks opera琀椀on name, and invokes the 

relevant code

– Return value(s) sent back as another message

• (Called Remote Method Invoca琀椀on (RMI) in Java)

7

We will discuss message passing and RPC in detail 2nd half; a taster 

now, as these ideas apply to local, not just distributed, systems.



Message passing seman琀椀cs

• Can conceptually view sending a message to be similar to 

sending an email: 

1. Sender prepares contents locally, and then sends

2. System eventually delivers a copy to receiver

3. Receiver checks for messages

• In this model, sending is asynchronous:

–. Sender doesn’t need to wait for message delivery

–. (but they may, of course, choose to wait for a reply)

–. Bounded FIFO may ul琀椀mately apply sender backpressure.

• Receiving is also asynchronous: 

–. messages 昀椀rst delivered to a mailbox, later retrieved

–. message is a copy of the data (ie. no actual sharing).

8



Synchronous Message Passing

• FSM view: both (all) par琀椀cipa琀椀ng FSMs execute the message passing primi琀椀ve 

simultaneously.

• Send and receive opera琀椀ons must be part of edge guard (before the slash).

9



Asynchronous Message Passing

• We will normally assume asynchronous unless obviously or 

explicitly otherwise.

• Send and receive opera琀椀ons in ac琀椀on part (a昀琀er slash). 10



Message passing advantages

• Copy seman琀椀cs avoid race condi琀椀ons

– At least directly on the data

• Flexible API: e.g. 

– Batching: can send K messages before wai琀椀ng; and can similarly 

batch a set of replies

– Scheduling: can choose when to receive, whom to receive from, 

and which messages to priori琀椀se.

– Broadcast/mul琀椀cast: can send messages to many recipients

• Works both within and between machines

– ie. same design works for distributed systems.

• Explicitly used as basis of some languages …

11



Example: Occam
• Language based on Hoare’s Communica琀椀ng Sequen琀椀al Processes (CSP) formalism

– A projec琀椀on of a process algebra into a real-world language.

• No shared variables.

• Processes synchronously communicate via channels

12

<channel> ? <variable>    // an input process
<channel> ! <expression>  // an output process

• Build complex processes via SEQ, PAR and ALT, eg.

ALT 
  count1 < 100 & c1 ? Data
    SEQ                      
      count1:= count1 + 1
      merged ! data 
  count2 < 100 & c2 ? Data
    SEQ
      count2:= count2 + 1
      merged ! data



Example: Erlang
• Func琀椀onal programming language designed in mid 80’s, made popular 

more recently (especially in eternal systems such as telephone network).

• Implements the actor model

• Actors: lightweight language-level processes

– Can spawn() new processes very cheaply

• Single-assignment: each variable is assigned only once, and therea昀琀er is 

immutable

– But values can be sent to other processes

• Guarded receives (as in Ada, occam)

– Messages delivered in-order to local mailbox

• Message/actor-oriented model allows run-琀椀me restart or replacement of 

modules to  limit down琀椀me.

13

Proponents of Erlang argue that lack of synchronous message 

passing prevents deadlock. Why might this claim be misleading?



Producer-Consumer in Erlang

14

-module(producerconsumer).
-export([start/0]).

start() -> 
  spawn(fun() -> loop() end).

loop() ->  
  receive 
    {produce, item } ->
      enter_item(item), 
      loop(); 
    {consume, Pid } ->
      Pid ! remove_item(), 
      loop();
    stop ->
      ok
end.

Invoking start() will 

spawn an actor…

receive matches 

messages to pa琀琀erns

explicit tail-recursion is 

required to keep the 

actor alive…

… so if send ‘stop’, 

process will terminate.

NB: We see channel id pid is sent over a channel! 



Message passing: summary

• A way of sidestepping (at least some of) the issues with 

shared memory concurrency

– No direct access to data => no data race condi琀椀ons

– Threads choose ac琀椀ons based on message.

• Explicit message passing can be awkward

– Many weird and wonderful languages ;-)

• Can also use with tradi琀椀onal languages, eg. 

– Transparent messaging via RPC/RMI

– Scala, Kilim (actors on Java),  Bas琀椀on for Rust, …

• May overcome cache-consistency scaling issues?

15

We have eliminated some of the issues associated with shared memory, but 

these are s琀椀ll concurrent programs subject to deadlock, livelock, etc.



Composite opera琀椀ons

• So far have seen various ways to ensure safe concurrent access to 

a single object

– e.g. monitors, ac琀椀ve objects, message passing

• More generally want to handle composite opera琀椀ons:

– ie. build systems which act on mul琀椀ple dis琀椀nct objects

• As an example, imagine an internal bank system which allows 

account access via three method calls: 

16

int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

• If each is thread-safe, is this su昀케cient?

• Or are we going to get into trouble???



Composite opera琀椀ons

• Consider two concurrently execu琀椀ng client threads:

– One wishes to transfer 100 quid from the savings account to the 

current account, 

– The other wishes to learn the combined balance.

17

// thread 1: transfer 100
// from savings->current
  debit(savings, 100); 
  credit(current, 100);

// thread 2: check balance
  s = getBalance(savings);
  c = getBalance(current);
  tot = s + c;

• If we’re unlucky then:

– Thread 2 could see balance that’s too small

– Thread 1 could crash a昀琀er doing debit() – ouch!

– Server thread could crash at any point – ouch?



Problems with composite opera琀椀ons 

Two separate kinds of problem here:

1. Insu昀케cient Isola琀椀on

– Individual opera琀椀ons being atomic is not enough,

– Eg. want the credit & debit making up the transfer to 

happen as one opera琀椀on.

– Could 昀椀x this par琀椀cular example with a new transfer() 

method, but not very general ...

2. Fault Tolerance

– In the real-word, programs (or systems) can fail.

– Need to make sure we can recover safely.

18



Transac琀椀ons

• Want programmer to be able to specify that a set of opera琀椀ons should 

happen atomically, eg. 

19

// transfer amt from A -> B
transaction {
 if (getBalance(A) > amt) { 
    debit(A, amt); 
    credit(B, amt);
    return true; 
  } else return false;
}

• A transac琀椀on either executes correctly (in which case we say it 

commits), or has no e昀昀ect at all (i.e. it aborts).

• regardless of other transac琀椀ons, or system crashes!



ACID Proper琀椀es

Want commi琀琀ed transac琀椀ons to sa琀椀sfy four proper琀椀es:

• Atomicity: either all or none of the transac琀椀on’s opera琀椀ons are performed 

– Programmer doesn’t need to worry about clean up.

• Consistency: a transac琀椀on transforms the system from one consistent 

state to another – ie. preserves invariants.

– Programmer must s琀椀ll ensure eg. conserva琀椀on of money.

• Isola琀椀on: each transac琀椀on executes [as if] isolated from the concurrent 

e昀昀ects of others

– Can ignore concurrent transac琀椀ons (or par琀椀al updates).

• Durability: the e昀昀ects of commi琀琀ed transac琀椀ons survive subsequent 

system failures

– If system reports success, must ensure this is recorded on disk.

20

This is a di昀昀erent use of the word “atomic” from previously; 

we will just have to live with that, unfortunately.



ACID Proper琀椀es

Can group these into two categories

1. Atomicity & Durability deal with making sure the system is safe 

even across failures:

– (A) No par琀椀ally complete txac琀椀ons

– (D) Transac琀椀ons previously reported as commi琀琀ed don’t disappear, 

even a昀琀er a system crash.

2. Consistency & Isola琀椀on ensure correct behavior even in the face 

of concurrency:

– (C) Can always code as if invariants in place,

– (I) Concurrently execu琀椀ng transac琀椀ons are indivisible.

21



Isola琀椀on

• To ensure a transac琀椀on executes in isola琀椀on, could just have a 

server-wide lock… simple!

22

// transfer amt from A -> B
transaction {  // acquire server lock
 if (getBalance(A) > amt) { 
    debit(A, amt); 
    credit(B, amt);
    return true; 
  } else return false;
}              // release server lock

• But doesn’t allow any concurrency…

• And doesn’t handle mid-transac琀椀on failure

(e.g. what if we are unable to credit the amount to B?).



Isola琀椀on – Serialisability

• The idea of execu琀椀ng transac琀椀ons serially (one a昀琀er the other) 

is a useful model for the programmer:

– To improve performance, transac琀椀on systems execute many 

transac琀椀ons concurrently,

– But programmers must only observe behaviours consistent with a 

possible serial execu琀椀on: serialisability.

• Consider two transac琀椀ons, T1 and T2
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T2 transaction {
  debit(S, 100); 
  credit(C, 100);
  return true;
}

• If assume individual opera琀椀ons are atomic, then there are six 

possible ways the opera琀椀ons can interleave…

T1 transaction {
  s = getBalance(S);
  c = getBalance(C);
  return (s + c);
}



Isola琀椀on – serialisability

• First case is a serial execu琀椀on and hence serialisable

24

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• Second case is not serial as transac琀椀ons are interleaved

– Its results are iden琀椀cal to serially execu琀椀ng T2 and then T1

– The schedule is therefore serialisable.

• Informally: it is serialisable because we have only swapped the 

execu琀椀on orders of non-con昀氀ic琀椀ng opera琀椀ons.

– All of T1’s opera琀椀ons on any object happen a昀琀er T2’s updates.



Isola琀椀on – serialisability

• This execu琀椀on is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C.
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execu琀椀on is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C.

• Both orderings swap con昀氀ic琀椀ng opera琀椀ons such that there is 

no matching serial execu琀椀on.



Con昀氀ict Serialisability

• There are many 昀氀avours of serialisability

• Con昀氀ict serialisability is sa琀椀s昀椀ed for a schedule S if 

(and only if):

– It contains the same set of opera琀椀ons as some serial 

schedule T; and 

– All con昀氀ic琀椀ng opera琀椀ons are ordered the same way as 

in T.

• De昀椀ne con昀氀ic琀椀ng as non-commuta琀椀ve

– IE. di昀昀erences are permi琀琀ed between the execu琀椀on 

ordering and T, but they can’t have a visible impact.
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History graphs

• Can construct a graph for any execu琀椀on schedule:

– Nodes represent individual opera琀椀ons, and 

– Arrows represent “happens-before” rela琀椀ons. 

• Insert edges between opera琀椀ons within a given transac琀椀on in 

program order (ie. as wri琀琀en).

• Insert edges between con昀氀ic琀椀ng opera琀椀ons opera琀椀ng on the 

same objects, ordered by execu琀椀on schedule

– e.g. A.credit(), A.debit() commute [don’t con昀氀ict]

– A.credit() and A.addInterest() do con昀氀ict

• NB: Graphs represent par琀椀cular execu琀椀on schedules not sets 

of allowable schedules.
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History graphs: good schedules

• Same schedules as before (both ok)

• Can easily see that everything in T1 either happens 

before everything in T2, or vice versa

– Hence schedule can be serialised.
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT



History graphs: bad schedules

• Cycles between threads indicate that schedules are bad :-(

• Neither transac琀椀on strictly “happened before” the other:

– Arrows from T1 to T2 mean “T1 must happen before T2”

– But arrows from T2 to T1 => “T2 must happen before T1”

– No琀椀ce the cycle in the graph (where each thread is considered one node)!

• Can’t both be true --- schedules are non-serialisable.
29

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT



Isola琀椀on – serialisability

• This execu琀椀on is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execu琀椀on is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C

• Both orderings swap con昀氀ic琀椀ng opera琀椀ons such that there is no matching serial execu琀椀on

The transac琀椀on system must ensure that, regardless of any actual concurrent execu琀椀on used to improve 

performance, only results consistent with serialisable orderings are visible to the transac琀椀on programmer. 

Same as earlier slide.



Summary + next 琀椀me

• Concurrency without shared data (Ac琀椀ve Objects)

• Message passing, actor model (Occam, Erlang)

• Composite opera琀椀ons; transac琀椀ons; ACID proper琀椀es

• Isola琀椀on and serialisability

• History graphs; good (and bad) schedules.

• Next 琀椀me – more on transac琀椀ons:

– Isola琀椀on vs. strict isola琀椀on; enforcing isola琀椀on.

– Two-phase locking; rollback

– Timestamp ordering (TSO); op琀椀mis琀椀c concurrency control (OCC)

– Isola琀椀on and concurrency summary.
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Concurrent systems
Lecture 7: Isola琀椀on vs. Strict Isola琀椀on,

2-Phase Locking (2PL), Time Stamp Ordering (TSO), and

Op琀椀mis琀椀c Concurrency Control (OCC) 

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)
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Reminder from last 琀椀me

• Concurrency without shared data

– Ac琀椀ve objects

• Message passing; the actor model

– Occam, Erlang

• Composite opera琀椀ons

– Transac琀椀ons, ACID proper琀椀es

– Isola琀椀on and serialisability

• History graphs; good (and bad) schedules
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Last 琀椀me: isola琀椀on – serialisability

•     The idea of execu琀椀ng transac琀椀ons serially (one a昀琀er the other) is a useful model

–    We want to run transac琀椀ons concurrently 

–    But the result should be as if they ran serially

•     Consider two transac琀椀ons, T1 and T2
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T2 transaction {
  debit(S, 100); 
  credit(C, 100);
  return true;

}

• If assume individual opera琀椀ons are atomic, then there are six possible 

ways the opera琀椀ons can interleave…

T1 transaction {
  s = getBalance(S);
  c = getBalance(C);
  return (s + c);

}

Isola琀椀on allow transac琀椀on programmers to reason about the interac琀椀ons between transac琀椀ons trivially:they appear to execute in serial.

Transac琀椀on systems execute transac琀椀ons concurrently for performance and rely on the de昀椀ni琀椀on of serialisability 

to decide if an actual execu琀椀on schedule is allowable.



Isola琀椀on – serialisability

• This execu琀椀on is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execu琀椀on is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C

• Both orderings swap con昀氀ic琀椀ng opera琀椀ons such that there is no matching serial 

execu琀椀on

From last lecture

The transac琀椀on system must ensure that, regardless of any actual concurrent execu琀椀on used to improve 

performance, only results consistent with serialisable orderings are visible to the transac琀椀on programmer. 



This 琀椀me

• E昀昀ects of bad schedules

• Isola琀椀on vs. strict isola琀椀on; enforcing isola琀椀on

• Two-phase locking; rollback

• Timestamp ordering (TSO)

• Op琀椀mis琀椀c concurrency control (OCC)

• Isola琀椀on and concurrency summary.
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This lecture considers how the transac琀椀on implementa琀椀on 

itself can provide transac琀椀onal (ACID) guarantees



E昀昀ects of bad schedules

• Lost Updates

– T1 updates (writes) an object, but this is then overwri琀琀en by concurrently 

execu琀椀ng T2

– (also called a write-write con昀氀ict, WaW)

• Dirty Reads

– T1 reads an object which has been updated an uncommi琀琀ed transac琀椀on T2

– (also called a read-a昀琀er-write con昀氀ict, RaW)  

• Unrepeatable Reads

– T1 reads an object which is then updated by T2 

– Not possible for T1 to read the same value again

– (also called a write-a昀琀er-read con昀氀ict, WaW or

an琀椀-dependance)

6

Atomicity: all or none of opera琀椀ons performed – abort must be “clean”

Isola琀椀on: transac琀椀ons execute as if isolated from concurrent e昀昀ects

Lack of isola琀椀on: 

par琀椀al result seen

Lack of atomicity: 

opera琀椀on results “lost”

Lack of isola琀椀on: 

read value 

unstable



Isola琀椀on and strict isola琀椀on

• Ideally want to avoid all three problems

• Two ways: Strict Isola琀椀on and Non-Strict Isola琀椀on 

– Strict Isola琀椀on: guarantee we never experience lost updates, dirty 

reads, or unrepeatable reads

– Non-Strict Isola琀椀on: let transac琀椀on con琀椀nue to execute despite 

poten琀椀al problems (i.e., more op琀椀mis琀椀c)

• Non-strict isola琀椀on usually allows more concurrency but can lead 

to complica琀椀ons

– E.g. if T2 reads something wri琀琀en by T1 (a “dirty read”) then T2 cannot 

commit un琀椀l T1 commits  

– And T2 must abort if T1 aborts: cascading aborts

• Both approaches ensure that only serialisable schedules are 

visible to the transac琀椀on programmer.
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Enforcing isola琀椀on

• In prac琀椀ce there are a number of techniques we can use 

to enforce isola琀椀on (of either kind)

• We will look at:

– Two-Phase Locking (2PL); 

– Timestamp Ordering (TSO); and

– Op琀椀mis琀椀c Concurrency Control (OCC)

• More complete descrip琀椀ons and examples of these 

approaches can be found in:
Opera琀椀ng Systems, Concurrent and Distributed So昀琀ware Design, 

Jean Bacon and Tim Harris, Addison-Wesley 2003.

[Also, Chapter 12 of 1st year Databases book Lemahieu.]
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Two-phase locking (2PL)

• Associate a lock with every object

– Could be mutual exclusion, or MRSW

• Transac琀椀ons proceed in two phases:

– Expanding Phase: during which locks are acquired but 

none are released,

– Shrinking Phase: during which locks are released, and no 

further are acquired.

• Opera琀椀ons on objects occur in either phase, 

providing appropriate locks are held

– Guarantees serializable execu琀椀on. 
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2PL example

10

// transfer amt from A -> B

transaction {
 readLock(A); 

 if (getBalance(A) > amt) { 
    writeLock(A);    

    debit(A, amt); 
    writeLock(B); 

    credit(B, amt);
    writeUnlock(B);

    addInterest(A); 
    writeUnlock(A);

    tryCommit(return=true); 
  } else {

    readUnlock(A); 

    tryCommit(return=false);
}

Expanding 

Phase

Shrinking 

Phase

Acquire a read lock 

(shared) before ‘read’ A

Upgrade to a write lock 

(exclusive) before write A

Acquire a write lock 

(exclusive) before write B

Release locks when done 

to allow concurrency



Problems with 2PL
• Requires knowledge of which locks required:

– Complexity arises if complex control 昀氀ow inside a transac琀椀on

– Some transac琀椀ons look up objects dynamically

– But not really a problem and can be automated in many systems:

– User may declare a昀昀ected objects sta琀椀cally to assist checker tool or have built-in 

mechanisms in high-level language (HLL) compilers. 
● Risk of deadlock:

– Can a琀琀empt to impose a par琀椀al order,

– Or can detect deadlock and abort, releasing locks

– (this is safe for transac琀椀ons due to rollback, which is nice)

• Non-Strict Isola琀椀on: releasing locks during execu琀椀on means others can 

access those objects

– e.g. T1 updates B, then releases write lock; now T2 can read or overwrite the 

uncommi琀琀ed value

– Hence T2’s fate is 琀椀ed to T1 (whether commit or abort).

–  Fixed using strict 2PL: hold all locks un琀椀l transac琀椀on end.
11



Strict(er) 2PL example
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// transfer amt from A -> B

transaction {
 readLock(A); 

 if (getBalance(A) > amt) { 
    writeLock(A);    

    debit(A, amt); 
    writeLock(B); 

    credit(B, amt);
    addInterest(A);
    tryCommit(return=true); 
  } else {

    readUnlock(A); 

    tryCommit(return=false);
} on commit, abort {

    unlock(A);

    unlock(B);

}

Expanding 

Phase

Unlock All 

Phase

Retain lock on B here to 

ensure strict isola琀椀on

By holding locks longer, Strict 

2PL risks greater conten琀椀on



2PL: rollback

• Recall that transac琀椀ons can abort

– Could be due to run-琀椀me con昀氀icts (non-strict 2PL), or 

could be programmed (e.g. on an excep琀椀on).

• Using locking for isola琀椀on works, but means that 

updates are made ‘in place’

– ie. once acquire write lock, can directly update.

– If transac琀椀on aborts, need to ensure no visible e昀昀ects.

• Rollback is the process of returning the world to 

the state it in was before the transac琀椀on started

– IE. to implement atomicity: all happened, or none.

13



Why might a transac琀椀on abort?

• Some failures are internal to transac琀椀on systems:

– Transac琀椀on T2 depends on T1, and T1 aborts,

– Deadlock is detected between two transac琀椀ons,

– Memory is exhausted or a system error occurs.

• Some are programmer-triggered:

– Transac琀椀on self-aborted – e.g., debit() failed due to 

inadequate balance.

• Some failures must be programmer visible,

• Others may simply trigger retry of the transac琀椀on.

14



Implemen琀椀ng rollback: undo

• One strategy is to undo opera琀椀ons, e.g.

– Keep a log of all opera琀椀ons, in order: O1, O2, .. On

– On abort, undo changes of On, O(n-1), .. O1

• Must know how to undo an opera琀椀on:

– Assume we log both opera琀椀ons and parameters

– Programmer can provide an explicit counter ac琀椀on

• UNDO(credit(A, x) ⇒ debit(A, x));

• May not be su昀케cient (e.g. setBalance(A, x))

– Would need to record previous balance, which we may not 

have explicitly read within transac琀椀on…

15



Implemen琀椀ng rollback: copy

• A more brute-force approach is to take a copy of an 

object before [昀椀rst] modi昀椀ca琀椀on

– On abort, just revert to original copy.

• Has some advantages: 

– Doesn’t require programmer e昀昀ort

– Undo is simple, and can be e昀케cient (e.g. if there are many 

opera琀椀ons, and/or they are complex).

• However can lead to high overhead if objects are 

large … and may not be needed if don’t abort!

– Can reduce overhead with par琀椀al copying.

16



Timestamp ordering (TSO)

• 2PL and Strict 2PL are widely used in prac琀椀ce

– But can limit concurrency (certainly the la琀琀er)

– And must be able to deal with deadlock.

• Time Stamp Ordering (TSO) is an alterna琀椀ve approach:

– As a transac琀椀on begins, it is assigned a 琀椀mestamp – the proposed 

eventual (total) commit order / serialisa琀椀on.

– Timestamps are comparable, and unique (can think of as eg. current 

琀椀me – or a logical incremen琀椀ng version number).

– Every object O records the 琀椀mestamp of the last transac琀椀on to 

successfully access (read? write?) it: V(O).

– T can access object O i昀昀 V(T) >= V(O), where V(T) is the 琀椀mestamp of T 

(otherwise rejected as “too late”).

– If T is non-serialisable with 琀椀mestamp, abort with roll back.

17

Timestamps allow us to explicitly track new “happens-before” 

edges, detec琀椀ng (and preven琀椀ng) viola琀椀ons. 



TSO example 1

Imagine that objects S and C start o昀昀 with version 10

1. T1 and T2 both start concurrently: 

• T1 gets version 27, T2 gets version 29

2. T1 reads S => ok! (27 >= 10); S gets version 27

3. T2 does debit(S, 100) => ok! (29 >= 27); S gets version 29

4. T1 reads C => ok! (27 => 10); C gets version 27

5. T2 does credit(C, 100) => ok! (29 >= 27); C gets version 29

6. Both transac琀椀ons commit.
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T2 transaction {  
  debit(S, 100); 
  credit(C, 100);
  return true;

}

T1 transaction {
  s = getBalance(S);
  c = getBalance(C);
  return = s + c;

}

Succeeded as all con昀氀ic琀椀ng opera琀椀ons executed in 琀椀mestamp order



TSO example 2

As before, S and C start o昀昀 with version 10

1. T1 and T2 both start concurrently: 

• T1 gets version 27, T2 gets version 29

2. T1 reads S => ok! (27 >= 10); S gets version 27

3. T2 does debit(S, 100) => ok! (29 >= 27); S gets version 29

4. T2 does credit(C, 100) => ok! (29 >= 10); C gets version 29

5. T1 reads C => FAIL! (27 < 29); T1 aborts

6. T2 commits; T1 restarts, gets version 30…
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T2 transaction {  
  debit(S, 100); 
  credit(C, 100);
  return true;

}

T1 transaction {
  s = getBalance(S);
  c = getBalance(C);
  return = s + c;

}

Consider steps 4 and 5 now have different interleaving.



Advantages of TSO

• Deadlock free.

• Can allow more concurrency than 2PL.

• Can be implemented in a decentralized fashion.

• Can be augmented to dis琀椀nguish reads & writes

– objects have read version R & write version W. 

20

WRITE(O, T) {

  if(V(T) < R(O)) abort; 
  if(V(T) < W(O)) return;
  // do actual write

  W(O) := V(T);
}

READ(O, T) {

  if(V(T) < W(O)) abort;
  // do actual read 

  R(O): = MAX(V(T), R(O));
}

R(O) holds version of 

latest transac琀椀on to read

Only safe to read if no-

one wrote “a昀琀er” us

Unsafe to write if later 

txac琀椀on has read value
But if later txac琀椀on wrote it, 

just skip write (he won!). Or?



However…

• TSO needs a rollback mechanism (like 2PL)

• TSO does not provide strict isola琀椀on:

– Hence subject to cascading aborts

– (Can provide strict TSO by locking objects when access is 

granted – s琀椀ll remains deadlock free if can abort).

• TSO decides a priori on one serialisa琀椀on

– Even if others might have been possible.

• And TSO does not perform well under conten琀椀on

– Will repeatedly have transac琀椀ons abor琀椀ng & retrying & …

• In general, TSO is a good choice for distributed systems 

[decentralized management] where con昀氀icts are rare.
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Op琀椀mis琀椀c concurrency control

• OCC is an alterna琀椀ve to 2PL or TSO

• Op琀椀mis琀椀c since assume con昀氀icts are rare

– Execute transac琀椀on on a shadow [copy] of the data

– On commit, check if all “OK”; if so, apply updates; otherwise discard 

shadows & retry.

• “OK” means:

– All shadows read were mutually consistent, and 

– No one else has commi琀琀ed “later” changes to any object that we 

are hoping to update.

• Advantages: no deadlock, no cascading aborts

– And “rollback” comes pre琀琀y much for free!

• Key idea: when ready to commit, search for a serialisable 

order that accepts the transac琀椀on. 22



Implemen琀椀ng OCC (1)

• All objects are tagged with version/genera琀椀on numbers

– e.g. the Valida琀椀on 琀椀mestamp of the transac琀椀on which most recently wrote its 

updates to that object

– Nominally stored with the object, but possibly held as a validator data structure.

• Many threads execute transac琀椀ons

– When wish to read any object, take a shadow copy, and take note of the version 

number

– If wish to write: edit the shadows (perhaps as held as html data in hidden web forms 

while booking a mul琀椀-part holiday)

• When a thread/customer want to 昀椀nally commit a transac琀椀on, it submits 

the edited shadows to a validator.

• Validator nominally single-threaded (but parallel and distributed exist …).

• Validator could work on a batch of submissions at once, 昀椀nding an op琀椀mal, 

non-con昀氀ic琀椀ng subset to commit with retries requested for the remainder.

23Further reads and shadow copies can be made during committal.



Implemen琀椀ng OCC (2)

• NB: There are many approaches following this basic technique.

• Various e昀케cient schemes for shadowing 

– eg. write bu昀昀ering, page-based copy-on-write.

• All complexity resides in the two-step validator that must re昀氀ect a 

serialisable commit order in its ul琀椀mate side e昀昀ects.

• Read valida琀椀on:

– Must ensure that all versions of data read by T (all shadows) were valid at some 

par琀椀cular 琀椀me t

– This becomes the tenta琀椀ve start 琀椀me for T

• Serialisability valida琀椀on:
– Must ensure that there are no con昀氀icts with any commi琀琀ed transac琀椀ons which 

have a later start 琀椀me.

• Op琀椀mality matching:

– For a batch, must choose a serialisa琀椀on that commits as many as possible, possibly 

weighted on other heuris琀椀c, such as success for those rejected last a琀琀empt.
24

This can be quite
relaxed for debits etc.



OCC example (1)

• A window of the last k validated transac琀椀ons, their 

琀椀mestamps, and the objects they updated

25

Transac琀椀on Valida琀椀on Timestamp Objects Updated Writeback Done?

T5 10 A, B, C Yes

T6 11 D Yes

T7 12 A, E No

• The versions of the objects are as follows:

• T7 has started, but not 昀椀nished; wri琀椀ngback 

• (A has been updated, but not E)

Object Version

A 12

B 10

C 10

D 11

E 9
What will happen if we now start a new 

transac琀椀on T8 on {B, E} before T7 writes back E?



OCC example (2)

• Consider T8: { updates(B), updates(E) };

• T8 executes and makes shadows of B & E

– Records 琀椀mestamps: B@10, E@9

– When done, T8 submits for valida琀椀on

• Phase 1: read valida琀椀on 

– Check shadows are part of a consistent snapshot

– Latest commi琀琀ed start 琀椀me is 11 = OK (10, 9 < 11)

• Phase 2: serializability valida琀椀on

– Check T8 against all later transac琀椀ons (here, T7)

– Con昀氀ict detected! (T7 updates E, but T8 read old E) 
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Looking at log: have 

other transac琀椀ons 

interfered with T8’s 

inputs?

Looking at log: would commi琀�ng T8 invalidate 

other now-commi琀琀ed transac琀椀ons?

NB: T6 is here irrelevant since nothing
else touches D.



Issues with OCC
• Preceding example uses a simple validator

– Possible it will abort even when don’t need to,

– (e.g. can search for a ‘be琀琀er’ start 琀椀me).

• In general OCC can 昀椀nd more serializable schedules than 

TSO

– Timestamps assigned a昀琀er the fact, and taking the actual data 

read and wri琀琀en into account.

– e.g.  both stored 27, value-based con昀氀ict detec琀椀on easy to 

deploy.

• However OCC is not suitable when high con昀氀ict rate

– Can perform lots of work with ‘stale’ data => wasteful!

– Starva琀椀on possible if con昀氀ic琀椀ng set con琀椀nually retries,

– Will the transac琀椀on system always make progress?
27



Isola琀椀on & concurrency: Summary 
• 2PL explicitly locks items as required, then releases

– Guarantees a serializable schedule 

– Strict 2PL avoids cascading aborts

– Can limit concurrency & prone to deadlock

• TSO assigns 琀椀mestamps when transac琀椀ons start

– Cannot deadlock, but may miss serializable schedules

– Suitable for distributed/decentralized systems.

• OCC executes with shadow copies, then validates

– Valida琀椀on assigns 琀椀mestamps when transac琀椀ons end

– Lots of concurrency & admits many serializable schedules

– No deadlock but poten琀椀al livelock when conten琀椀on is high.

• Di昀昀ering tradeo昀昀s between op琀椀mism, concurrency, but also poten琀椀al starva琀椀on, 

livelock, and deadlock.

• Ideas like TSO/OCC will recur in Distributed Systems.
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Summary + next 琀椀me

• History graphs; good (and bad) schedules

• Isola琀椀on vs. strict isola琀椀on; enforcing isola琀椀on

• Two-phase locking; rollback

• Timestamp ordering (TSO)

• Op琀椀mis琀椀c concurrency control (OCC)

• Isola琀椀on and concurrency summary

• Next 琀椀me:

– Transac琀椀onal durability: crash recovery and logging,

– Lock-free programming, 

– Transac琀椀onal memory (if 琀椀me permits).
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Concurrent systems
Lecture 8a: Durability & crash recovery. 

Lecture 8b: lock-free programming & transac琀椀onal memory.

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

1



This 琀椀me

• Transac琀椀on durability: crash recovery, logging

– Write-ahead logging

– Checkpoints

– Recovery and Rollback

• Advanced topics (as 琀椀me permits)

– Lock-free programming

– Transac琀椀onal memory

2



Crash Recovery & Logging

• Transac琀椀ons require ACID proper琀椀es

– So far have focused on I (and implicitly C). 

• How can we ensure Atomicity & Durability? 

– Need to make sure that a transac琀椀on is always done en琀椀rely or 

not at all (i.e. make sure rollback happens).

– Need to make sure that a transac琀椀on reported as commi琀琀ed 

remains so, even a昀琀er a crash.

• Consider for now a fail-stop model:

– If system crashes, all in-memory contents are lost

– Data on disk, however, remains available a昀琀er reboot.

3

The small print: we must keep in mind the limita琀椀ons of fail-stop, even as we assume it. 

Failing hardware/so昀琀ware do weird stu昀昀. Pay a琀琀en琀椀on to hardware price di昀昀eren琀椀a琀椀on.



Seman琀椀cs of secondary store

• Most computers have vola琀椀le primary (DRAM) and non-vola琀椀le 

secondary storage (tape, SSD, disks, USB-s琀椀cks).

• Systems rely (perhaps falsely) on an idealised, erasure-channel, 

abstract seman琀椀cs for secondary storage:

4

   type blkaddress_t = integer  0 to 2^19-1 // say
   type block_t = array [0..4095] of integer 0 to 255
   method write : blkaddress_t * block_t -> unit
   method read  : blkaddress_t -> block_t option
   method trim  : blkaddress_t -> unit  // Forget a block (SSD)
   method fsync  : unit -> unit         // Blocking flush

[From https://www.cl.cam.ac.uk/~djg11/howcomputerswork]

• It is cri琀椀cal that read returns an op琀椀on: a failed write results in 
either exactly the previously wri琀琀en data or None (it’s an erasure 
channel):

• a garbled mixture of new, old and random bits is never returned.

‘block’ = ‘sector’.



Using persistent (non-vola琀椀le) storage

• Simplest “solu琀椀on”: write all updated objects to disk on 

commit, read back on reboot

– Doesn’t work, since crash could occur between writes

– Can fail to provide transac琀椀on Atomicity and/or Consistency.

• Instead split update into two stages:

1. Write proposed updates to a write-ahead log

2. Write actual updates.

• Crash during #1 => no actual updates done;

• Crash during #2 => use log to redo, or undo.

• Recall transac琀椀ons can also abort (and cascading aborts), so log 

can help undo the changes made.

5

Write ahead log entries are compact (many per block) whereas
object updates each touch at least one block.



Write-ahead logging

• Log: an ordered, append-only 昀椀le on disk (aka journal).

• Contains entries like <txid, obj, op, old, new>

– ID of transac琀椀on, object modi昀椀ed, (op琀椀onally) the opera琀椀on 

performed, the old value and the new value.

– This means we can both “roll forward” (redo opera琀椀ons) and 

“rollback” (undo opera琀椀ons).

• When persis琀椀ng a transac琀椀on to disk:

– First log a special entry <txid, START>,

– Next log a number of entries to describe opera琀椀ons,

– Finally log another special entry <txid, COMMIT>.

• We build composite-opera琀椀on atomicity from fundamental atomic 

opera琀椀on: the single-sector write.

– Much like building high-level primi琀椀ves over LL/SC or CAS!
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Using a write-ahead log

• When execu琀椀ng transac琀椀ons, perform updates to objects in memory with 

lazy write back

– I.e. the OS will normally delay all disk writes to improve e昀케ciency.

• Invariant: write log records before corresponding data.

• But when wish to commit a transac琀椀on, must 昀椀rst synchronously 昀氀ush a 

commit record to the log 

– Assume there is a fsync() or fsyncdata() opera琀椀on or similar which allows us to 

force data out to disk.

– Only report transac琀椀on commi琀琀ed a昀琀er fsync() returns.

• Can improve performance by delaying 昀氀ush un琀椀l we have a number of 

transac琀椀on to commit – batching.

– Hence at any point in 琀椀me we have some pre昀椀x of the write-ahead log on disk, 

and the rest in memory.
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The Big Picture

8

RAM

Object Values

x = 3
y = 27

Disk

Object Values

x = 1
y = 17
z = 42

Older Log Entries

Newer Log Entries

Log Entries

T2, z, 40, 42
T2, START
T1, START
T0, COMMIT
T0, x, 1, 2
T0, START

T3, START
T2, ABORT
T2, y, 17, 27
T1, x, 2, 3

Log Entries

RAM acts as a cache of disk

(e.g. no in-memory copy of z)

On-disk values may be older versions of objects 

(e.g. x) – or new uncommi琀琀ed values as long as 

the on-disk log describes rollback (e.g. z)

Log conceptually in昀椀nite, 

and spans RAM & Disk

Log has saved x is now 2, but
on-disk x is still 1.



Checkpoint Approach

• As described, log will get infeasibly/very long

– And need to process every entry in log to recover.

• Be琀琀er to periodically write a checkpoint  

1. Flush all current in-memory log records to disk.

2. Write a special checkpoint record to log with a list of ac琀椀ve 

transac琀椀ons

(pointers to earliest undo/redo log entries that must be searched 

during recovery)

3. Flush all ‘dirty’ objects (i.e. ensure object values on disk are up-to- 

date)

4. Atomic (single sector) write of loca琀椀on of new checkpoint record to 

a special, well-known place in persistent store (disk).  Truncate log, 

discarding no longer needed parts (perhaps by the same ac琀椀on).

• Atomic checkpoint loca琀椀on write supports crash during recovery.
9



Checkpoints and recovery

• Key bene昀椀t of a checkpoint is it lets us focus our 

a琀琀en琀椀on on possibly-a昀昀ected transac琀椀ons

10

Time

Checkpoint Time Failure Time

T1

T2

T3

T4

T5

T1: no ac琀椀on required

T2: REDO

T3: UNDO

T4: REDO

T5: UNDO

Ac琀椀ve at checkpoint. 

Has since commi琀琀ed; 

and record in log.

Ac琀椀ve at checkpoint; 

in progress at crash. 
Not ac琀椀ve at checkpoint. 

But has since commi琀琀ed, 

and commit record in log.

Not ac琀椀ve at checkpoint, 

and s琀椀ll in progress.



Recovery algorithm

• Ini琀椀alize undo set U = { set of ac琀椀ve txac琀椀ons }

• Also have redo set R, ini琀椀ally empty.

• Walk log forward as indicated by checkpoint record:

– If see a START record, add transac琀椀on to U

– If see a COMMIT record, move transac琀椀on from U->R

• When hit end of log, perform undo:

– Walk backward and undo all records for all Tx in U

• When reach checkpoint 琀椀mestamp again, Redo:

– Walk forward, and re-do all records for all Tx in R

• A昀琀er recovery, we have e昀昀ec琀椀vely checkpointed

– On-disk store is consistent, so can (generally) truncate the log.

11

The order in which we apply undo/redo records is important to properly 

handle cases where mul琀椀ple transac琀椀ons touch the same data.



Write-ahead logging: assump琀椀ons

• What can go wrong wri琀椀ng commits to disk?

• Even if sector writes are atomic:

– All a昀昀ected objects may not 昀椀t in a single sector

– Large objects may span mul琀椀ple sectors

– Trend towards copy-on-write, rather than journalled, FSes

– Many of the problems seen with in-memory commit (ordering and atomicity) 

apply to disks as well!

• Contemporary disks may not be en琀椀rely honest about sector size and 

atomicity

– E.g., unstable write caches to improve e昀케ciency

– E.g., larger or smaller sector sizes than adver琀椀sed

– E.g., non-atomicity when wri琀椀ng to mirrored disks (RAID).

• These assume fail-stop – not true for some media (SSD?)
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Transac琀椀ons: Summary

• Standard mutual exclusion techniques not programmer friendly 

when dealing with >1 object

– intricate locking (& lock order) required, or

– single coarse-grained lock, limi琀椀ng concurrency

• Transac琀椀ons allow us a be琀琀er way:

– poten琀椀ally many opera琀椀ons (reads and updates) on many objects, but 

should execute as if atomically

– underlying system deals with providing isola琀椀on, allowing safe 

concurrency, and even fault tolerance!

• Appropriate only if opera琀椀ons are “transac琀椀onal”

– E.g., discrete events in 琀椀me, as must commit to be visible

• Transac琀椀ons are used both in databases and 昀椀lesystems.
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Advanced Topics

• Will brie昀氀y look at two advanced topics

– lock-free data structures, and

– transac琀椀onal memory

• Then, next 琀椀me, Distributed Systems

14



Lock-free programming

• What’s wrong with locks?

– Di昀케cult to get right (if locks are 昀椀ne-grained)

– Don’t scale well (if locks too coarse-grained)

– Don’t compose well (deadlock!)

– Poor cache behavior (e.g. convoying)

– Priority inversion

– And can be expensive

• Lock-free programming involves ge琀�ng rid of locks ... but not at the cost 

of safety! 

• Recall TAS, CAS, LL/SC from our early lecture: what if we used them to 

implement something other than locks?

15



Memory API Assump琀椀ons

• We have a cache-consistent shared-memory system (and we 

understand the sequen琀椀al consistency model)

• Low-level (assembly instruc琀椀ons) include:

16

val  = read(addr);            // atomic read from memory
(void) write(addr, val);      // atomic write to memory
done = CAS(addr, old, new);   // atomic compare-and-swap

• Compare-and-Swap (CAS) is atomic

• Reads value of addr (‘val’), compares with ‘old’, and updates 

memory to ‘new’ i昀昀 old==val  -- without interrup琀椀on.  

• Something like this instruc琀椀on common on most modern 

processors (e.g. cmpxchg on x86 – or LL/SC on RISC)

• Typically used to build spinlocks (or mutexes, or semaphores, 

or whatever...) 



Lock-free approach

• Directly use CAS to update shared data

• For example, consider a lock-free linked list of integers

– list is singly linked, and sorted

– Use CAS to update pointers

– Handle CAS failure cases (i.e., races)

• Represents the ‘set’ abstract data type, i.e.

– Find: int -> bool

– Insert: int -> bool

– Delete: int -> bool

• Insert/delete return values indicate if opera琀椀on failed, requiring retry 

(typically in a loop).

• Assump琀椀on: hardware supports atomic opera琀椀ons on pointer-size types.

• Assump琀椀on: Full sequen琀椀al consistency (or fences used as needed).

17

The delete() operation is
left as an example for you
this year.



Searching a sorted list

• 昀椀nd(20):

H 10 30 T

20?

昀椀nd(20) -> false

18



Inser琀椀ng an item with a simple store 

• insert(20):

H 10 30 T

20

30  20

insert(20) -> true
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Inser琀椀ng an item with CAS

• insert(20):

H 10 30 T

20

30  20

25

30  25

• insert(25):

20



Concurrent 昀椀nd+insert

• 昀椀nd(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

21

(One issue with lock free programming is that it sometimes relies on a change
being reflected through a pointer having a different value. So as store is
reclaimed, we should sometimes quarantine recently-used memory to stop a
change becoming invisible – the so-called ABA problem.)



Concurrent 昀椀nd+insert

• 昀椀nd(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

This thread saw 20 

was not in the set...

...but this thread 

succeeded in pu琀�ng 

it in!

• Is this a correct implementa琀椀on of a set?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of opera琀椀ons?
22



Linearisability

• As with transac琀椀ons, we return to a conceptual model to de昀椀ne correctness:

– a lock-free data structure is ‘correct’ if all changes (and return values) are consistent 

with some serial view: we call this a linearisable schedule.

– Lock-free structure and code must be designed to tolerate all possible thread 

interleaving pa琀琀erns that may occur.

• Hence in the previous example, we are always ok: 

– Either the insert() or the 昀椀nd() can be deemed to have occurred 昀椀rst.

• Gets a lot more complicated for more complicated data structures & 

opera琀椀ons – (eg. money conserva琀椀on in the credit/debit/xfer example)

• On some hardware, atomic primi琀椀ves do more than just provide atomicity:

– Eg. CAS may embody a memory fence for sequen琀椀al consistency (observable memory 

ordering). 

– LL/SC may not and so explicit “happens-before” load and stores fences may be 

needed in the code.

– Lock-free structures must take this into account as well.

23



(S/W) Transac琀椀onal Memory (TM)

• Based on op琀椀mis琀椀c concurrency control.

• Instead of: lock(&sharedx_mutex);
sharedx[i] *= sharedx[j] + 17;
unlock(&sharedx_mutex);

 Use: atomic { 
sharedx[i] *= sharedx[j] + 17;

}

 Has “obvious” seman琀椀cs, i.e. all opera琀椀ons within block 

occur as if atomically

 Transac琀椀onal since under-the-bonnet it looks like:

do { txid = tx_begin(&thd, sharedx);  
sharedx[i] *= sharedx[j] + 17;

} while !(tx_commit(txid)); 24



TM advantages
• Simplicity: 

– Programmer just puts atomic { } around anything they want to occur in 

isola琀椀on.

– Fine-grain concurrency is possible without manual par琀椀琀椀on of variables or 

array loca琀椀ons into locking groups.

• Composability: 

– Unlike locks, atomic { } blocks nest, e.g.:

credit(a, x) = atomic { 
setbal(a, readbal(a) + x);

}
debit(a, x) = atomic { 

setbal(a, readbal(a) - x);
}
transfer(a, b, x) = atomic { 

debit(a, x);
credit(b, x);

} 25



TM advantages

• Cannot deadlock: 

– No locks, so don’t have to worry about locking order

– (Though may get live lock if not careful)

• No races (mostly): 

– Cannot forget to take a lock (although you can forget to put 

atomic { } around your cri琀椀cal sec琀椀on ;-)) 

• Scalability: 

– High performance possible via OCC

– No need to worry about complex 昀椀ne-grained locking

• There remains a simplicity vs. performance tradeo昀昀

– Too much atomic {} and implementa琀椀on can’t 昀椀nd concurrency. 

Too li琀琀le, and errors arise from poor interleaving.

26



TM is very promising…

• Essen琀椀ally does ‘ACI’ but no D

– no need to worry about crash recovery

– can work en琀椀rely in memory

– can be implemented in HLL, VM or hardware (S/W v H/W TM)

– some hardware support emerging (take 1)

– some hardware support emerging (take 2)

• Last decade, both x86 and Arm o昀昀ered direct support for transac琀椀ons 

using augmented cache protocols

– … And promptly withdrawn in errata

– Now back on the street again

– Security vulnerabili琀椀es (琀椀ming a琀琀acks and the like)?

• But not a panacea

– Conten琀椀on management can get ugly (lack of parallel speedup)

– Di昀케cul琀椀es with irrevocable ac琀椀ons / side e昀昀ects (e.g. I/O)

– S琀椀ll working out exact seman琀椀cs (type of atomicity, handling excep琀椀ons, signalling, 

...)
27

x86 xbegin xend instructions



Concurrent systems: summary

• Concurrency is essen琀椀al in modern systems

– overlapping I/O with computa琀椀on,

– exploi琀椀ng mul琀椀-core,

– building distributed systems.

• But throws up a lot of challenges

– need to ensure safety, allow synchroniza琀椀on, and avoid issues of 

liveness (deadlock, livelock, ...)

• Major risks of bugs and over-engineering

– generally worth running as a sequen琀椀al system 昀椀rst,

– too much locking leads to too much serial execu琀椀on,

– and worth using exis琀椀ng libraries, tools and design pa琀琀erns rather 

than rolling your own!
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Summary + next 琀椀me

• Transac琀椀onal durability: crash recovery and logging

– Write-ahead logging; checkpoints; recovery.

• Advanced topics

– Lock-free programming

– Transac琀椀onal memory.

• Next 琀椀me: Distributed Systems with Dr Tim Harris

29

The next 8 lectures start at 9:00 am
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