Computer Networking

Slide Set 1

Andrew W. Moore

Andrew.Moore@cl.cam.ac.uk

Topic 1 Foundation

- Administrivia
- Networks
- Channels
- Multiplexing
- Performance: loss, delay, throughput

Course Administration

Commonly Available Texts

- Computer Networks: A Systems Approach

Peterson and Davie
https://book.systemsapproach.org
https://github.com/SystemsApproach/book
\square Computer Networking : Principles, Protocols and Practice
Olivier Bonaventure (and friends)
Less GitHub but more practical exercises
https://www.computer-networking.info/

Other textbooks are available.

Thanks

- Slides are a fusion of material from
to Stephen Strowes, Tilman Wolf \& Mike Zink, Ashish Padalkar , Evangelia Kalyvianaki, Brad Smith, Ian Leslie, Richard Black, Jim Kurose, Keith Ross, Larry Peterson, Bruce Davie, Jen Rexford, Ion Stoica, Vern Paxson, Scott Shenker, Frank Kelly, Stefan Savage, Jon Crowcroft , Mark Handley, Sylvia Ratnasamy, Adam Greenhalgh, and Anastasia Courtney.
- Supervision material is drawn from Stephen Kell, Andy Rice, and the TA teams of 144 and 168
- Finally thanks to the fantastic past Part 1b students and Andrew Rice for all the tremendous feedback.

What is a network?

- A system of "links" that interconnect "nodes" in order to move "information" between nodes

- Yes, this is all rather abstract

What is a network?

- We also talk about
or even

- Yes, abstract, vague, and under-defined....

There are many different types of networks

- Internet
- Telephone network
- Transportation networks
- Cellular networks
- Supervisory control and data acquisition networks
- Optical networks
- Sensor networks

We will focus almost exclusively on the Internet

The Internet has

 transformed everything- The way we do business
- E-commerce, advertising, cloud-computing
- The way we have relationships
- Facebook friends, E-mail, IM, virtual worlds
- The way we learn
- Wikipedia, search engines
- The way we govern and view law
- E-voting, censorship, copyright, cyber-attacks

A few defining characteristics of the Internet

A federated system

- The Internet ties together different networks
- >20,000 ISP networks (the definition is fuzzy)

Tied together by IP -- the "Internet Protocol" : a single common interface between users and the network and between networks

A federated system

- The Internet ties together different networks
- >20,000 ISP networks
- A single, common interface is great for interoperability...
- ...but tricky for business
- Why does this matter?
- ease of interoperability is the Internet's most important goal
- practical realities of incentives, economics and real-world trust, drive topology, route selection and service evolution

Tremendous scale
 (2020 numbers - so some 'weird')

- 4.57 Billion users (58\% of world population)
- 1.8 Billion web sites
- 34.5% of which are powered by the WordPress!
- 4.88 Billion smartphones (45.4\% of population)
- 500 Million Tweets a day
- 100 Billion WhatsApp messages per day
- 1 Billion hours of YouTube video watched per day
- 500 hours of Youtube video added per minute
- 2+ billion TikTok installs
- 60\% video streaming
- 12.5% of the Internet traffic is native Netflix

Tremendous scale
 (2020 numbers - so some 'weird')

- 4.57 Billion users (58\% of world population ${ }^{\prime}$
- 1.8 Billion web sites
- 34.5% of which are powern- to SUCh SYS
- 4.88 Billion smart." refers r/o of population)
- 500 Mill net scale uay
- "Interne .nnatsApp messages per day
- -illon hours of YouTube video watched per day
- 500 hours of Youtube video added per minute
- 2+ billion TikTok installs
- 60\% video streaming
- 12.5% of the Internet traffic is native Netflix

Enormous diversity and dynamic range

- Communication latency: nanoseconds to seconds (109)
- Bandwidth: 100bits/second to 400 Gigabits/second (10 ${ }^{9}$)
- Packet loss: $0-90 \%$
- Technology: optical, wireless, satellite, copper
- Endpoint devices: from sensors and cell phones to datacenters and supercomputers
- Applications: social networking, file transfer, skype, live TV, gaming, remote medicine, backup, IM
- Users: the governing, governed, operators, malicious, naïve, savvy, embarrassed, paranoid, addicted, cheap ...

Constant Evolution

1970s:

- 56kilobits/second "backbone" links
- <100 computers, a handful of sites in the US (and one UK)
- Telnet and file transfer are the "killer" applications

Today

- 400+Gigabits/second backbone links
- 40B+ devices, all over the globe
- 27B+ loT devices alone

Asynchronous Operation

- Fundamental constraint: speed of light
- Consider:
- How many cycles does your 3GHz CPU in Cambridge execute before it can possibly get a response from a message it sends to a server in Palo Alto?
- Cambridge to Palo Alto: 8,609 km
- Traveling at $300,000 \mathrm{~km} / \mathrm{s}: 28.70$ milliseconds
- Then back to Cambridge: $2 \times 28.70=57.39$ milliseconds
- 3,000,000,000 cycles/sec * $0.05739=172,179,999$ cycles!
- Thus, communication feedback is always dated

Prone to Failure

- To send a message, all components along a path must function correctly
- software, wireless access point, firewall, links, network interface cards, switches,...
- Including human operators
- Consider: 50 componentsin a system, each working correctly 99% of time $\rightarrow 39.5 \%$ chance communication will fail
- Plus, recall
- scale \rightarrow lots of components
- asynchrony \rightarrow takes a long time to hear (bad) news
- federation (internet) \rightarrow hard to identify fault or assign blame

Recap: The Internet is...

- A complex federation
- Of enormous scale
- Dynamic range
- Diversity
- Constantly evolving
- Asynchronous in operation
- Failure prone
- Constrained by what's practical to engineer
- Too complex for (simple) theoretical models
- "Working code" doesn't mean much
- Performance benchmarks are too narrow

An Engineered System

- Constrained by what technology is practical
- Link bandwidths
- Switch port counts
- Bit error rates
- Cost

Nodes and Links

Channels = Links
 Peer entities $=$ Nodes

Properties of Links (Channels)

bandwidth

- Bandwidth (capacity): "width" of the links
- number of bits sent (or received) per unit time (bits/sec or bps)
- Latency (delay): "length" of the link
- propagation time for data to travel along the link (seconds)
- Bandwidth-Delay Product (BDP): "volume" of the link
- amount of data that can be "in flight" at any time
- propagation delay \times bits/time $=$ total bits in link

Examples of Bandwidth-Delay

- Same city over a slow link: - Intra Datacenter:
- BW~100Mbps
- Latency ${ }^{\sim} 10 \mathrm{msec}$
- BDP ~ 10^{6} bits ~ 125 KBytes $17 \mathrm{~km} * \mathrm{c}=56 \mu \mathrm{~s} \ll 10 \mathrm{~ms}$
- BW~100Gbps
- Latency ${ }^{\sim} 30$ usec
- BDP ~ 10^{6} bits ~ 375 KBytes
$750 \mathrm{~m} * \mathrm{c}=56 \mu \mathrm{~s} \cong 30 \mu \mathrm{~s}$
- To California over a fast link: - Intra Host:
- BW~10Gbps
- Latency ${ }^{\sim} 140 \mathrm{msec}$
- BDP ~ 1.4×10^{9} bits ~ 175 MBytes $9708 \mathrm{~km} * \mathrm{c}=32 \mathrm{~ms} \ll 140 \mathrm{~ms}$
- BW~100Gbps
- Latency ${ }^{\sim} 16 \mathrm{nsec}$
- BDP ~ 1600bits ~ 200Bytes
$25 \mathrm{~cm} * \mathrm{c}=83 \mathrm{ps} \ll 16 \mathrm{~ns}$

Packet Delay

 Sending a 100B packet from A to B ?

1GB file in 100B packets ay

Sending a $100 B$ packet from A to B ?

Packet Delay: The "pipe" view Sending 100B packets from A to B?

Packet Delay: The "pipe" view Sending 100B packets from A to B?

$1 \mathrm{Mbps}, 5 \mathrm{~ms}(\mathrm{BDP}=5,000)$

$10 \mathrm{Mbps}, 1 \mathrm{~ms}(\mathrm{BDP}=10,000)$

Packet Delay: The "pipe" view Sending 100B packets from A to B?

$1 \mathrm{Mbps}, 10 \mathrm{~ms}$ (BDP=10,000)

What if we used 200Byte packets??
$1 \mathrm{Mbps}, 10 \mathrm{~ms}$ (BDP=10,000)

Recall Nodes and Links

What if we have more nodes?

One link for every node?

Need a scalable way to interconnect nodes

Solution: A switched network

Nodes share network link resources

How is this sharing implemented?

Two examples of switched networks

- Circuit switching (used in the POTS: Plain Old Telephone system)

- Packet switching (used in the Internet)

Circuit switching

Telephone

Exchange

Exchange

Circuit switching

Idea: source reserves network capacity along a path

(1) Node A sends a reservation request
(2) Interior switches establish a connection -- i.e., "circuit"
(3) A starts sending data
(4) A sends a "teardown circuit" message

Multiplexing

Sharing makes things efficient (cost less)

- One airplane/train for 100's of people
- One telephone for many calls
- One lecture theatre for many classes
- One computer for many tasks
- One network for many computers
- One datacenter many applications

Multiplexing

Sharing makes things efficient (cost less)

- One airplane/train for 100's of people
- One telephone for many calls
- One tectecturer? for many classes
- One computer for many tasks
- One network for many computers
- One datacenter many applications

Old Time Multiplexing

Sharing Circuit Switching: FDM and TDM

Time Division Multiplexing

Time-Division Multiplexing/Demultiplexing

- Time divided into frames; frames into slots
- Relative slot position inside a frame determines to which conversation data belongs
- e.g., slot 0 belongs to orange conversation
- Slots are reserved (released) during circuit setup (teardown)
- If a conversation does not use its circuit capacity is lost!

Timing in Circuit Switching

Circuit switching: pros and cons

- Pros
- guaranteed performance
- fast transfer (once circuit is established)
- Cons

Timing in Circuit Switching

Circuit switching: pros and cons

- Pros
- guaranteed performance
- fast transfer (once circuit is established)
- Cons
- wastes bandwidth if traffic is "bursty"

Timing in Circuit Switching

Timing in Circuit Switching

Circuit switching: pros and cons

- Pros
- guaranteed performance
- fast transfers (once circuit is established)
- Cons
- wastes bandwidth if traffic is "bursty"
- connection setup time is overhead

Circuit switching

Circuit switching doesn't "route around failure"

Circuit switching: pros and cons

- Pros
- guaranteed performance
- fast transfers (once circuit is established)
- Cons
- wastes bandwidth if traffic is "bursty"
- connection setup time is overhead
- recovery from failure is slow

Numerical example

- How long does it take to send a file of 640,000 bits from host A to host B over a circuitswitched network?
- All links are 1.536 Mbps
- Each link uses TDM with 24 slots/sec
-500 msec to establish end-to-end circuit

Let's work it out!

Two examples of switched networks

- Circuit switching (used in the POTS: Plain Old Telephone system)
- Packet switching (used in the Internet)

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"*

Destination Address

0100011110001 dayobolath 00011001

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"*
- payload is the data being carried
- header holds instructions to the network for how to handle packet (think of the header as an API)
- In this example, the header has a destination address
- More complex headers may include
- How this traffic should be handled? (first class, second class, etc)
- Do I acknowledge this? Who signed for it?
- Were the contents ok?

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"
- Switches "forward" packets based on their headers

A switch looks at the header and immediately decides which physical port In a switch: address maps to port

Switches forward packets

Timing in Packet Switching

Timing in Packet Switching

Timing in Packet Switching

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"
- Switches "forward" packets based on their headers

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"
- Switches "forward" packets based on their headers
- Each packet travels independently
- no notion of packets belonging to a "circuit"

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"
- Switches "forward" packets based on their headers
- Each packet travels independently
- No link resources are reserved in advance. Instead packet switching leverages statistical multiplexing (stat muxing)

Multiplexing

Sharing makes things efficient (cost less)

- One airplane/train for 100's of people
- One telephone for many calls
- One lecture theatre for many classes
- One computer for many tasks
- One network for many computers
- One datacenter many applications

Three Flows with Bursty Traffic

Data Rate 1

Data Rate 2

Data Rate 3

When Each Flow Gets $1 / 3^{\text {rd }}$ of Capacity

Data Rate $1 \quad$ Frequent Overloading

Time

Data Rate 2

Data Rate 3

When Flows Share Total Capacity

No Overloading

Time
Statistical multiplexing relies on the assumption that not all flows burst at the same time.

Very similar to insurance, and has same failure case

Three Flows with Bursty Traffic

Data Rate 1

Data Rate 2

Data Rate 3

Three Flows with Bursty Traffic

Data Rate 1

Data Rate 2

Data Rate 3

Three Flows with Bursty Traffic

Data Rate $1+2+3 \gg$ Capacity

What do we do under overload?

Statistical multiplexing: pipe view

What about persistent overload? Will eventually drop packets

Queues introduce queuing delays

- Recall,

$$
\text { packet delay }=\text { transmission delay }+ \text { propagation delay }\left(^{*}\right)
$$

- With queues (statistical multiplexing)
packet delay = transmission delay + propagation delay + queuing delay (*)
- Queuing delay caused by "packet interference"
- Made worse at high load
- less "idle time" to absorb bursts
- think about traffic jams at rush hour or rail network failure
(* plus per-hop processing delay that we define as negligible)

Queuing delay extremes

- R=link bandwidth (bps) queueing delay
- L=packet length (bits)
- a=average packet arrival rate
traffic intensity = La/R

$\square \mathrm{La} / \mathrm{R} \sim 0$: average queuing delay small
\square La/R -> 1: delays become large
$\square \quad L a / R>1$: more "work" arriving than can be serviced, average delay infinite - or data is lost (dropped).

Recall the Internet federation

- The Internet ties together different networks - >20,000 ISP networks

We can see (hints) of the nodes and links using traceroute...

"Real" Internet delays and routes
 traceroute: rio.cl.cam.ac.uk to people.eng.unimelb.edu.au (tracepath on winows is similar)

Three delay measurements from

awm22@rio:~\$ traceroute people.eng.unimelb.edu.au rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk traceroute to people.eng.unimelb.edu.au (128.250.59.37), 30 hops, max, 60 byte packets
1 vlan101.gatwick.net.cl.cam.ac.uk (128.232.32.2) 1.520 ms 1.822 ms 0.709 ms
2 cl-wgb.d-mw.net.cam.ac.uk (193.60.89.5) 0.259 ms 0.256 ms 0.227 ms
3 d-mw.c-ce.net.cam.ac.uk (131.111.6.53) 0.231 ms 0.381 ms 0.357 ms
4 c-ce.b-ec.net.cam.ac.uk (131.111.6.82) 0.317 ms 0.481 ms 0.476 ms
5 ae0.lowdss-ban1.ja.net (146.97.41.37) 2.842 ms 2.846 ms 2.821 ms
6 ae26.lowdss-sbr1.ja.net (146.97.35.245) 2.877 ms 2.805 ms 2.795 ms
Direct London-Perth
7 ae28.londhx-sbr1.ja.net (146.97.33.17) 6.191 ms 6.109 ms 6.325 ms
8 janet.mx1.lon.uk.geant.net (62.40 .124 .197) 6.319 ms 6.245 ms 6.258 ms
9 1 $\overline{3} \overline{8} .4 \overline{4} . \overline{2} 26.6(1 \overline{3} 8.44 .226 .6) 1 \overline{6} 9.7 \overline{0} 4 \mathrm{~ms} 169.722 \mathrm{~ms}^{-1} 169.682 \mathrm{~ms}$

$11 * * *$
124000 v -eng-web-people-1.eng.unimelb.edu.au (128.250.59.37) 251.943 ms 251.952 ms 251.962 ms
134000 v -eng-web-people-1.eng.unimelb.edu.au (128.250.59.37) 252.053 ms 252.018 ms 251.966 ms
14
154000 v -eng-web-people-l.eng.unimelb.edu.au (128.250.59.37) 252.215 ms 252.088 ms 252.118 ms
164000 v -eng-web-people-1.eng.unimelb.edu.au (128.250.59.37) 253.361 ms 253.109 ms 253.461 ms
174000 v -eng-web-people-l.eng.unimelb.edu.au (128.250.59.37) 253.077 ms 253.832 ms 253.298 ms
Australian

18 ***
29 ***
30 *** \qquad * means no response (probe or reply lost, router not replying)

traceroute: rio.cl.cam.ac.uk to www.caida.org

```
rio:~$ traceroute --resolve-hostnames www.caida.org
traceroute to www.caida.org (192.172.226.122), }64\mathrm{ hops max
    1 128.232.64.2 (vlan398.gatwick.net.cl.cam.ac.uk) 3.760ms 2.060ms 1.226ms
    2 193.60.89.5 (cl-wgb.d-mw.net.cam.ac.uk) 53.777ms 67.458ms 0.556ms
    3 131.111.7.53 (d-mw.c-hi.net.cam.ac.uk) 0.638ms 0.621ms 0.658ms
    4 131.111.7.82 (c-hi.b-jc.net.cam.ac.uk) 0.353ms 0.346ms 0.338ms
    5 131.111.7.217 (ips-out.b-jc.net.cam.ac.uk) 0.582ms 0.441ms 0.397ms
    6 146.97.41.37 (ae0.lowdss-ban1.ja.net) 2.754ms 2.648ms 2.701ms
    7 146.97.35.245 (ae26.lowdss-sbr1.ja.net) 2.852ms 2.728ms 2.738ms
    146.97.33.25 (ae30.erdiss-sbr2.ja.net) 5.412ms 5.177ms 4.474ms
    9 146.97.33.21 (ae31.londpg-sbr2.ja.net) 8.408ms 8.213ms 8.293ms
    10 62.40.125.57 (janet-bckp.mx1.lon2.uk.geant.net) 9.199ms 9.140ms 9.108ms
    11 62.40.98.64 (ae2.mx1.lon.uk.geant.net) 10.119ms 9.818ms 9.756ms
    12 62.40.124.45 (internet2-gw.mx1.lon.uk.geant.net) 95.065ms 95.962ms 95.434ms
    13 163.253.1.120 (fourhundredge-0-0-0-0.4079.core2.ashb.net.internet2.edu) 152.834ms 153.562ms 154.448ms
    14 163.253.1.139 (fourhundredge-0-0-0-1.4079.core2.clev.net.internet2.edu) 154.008ms 153.800ms 154.429ms
    15 163.253.2.17 (fourhundredge-0-0-0-2.4079.core2.eqch.net.internet2.edu) 155.463ms 154.863ms 154.334ms
    16 163.253.1.66 (fourhundredge-0-0-0-18.4079.core1.eqch.net.internet2.edu) 153.802ms 153.600ms 154.553ms
    17 163.253.1.206 (fourhundredge-0-0-0-1.4079.core1.chic.net.internet2.edu) 154.783ms 154.926ms 154.796ms
    18 163.253.2.29 (fourhundredge-0-0-0-1.4079.core2.kans.net.internet2.edu) 152.851ms 152.414ms 154.916ms
    19 163.253.1.250 (fourhundredge-0-0-0-1.4079.core2.denv.net.internet2.edu) 155.571ms 155.047ms 154.572ms
    20 163.253.1.169 (fourhundredge-0-0-0-3.4079.core2.salt.net.internet2.edu) 153.369ms 153.824ms 154.321ms
    21 163.253.1.114 (fourhundredge-0-0-0-8.4079.core1.losa.net.internet2.edu) 153.786ms 153.549ms 154.839ms
    137.164.26.200 (hpr-lax-agg10--i2.cenic.net) 152.552ms 153.465ms 152.493ms
    137.164.25.89 (hpr-sdg-agg4--lax-agg10-100ge.cenic.net) 154.682ms 154.604ms 154.752ms
    137.164.26.43 (hpr-sdsc-100ge--sdg-hpr3.cenic.net) 167.094ms 154.553ms 154.627ms
    192.12.207.46 (medusa-mx960.sdsc.edu) 154.854ms 154.646ms 156.379ms
    26 192.172.226.122 (proxy.caida.org) 154.581ms 154.390ms 154.477ms
```

A little more interesting because each hop resolves to a name (caida is in San Diego)

Internet structure: network of networks

- a packet passes through many networks!

Internet structure: network of networks

- "Tier-3" ISPs and local ISPs
- last hop ("access") network (closest to end systems)

Internet structure: network of networks

- "Tier-2" ISPs: smaller (often regional) ISPs
- Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier-2 ISP pays tier1 ISP for connectivity to rest of Internet
\square tier-2 ISP is customer of tier-1 provider

Internet structure: network of networks

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT\&T, Cable and Wireless), national/international coverage
- treat each other as equals

Tier-1 ISP: e.g., Sprint

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"
- Switches "forward" packets based on their headers
- Each packet travels independently
- No link resources are reserved in advance. Instead packet switching depends on statistical multiplexing
- allows efficient use of resources
- but introduces queues and queuing delays

Packet switching versus circuit switching

Packet switching may (does!) allow more users to use network

- $1 \mathrm{Mb} / \mathrm{s}$ link
- each user:
- $100 \mathrm{~kb} / \mathrm{s}$ when "active"
- active 10% of time
- circuit-switching:
- 10 users
- packet switching:
- with 35 users, probability >10 active at same time is

Q: how did we get value 0.0004 ? less than . 0004

Packet switching versus circuit switching

Q: how did we get value 0.0004 ?

- $1 \mathrm{Mb} / \mathrm{s}$ link
- each user:
- $100 \mathrm{~kb} / \mathrm{s}$ when "active"
- active 10% of time
- circuit-switching:

Let U be number of users active N the total users

- 10 users
- packet switching:
- with 35 users, probability >10 active at same time is less than . 0004

$$
\begin{aligned}
\tilde{P}(u=k) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
{[\therefore P(u \leq k)} & \left.=\sum_{k=0}^{k}\binom{n}{k} p^{k}(1-p)^{n-k}\right] \cdot\left[P(u>k)=1-\sum_{k=0}^{k}\binom{n}{k} p^{k}(1-p)^{n-k}\right]
\end{aligned}
$$

for $n=35, k=10$

$$
P(u \leq 10)=\sum_{k=0}^{10}\binom{35}{k} p^{k}(1-p)^{35-k}
$$

where $p=0.1$:

$$
\begin{aligned}
& P(u \leqslant 10)=0.99958 \\
& \therefore P(u>10)=0.00042
\end{aligned}
$$

Circuit switching: pros and cons

- Pros
- guaranteed performance
- fast transfers (once circuit is established)
- Cons
- wastes bandwidth if traffic is "bursty"
- connection setup adds delay
- recovery from failure is slow

Packet switching: pros and cons

- Pros
- efficient use of bandwidth (stat. muxing)
- no overhead due to connection setup
- resilient -- can `route around trouble’
- Cons
- no guaranteed performance
- header overhead per packet
- queues and queuing delays

Summary

- A sense of how the basic `plumbing' works
- links and switches
- packet delays= transmission + propagation + queuing + (negligible) per-switch processing
- statistical multiplexing and queues
- circuit vs. packet switching

