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Topic 1 Foundation

• Administrivia
• Networks
• Channels
• Multiplexing
• Performance: loss, delay, throughput
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Course Administration
Commonly Available Texts
 Computer Networks: A Systems Approach

Peterson and Davie
https://book.systemsapproach.org
https://github.com/SystemsApproach/book

 Computer Networking : Principles, Protocols and Practice
 Olivier Bonaventure (and friends)
 Less GitHub but more practical exercises

https://www.computer-networking.info/

Other textbooks are available.
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Thanks
• Slides are a fusion of material from

to Stephen Strowes, Tilman Wolf & Mike Zink, Ashish 
Padalkar , Evangelia Kalyvianaki, Brad Smith, Ian Leslie, 
Richard Black, Jim Kurose, Keith Ross, Larry Peterson, Bruce 
Davie, Jen Rexford, Ion Stoica, Vern Paxson, Scott Shenker, 
Frank Kelly, Stefan Savage, Jon Crowcroft , Mark Handley,  
Sylvia Ratnasamy, Adam Greenhalgh, and Anastasia 
Courtney.

• Supervision material is drawn from
Stephen Kell, Andy Rice, and the TA teams of 144 and 168

• Finally thanks to the fantastic past Part 1b students 
and Andrew Rice for all the tremendous feedback.
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What is a network?

• A system of “links” that interconnect “nodes” 
in order to move “information” between nodes

• Yes, this is all rather abstract
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What is a network?

• We also talk about

or

or even

• Yes, abstract, vague, and under-defined….
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There are many different types
of networks

• Internet
• Telephone network 
• Transportation networks
• Cellular networks
• Supervisory control and data acquisition networks
• Optical networks
• Sensor networks

We will focus almost exclusively on the Internet
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The Internet has 
transformed everything

• The way we do business
– E-commerce, advertising, cloud-computing

• The way we have relationships
– Facebook friends, E-mail, IM, virtual worlds

• The way we learn
– Wikipedia, search engines

• The way we govern and view law
– E-voting, censorship, copyright, cyber-attacks
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A few defining characteristics
of the Internet
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ISP Auser ISP B ISP C user

Tied together by IP -- the “Internet Protocol” : a single common 
interface between users and the network and between networks

A federated system

• The Internet ties together different networks
– >20,000 ISP networks (the definition is fuzzy) 

Internet
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A federated system

• A single, common interface is great for interoperability… 
• …but tricky for business 

• Why does this matter? 
– ease of interoperability is the Internet’s most important goal 
– practical realities of incentives, economics and real-world trust, 

drive topology, route selection and service evolution

 The Internet ties together different networks
 >20,000 ISP networks 
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Tremendous scale
(2020 numbers – so some ‘weird’)
• 4.57 Billion users (58% of world population)
• 1.8 Billion web sites

– 34.5% of which are powered by the WordPress!

• 4.88 Billion smartphones (45.4% of population)
• 500 Million Tweets a day
• 100 Billion WhatsApp messages per day
• 1 Billion hours of YouTube video watched per day
• 500 hours of Youtube video added per minute
• 2+ billion TikTok installs 
• 60% video streaming 

– 12.5% of the Internet traffic is native Netflix
16
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“Internet Scale” refers to such systems

Enormous diversity and 
dynamic range 

• Communication latency: nanoseconds to seconds (109)
• Bandwidth: 100bits/second to 400 Gigabits/second (109)
• Packet loss: 0 – 90%

• Technology: optical, wireless, satellite, copper

• Endpoint devices: from sensors and cell phones to 
datacenters and supercomputers

• Applications: social networking, file transfer, skype,
live TV, gaming, remote medicine, backup, IM

• Users: the governing, governed, operators, malicious, 
naïve, savvy, embarrassed, paranoid, addicted, cheap … 
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Constant Evolution

1970s: 
• 56kilobits/second “backbone” links
• <100 computers, a handful of sites in the US (and one UK)
• Telnet and file transfer are the “killer” applications

Today
• 400+Gigabits/second backbone links
• 40B+ devices, all over the globe

– 27B+ IoT devices alone
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Asynchronous Operation

• Fundamental constraint: speed of light

• Consider: 
– How many cycles does your 3GHz CPU in Cambridge 

execute before it can possibly get a response from a 
message it sends to a server in Palo Alto?

• Cambridge to Palo Alto: 8,609 km
• Traveling at 300,000 km/s: 28.70 milliseconds
• Then back to Cambridge: 2 x 28.70 = 57.39 milliseconds  
• 3,000,000,000 cycles/sec * 0.05739 = 172,179,999 cycles!

• Thus, communication feedback is always dated

How much can change with 172 Million instructions 20

Prone to Failure

• To send a message, all components along a path must 
function correctly
– software, wireless access point, firewall, links, network 

interface cards, switches,…
– Including human operators

• Consider: 50 componentsin a system, each working 
correctly 99% of time  39.5% chance communication 
will fail 

• Plus, recall
– scale  lots of components
– asynchrony  takes a long time to hear (bad) news
– federation (internet)  hard to identify fault or assign blame
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Recap: The Internet is…

• A complex federation 
• Of enormous scale 
• Dynamic range 
• Diversity
• Constantly evolving
• Asynchronous in operation
• Failure prone
• Constrained by what’s practical to engineer
• Too complex for (simple) theoretical models
• “Working code” doesn’t mean much 
• Performance benchmarks are too narrow 34



An Engineered System

• Constrained by what technology is practical
– Link bandwidths 
– Switch port counts
– Bit error rates 
– Cost
– …

35

Nodes and Links

A B

Channels = Links
Peer entities = Nodes
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Properties of Links (Channels)

• Bandwidth (capacity): “width” of the links
– number of bits sent (or received) per unit time (bits/sec or bps)

• Latency (delay): “length” of the link
– propagation time for data to travel along the link (seconds)

• Bandwidth-Delay Product (BDP): “volume” of the link
– amount of data that can be “in flight” at any time
– propagation delay × bits/time = total bits in link

bandwidth

Latency

delay x bandwidth
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Examples of Bandwidth-Delay

• Same city over a slow link: 
– BW~100Mbps
– Latency~10msec
– BDP ~ 106bits ~ 125KBytes

• To California over a fast link:
– BW~10Gbps
– Latency~140msec
– BDP ~ 1.4x109bits ~ 175MBytes

38

• Intra Datacenter: 
– BW~100Gbps
– Latency~30usec
– BDP ~ 106bits ~ 375KBytes

• Intra Host:
– BW~100Gbps 
– Latency~16nsec
– BDP ~ 1600bits ~ 200Bytes

17km * c = 56μs  << 10ms   750m * c = 56μs  ≅ 30μs   

9708km * c =   32ms << 140ms   25cm * c = 83ps  << 16ns   

time=0

Packet Delay
Sending a 100B  packet from A to B?

A B

100Byte packet

Time

1Mbps, 1ms 

Time to transmit 
one bit = 1/106s

Time to transmit 
800 bits=800x1/106s

Time when that
 bit reaches B

 = 1/106+1/103s

The last bit 
reaches B at 

(800x1/106)+1/103s
= 1.8msPacket Delay = Transmission Delay + Propagation DelayPacket Delay = 

(Packet Size ÷ Link Bandwidth) + Link Latency
39

Packet Delay
Sending a 100B packet from A to B?

A B

100Byte packet

Time

1Mbps, 1ms 
1Gbps, 1ms?

The last bit 
reaches B at 

(800x1/106)+1/103s
= 1.8ms

1GB file in 100B packets

The last bit 
reaches B at 

(800x1/109)+1/103s
= 1.0008ms

The last bit in the file 
reaches B at 

(107x800x1/109)+1/103s
= 8001ms

107 x 100B packets

40



Packet Delay: The “pipe” view
Sending 100B packets from A to B?

A B

100Byte packet

Time

1Mbps, 10ms 

100Byte packet

100Byte packet

time 

BW
 

Packet Transmission
Time
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Packet Delay: The “pipe” view
Sending 100B packets from A to B?

1Mbps, 10ms (BDP=10,000) 

time 

B
W
 


10Mbps, 1ms (BDP=10,000) 

time 

B
W
 


1Mbps, 5ms (BDP=5,000) 

time 

B
W
 


42

Packet Delay: The “pipe” view
Sending 100B packets from A to B?

1Mbps, 10ms (BDP=10,000) 

time 

B
W
 


What if we used 200Byte packets??
1Mbps, 10ms (BDP=10,000) 

time 

B
W
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Recall Nodes and Links

A B

44

What if we have more nodes?

One link for every node?

Need a scalable way to interconnect nodes
45

Solution: A switched network

Nodes share network link resources

How is this sharing implemented?
46



Two examples of switched 
networks

• Circuit switching (used in the POTS: Plain 
Old Telephone system)

• Packet switching (used in the Internet)

47

Circuit switching

Telephone TelephoneExchangeExchange

Circuit switching

(1) Node A sends a reservation request
(2) Interior switches establish a connection -- i.e., “circuit”
(3) A starts sending data
(4) A sends a “teardown circuit” message  

Idea: source reserves network capacity along a path

A B
10Mb/s?

10Mb/s?

10Mb/s?

49

Multiplexing

Sharing makes things efficient (cost less)
• One airplane/train for 100’s of people
• One telephone for many calls
• One lecture theatre for many classes
• One computer for many tasks
• One network for many computers
• One datacenter many applications

50

Multiplexing
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Lecturer?

Old Time Multiplexing

52



Sharing Circuit Switching: FDM and 
TDM

Frequency Division Multiplexing

frequency

time
Time Division Multiplexing

frequency

time

4 users
Example:

Radio2 88.9 MHz
Radio3 91.1 MHz
Radio4 93.3 MHz
RadioX 95.5 MHz

Radio Schedule
…,News, Sports, Weather, Local, News, Sports,… 
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Time-Division Multiplexing/Demultiplexing

• Time divided into frames; frames into slots
• Relative slot position inside a frame determines to which 

conversation data belongs
– e.g., slot 0 belongs to orange conversation

• Slots are reserved (released) during circuit setup (teardown)
• If a conversation does not use its circuit capacity is lost!

Frames

0 1 2 3 4 5 0 1 2 3 4 5Slots = 

54

Information
time

Timing in Circuit Switching 

Circuit            
Establishment  

Transfer

Circuit
Tear-down
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Circuit switching: pros and cons

• Pros
– guaranteed performance 
– fast transfer (once circuit is established)

• Cons

56

Information
time

Timing in Circuit Switching

Circuit            
Establishment  

Transfer

Circuit
Tear-down
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Circuit switching: pros and cons

• Pros
– guaranteed performance 
– fast transfer (once circuit is established)

• Cons
– wastes bandwidth if traffic is “bursty”

58



Information
time

Timing in Circuit Switching

Circuit            
Establishment  

Transfer

Circuit
Tear-down
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Information

time

Timing in Circuit Switching

Circuit            
Establishment  

Transfer

Circuit
Tear-down
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Circuit switching: pros and cons

• Pros
– guaranteed performance 
– fast transfers (once circuit is established)

• Cons
– wastes bandwidth if traffic is “bursty”
– connection setup time is overhead

61

Circuit switching

Circuit switching doesn’t “route around failure” 

A

B

62

Circuit switching: pros and cons

• Pros
– guaranteed performance 
– fast transfers (once circuit is established)

• Cons
– wastes bandwidth if traffic is “bursty”
– connection setup time is overhead
– recovery from failure is slow
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Numerical example

• How long does it take to send a file of 640,000 
bits from host A to host B over a circuit-
switched network?
– All links are 1.536 Mbps
– Each link uses TDM with 24 slots/sec
– 500 msec to establish end-to-end circuit

Let’s work it out!
1 / 24 * 1.536Mb/s = 64kb/s
640,000 / 64kb/s = 10s
10s + 500ms = 10.5s

64



Two examples of switched 
networks

• Circuit switching (used in the POTS: Plain 
Old Telephone system)

• Packet switching (used in the Internet)

65

Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”*

After Nick McKeown © 2006

01000111100010101001110100011001

Destination Address

HeaderData

headerpayload
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Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”*

– payload is the data being carried
– header holds instructions to the network for how to

handle packet (think of the header as an API)

– In this example, the header has a destination address
– More complex headers may include 

• How this traffic should be handled? (first class, second class, etc)
• Do I acknowledge this? Who signed for it?
• Were the contents ok?

68

Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”
• Switches “forward” packets based on their 

headers
A switch looks at the header and
immediately decides which physical port
In a switch: address maps to port 
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Switches forward packets

EDINBURGH

OXFORD

GLASGOW

UCL

Destination Next Hop

GLASGOW 4

OXFORD 5

EDIN 2

UCL 3

Forwarding Table
111010010 EDIN

switch#2

switch#5

switch#3

switch#4

70

time

Timing in Packet Switching

paylo
ad

h
d
r

What about the time to process the packet at the switch?

• We’ll assume it’s relatively negligible (mostly true)
71



time

Timing in Packet Switching

paylo
ad

h
d
r

Could the switch start transmitting as
 soon as it has processed the header?

• Yes! This would be called 
a “cut through” switch 72

time

Timing in Packet Switching

paylo
ad

h
d
r

We will always assume a switch processes/forwards
 a packet after it has  received it entirely. 

This is called “store and forward” switching
73

Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”
• Switches “forward” packets based on their 

headers
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Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”
• Switches “forward” packets based on their 

headers
• Each packet travels independently

– no notion of packets belonging to a “circuit”

75

Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”
• Switches “forward” packets based on their 

headers
• Each packet travels independently
• No link resources are reserved in advance. 

Instead packet switching leverages statistical 
multiplexing (stat muxing)

76

Multiplexing

Sharing makes things efficient (cost less)
• One airplane/train for 100’s of people
• One telephone for many calls
• One lecture theatre for many classes
• One computer for many tasks
• One network for many computers
• One datacenter many applications

77



Data Rate 1

Data Rate 2

Data Rate 3

Three Flows with Bursty Traffic

Time

Time

Time
Capacity
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Data Rate 1

Data Rate 2

Data Rate 3

When Each Flow Gets 1/3rd of Capacity

Time

Time

Time

Frequent Overloading
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When Flows Share Total Capacity

Time

Time

Time

No Overloading

Statistical multiplexing relies on the assumption 
that not all flows burst at the same time.

Very similar to insurance, and has same failure case
80

Data Rate 1

Data Rate 2

Data Rate 3

Three Flows with Bursty Traffic

Time

Time

Time
Capacity
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Data Rate 1

Data Rate 2

Data Rate 3

Three Flows with Bursty Traffic

Time

Time

Time
Capacity
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Data Rate 1+2+3 >> Capacity

Three Flows with Bursty Traffic

Time

Time
Capacity

What do we do under overload?
83



Statistical multiplexing: pipe view

time 

BW
 

pkt tx 
time
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Statistical multiplexing: pipe view
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Statistical multiplexing: pipe view

No Overload

86

Statistical multiplexing: pipe view

Transient Overload
Not such a rare event

Queue overload
into Buffer
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Statistical multiplexing: pipe view
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Statistical multiplexing: pipe view
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Statistical multiplexing: pipe view

Transient Overload
Not such a rare event

Queue overload
into Buffer
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Statistical multiplexing: pipe view

Transient Overload
Not a rare event!Buffer absorbs transient bursts

But NOT additional capacity

Queue overload
into Buffer

92

Statistical multiplexing: pipe view

What about persistent overload?
Will eventually drop packets

Queue overload
into Buffer

93

Queues introduce queuing delays
• Recall,

packet delay = transmission delay + propagation delay (*)

• With queues (statistical multiplexing)

packet delay  = transmission delay + propagation delay + queuing delay (*)

• Queuing delay caused by “packet interference”

• Made worse at high load
– less “idle time” to absorb bursts 
– think about traffic jams at rush hour

or rail network failure

(* plus per-hop processing delay that we define as negligible) 94

Queuing delay extremes
• R=link bandwidth (bps)
• L=packet length (bits)
• a=average packet arrival 

rate

traffic intensity = La/R

 La/R ~ 0: average queuing delay small
 La/R -> 1: delays become large
 La/R > 1: more “work” arriving than can be serviced, average delay 

infinite – or data is lost (dropped).

95



ISP Auser ISP B ISP C user

Recall the Internet federation

• The Internet ties together different networks
– >20,000 ISP networks 

We can see (hints) of the nodes and links using traceroute… 
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“Real” Internet delays and routes

awm22@rio:~$ traceroute people.eng.unimelb.edu.au
traceroute to people.eng.unimelb.edu.au (128.250.59.37), 30 hops max, 60 byte packets
1  vlan101.gatwick.net.cl.cam.ac.uk (128.232.32.2)  1.520 ms  1.822 ms  0.709 ms
2  cl-wgb.d-mw.net.cam.ac.uk (193.60.89.5)  0.259 ms  0.256 ms  0.227 ms
3  d-mw.c-ce.net.cam.ac.uk (131.111.6.53)  0.231 ms  0.381 ms  0.357 ms
4  c-ce.b-ec.net.cam.ac.uk (131.111.6.82)  0.317 ms  0.481 ms  0.476 ms
5  ae0.lowdss-ban1.ja.net (146.97.41.37)  2.842 ms  2.846 ms  2.821 ms
6  ae26.lowdss-sbr1.ja.net (146.97.35.245)  2.877 ms  2.805 ms  2.795 ms
7  ae28.londhx-sbr1.ja.net (146.97.33.17)  6.191 ms  6.109 ms  6.325 ms
8  janet.mx1.lon.uk.geant.net (62.40.124.197)  6.319 ms  6.245 ms  6.258 ms
9  138.44.226.6 (138.44.226.6)  169.704 ms  169.722 ms  169.682 ms
10  et-7-3-0.pe1.wmlb.vic.aarnet.net.au (113.197.15.28)  250.954 ms  251.163 ms  251.116 ms
11  * * *
12  4000v-eng-web-people-l.eng.unimelb.edu.au (128.250.59.37)  251.943 ms  251.952 ms  251.962 ms
13  4000v-eng-web-people-l.eng.unimelb.edu.au (128.250.59.37)  252.053 ms  252.018 ms  251.966 ms
14  * * *
15  4000v-eng-web-people-l.eng.unimelb.edu.au (128.250.59.37)  252.215 ms  252.088 ms  252.118 ms
16  4000v-eng-web-people-l.eng.unimelb.edu.au (128.250.59.37)  253.361 ms  253.109 ms  253.461 ms
17  4000v-eng-web-people-l.eng.unimelb.edu.au (128.250.59.37)  253.077 ms  253.832 ms  253.298 ms
18  * * *
….
29  * * *
30  * * *

traceroute: rio.cl.cam.ac.uk to people.eng.unimelb.edu.au
(tracepath on winows is similar)

Three delay measurements from 
rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

* means no response (probe or reply lost, router not replying)

Australian
link
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Direct London-Perth

traceroute: rio.cl.cam.ac.uk to 
www.caida.org

rio:~$ traceroute --resolve-hostnames www.caida.org
traceroute to www.caida.org (192.172.226.122), 64 hops max
1 128.232.64.2 (vlan398.gatwick.net.cl.cam.ac.uk) 3.760ms 2.060ms 1.226ms
2 193.60.89.5 (cl-wgb.d-mw.net.cam.ac.uk) 53.777ms 67.458ms 0.556ms
3 131.111.7.53 (d-mw.c-hi.net.cam.ac.uk) 0.638ms 0.621ms 0.658ms
4 131.111.7.82 (c-hi.b-jc.net.cam.ac.uk) 0.353ms 0.346ms 0.338ms
5 131.111.7.217 (ips-out.b-jc.net.cam.ac.uk) 0.582ms 0.441ms 0.397ms
6 146.97.41.37 (ae0.lowdss-ban1.ja.net) 2.754ms 2.648ms 2.701ms
7 146.97.35.245 (ae26.lowdss-sbr1.ja.net) 2.852ms 2.728ms 2.738ms
8 146.97.33.25 (ae30.erdiss-sbr2.ja.net) 5.412ms 5.177ms 4.474ms
9 146.97.33.21 (ae31.londpg-sbr2.ja.net) 8.408ms 8.213ms 8.293ms
10 62.40.125.57 (janet-bckp.mx1.lon2.uk.geant.net) 9.199ms 9.140ms 9.108ms
11 62.40.98.64 (ae2.mx1.lon.uk.geant.net) 10.119ms 9.818ms 9.756ms
12 62.40.124.45 (internet2-gw.mx1.lon.uk.geant.net) 95.065ms 95.962ms 95.434ms
13 163.253.1.120 (fourhundredge-0-0-0-0.4079.core2.ashb.net.internet2.edu) 152.834ms 153.562ms 154.448ms
14 163.253.1.139 (fourhundredge-0-0-0-1.4079.core2.clev.net.internet2.edu) 154.008ms 153.800ms 154.429ms
15 163.253.2.17 (fourhundredge-0-0-0-2.4079.core2.eqch.net.internet2.edu) 155.463ms 154.863ms 154.334ms
16 163.253.1.66 (fourhundredge-0-0-0-18.4079.core1.eqch.net.internet2.edu) 153.802ms 153.600ms 154.553ms
17 163.253.1.206 (fourhundredge-0-0-0-1.4079.core1.chic.net.internet2.edu) 154.783ms 154.926ms 154.796ms
18 163.253.2.29 (fourhundredge-0-0-0-1.4079.core2.kans.net.internet2.edu) 152.851ms 152.414ms 154.916ms
19 163.253.1.250 (fourhundredge-0-0-0-1.4079.core2.denv.net.internet2.edu) 155.571ms 155.047ms 154.572ms
20 163.253.1.169 (fourhundredge-0-0-0-3.4079.core2.salt.net.internet2.edu) 153.369ms 153.824ms 154.321ms
21 163.253.1.114 (fourhundredge-0-0-0-8.4079.core1.losa.net.internet2.edu) 153.786ms 153.549ms 154.839ms
22 137.164.26.200 (hpr-lax-agg10--i2.cenic.net) 152.552ms 153.465ms 152.493ms
23 137.164.25.89 (hpr-sdg-agg4--lax-agg10-100ge.cenic.net) 154.682ms 154.604ms 154.752ms
24 137.164.26.43 (hpr-sdsc-100ge--sdg-hpr3.cenic.net) 167.094ms 154.553ms 154.627ms
25 192.12.207.46 (medusa-mx960.sdsc.edu) 154.854ms 154.646ms 156.379ms
26 192.172.226.122 (proxy.caida.org) 154.581ms 154.390ms 154.477ms

A little more interesting because each hop resolves to a name (caida is in San Diego)

Internet structure: network of networks

• a packet passes through many networks!

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

local
ISPlocal

ISP
local
ISP

local
ISP

local
ISP Tier 3

ISP

local
ISP

local
ISP

local
ISP
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Internet structure: network of networks

• “Tier-3” ISPs and local ISPs 
– last hop (“access”) network (closest to end systems)

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

local
ISPlocal

ISP
local
ISP

local
ISP

local
ISP Tier 3

ISP

local
ISP

local
ISP

local
ISP

Local and tier- 3 
ISPs are 
customers of
higher tier ISPs
connecting them 
to rest of 
Internet
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Internet structure: network of networks

• “Tier-2” ISPs: smaller (often regional) ISPs
– Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

Tier-2 ISP pays tier-
1 ISP for 
connectivity to rest 
of Internet
 tier-2 ISP is 
customer of
tier-1 provider

Tier-2 ISPs also 
peer privately 
with each other.

101



Internet structure: network of networks

• roughly hierarchical
• at center: “tier-1” ISPs (e.g., Verizon, Sprint, AT&T, Cable and 

Wireless), national/international coverage
– treat each other as equals

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

Tier-1 
providers 
interconnect 
(peer) 
privately
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Tier-1 ISP: e.g., Sprint

…

to/from customers

peering

to/from backbone

…
.

………

POP: point-of-presence

103

Packet Switching

• Data is sent as chunks of formatted bits (Packets)
• Packets consist of a “header” and “payload”
• Switches “forward” packets based on their headers
• Each packet travels independently
• No link resources are reserved in advance. Instead

packet switching depends on statistical multiplexing
– allows efficient use of resources
– but introduces queues and queuing delays

104

Packet switching versus circuit switching

• 1 Mb/s link
• each user: 

– 100 kb/s when “active”
– active 10% of time

• circuit-switching:
– 10 users

• packet switching:
– with 35 users, probability   

> 10 active at same time is 
less than .0004

Packet switching may (does!) allow more users to use network

N users
1 Mbps link

Q: how did we get value 0.0004?
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Packet switching versus circuit switching

• 1 Mb/s link
• each user: 

– 100 kb/s when “active”
– active 10% of time

• circuit-switching:
– 10 users

• packet switching:
– with 35 users, probability   

> 10 active at same time is 
less than .0004

Q: how did we get value 0.0004?
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Let U be number of users active
N the total users
P is 0.1 in our example to get 0.0004



Circuit switching: pros and cons

• Pros 
– guaranteed performance 
– fast transfers (once circuit is established)

• Cons
– wastes bandwidth if traffic is “bursty”
– connection setup adds delay
– recovery from failure is slow

110

Packet switching: pros and cons
• Pros

– efficient use of bandwidth (stat. muxing)
– no overhead due to connection setup
– resilient -- can `route around trouble’

• Cons
– no guaranteed performance 
– header overhead per packet
– queues and queuing delays

111

Summary

• A sense of how the basic `plumbing’ works
– links and switches 
– packet delays= transmission + propagation + 

queuing + (negligible) per-switch processing 
– statistical multiplexing and queues
– circuit vs. packet switching
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Topic 2 – Architecture and Philosophy 

• Abstraction
• Layering
• Layers and Communications
• Entities and Peers
• What is a protocol?
• Protocol Standardization
• The architects process

– How to break system into modules
– Where modules are implemented
– Where is state stored

• Internet Philosophy and Tensions
1

TRIGGER WARNING

• Philosophy,
• Bad Analogies, and
• RANTS verging

on POLEMIC

Will follow….. 
2

Abstraction Concept
A mechanism for breaking down a problem

what not how
• eg Specification versus implementation
• eg Modules in programs
Allows replacement of implementations without affecting system 
behavior

Vertical versus Horizontal
“Vertical” what happens in a box “How does it attach to the 
network?”
“Horizontal” the communications paths running through the 
system

Hint: paths are built (“layered”) on top of other paths
3

Computer System Modularity
Partition system into modules & abstractions:
• Well-defined interfaces give flexibility

– Hides implementation - can be freely changed
– Extend functionality of system by adding new 

modules

• E.g., libraries encapsulating set of functionality

• E.g., programming language + compiler 
abstracts away how the particular CPU works …

4

Computer System Modularity (cnt’d)

• Well-defined interfaces hide information
– Isolate assumptions
– Present high-level abstractions

• But can impair performance!

• Ease of implementation vs worse 
performance

5

Network System Modularity
Like software modularity, but:
• Implementation is distributed across many 

machines (routers and hosts)
• Must decide:

– How to break system into modules
• Layering

– Where modules are implemented
• End-to-End Principle

– Where state is stored
• Fate-sharing

6



Layering Concept
• A restricted form of abstraction: system functions 

are divided into layers, one built upon another
• Often called a stack; but not a data structure!

7

8 KByte per sec stream

Framed Byte Stream

Analog signal

Bitstream

8 K 12 bit samples per sec

7 KHz analog voice

phonemes

words

thoughts

modulation

framing

multiplexing

companding

D/A, A/D

speaking 3

speaking 2

speaking 1

Layers and Communications

• Interaction only between adjacent layers
• layer n uses services provided by layer n-1 
• layer n provides service to layer n+1
• Bottom layer is physical media
• Top layer is application

8

n layer

n - 1 layer

n + 1 layer

Entities and Peers
Entity – a thing (an independent existence)
Entities interact with the layers above and below
Entities communicate with peer entities

– same level but different place (eg different person, different 
box, different host)

Communications between peers is supported by 
entities at the lower layers

9

4

2

1

3

4

2

1

3

Entities and Peers
Entities usually do something useful

– Encryption – Error correction – Reliable Delivery
– Nothing at all is also reasonable

Not all communications is end-to-end
Examples for things in the middle

– IP Router – Mobile Phone Cell Tower
– Person translating French to English

10

4

2

1

3

4

2

1

3

2

1 1

Layering and Embedding
In Computer Networks we often see higher-layer information embedded within lower-layer 
information
• Such embedding can be considered a form of layering
• Higher layer information is generated by stripping off headers and trailers of the current 

layer
• eg an IP entity only looks at the IP headers

BUT embedding is not the only form of layering

Layering is to help understand a communications system
NOT
determine implementation strategy

11

Ethernet payloadEthernet
header

packet
checksum

TCP payloadTCP
header

IP payloadIP
header

HTTP data (payload)HTTP
header

source
application
transport
network

link
physical

HtHn M

segment Ht

datagram

destination
application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl Ms

HtHn M

HtHn M

HtHnHl M

router

switch

Example Embedding
(also called Encapsulation)message M

Ht M

Hn

frame

12



Internet protocol stack versus
OSI Reference Model

13

...GET http://www.google.co.uk

Ethernet payloadEthernet
header

packet
checksum

...110100100101010100110101110011...

...0010101011110010110100001110001010101001...

FRAMING: Ethernet payload
consists of individual octets

CODING: Each byte encoded into a 10 bit
code-group using 8B/10B block coding scheme

MODULATION: Digital electrical signal
converted to analogue optical signal

and transmitted on fibre

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI
Reference

Model

TCP payloadTCP
header

IP payloadIP
header

1 0 1 1 1 10 0 0 0... ...

Application

Transport

Network

Data Link

Physical

Internet
Protocol

stack
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ISO/OSI reference model
• presentation: allow applications to 

interpret meaning of data, e.g., 
encryption, compression, machine-
specific conventions

• session: synchronization, checkpointing, 
recovery of data exchange

• Internet stack “missing” these layers!
– these services, if needed, must be 

implemented in application

application

presentation

session

transport

network

link

physical

Layers on Layers examples
Application
Transport

Network
Data Link (L2)

Physical

Application
Transport
Network
Data Link

(Virtualized) Physical

Application
Transport
Network

Data Link (L2)
Physical

Network

Transport

Network

Application
Transport
Network

Data Link (L2)
Physical

Application
Transport
Network

Data Link (L2)
Physical
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What is a protocol?
human protocols:
• “what’s the time?”
• “I have a question”
• introductions

… specific msgs sent
… specific actions taken 

when msgs received, or 
other events

network protocols:
• machines rather than 

humans
• all communication activity 

in Internet governed by 
protocols

protocols define format, order of msgs sent 
and received among network entities, 

and actions taken on msg transmission, 
receipt 

17

What is a protocol?
a human protocol and a computer network protocol:

Q: Other human protocols? 

Hi

Hi

Got the
time?
2:00

TCP connection
 request

TCP connection
response
GET http://www.cl.cam.ac.uk/index.html

<file>
time

Protocol Standardization
• All hosts must  follow same protocol

– Very small modifications can make a big difference
– Or prevent it from working altogether

• This is why we have standards
– Can have multiple implementations of protocol

• Internet Engineering Task Force (IETF)
– Based on working groups that focus on specific 

issues
– Produces “Request For Comments” (RFCs)
– IETF Web site is http://www.ietf.org
– RFCs archived at http://www.rfc-editor.org

18
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So many Standards Problem
• Many different packet-switching networks 
• Each with its own Protocol
• Only nodes on the same network could communicate

20

INTERnet Solution

Gateways

Internet Design Goals (Clark ‘88)

• Connect existing networks
• Robust in face of failures 
• Support multiple types of delivery services
• Accommodate a variety of networks
• Allow distributed management
• Easy host attachment
• Cost effective
• Allow resource accountability 

21

Real Goals

• Build something that works!
• Connect existing networks
• Robust in face of failures 
• Support multiple types of delivery services
• Accommodate a variety of networks
• Allow distributed management
• Easy host attachment
• Cost effective
• Allow resource accountability 

Internet Motto
We reject kings , presidents, and voting. We believe in 

rough consensus and running code.“ – David Clark

22

A Multitude of Apps Problem

• Re-implement every application for every technology?
• No! But how does the Internet design avoid this?

Skype SSH NFS

RadioCoaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP

23

Solution: Intermediate Layers
• Introduce intermediate layers that provide set of abstractions

for various network functionality and technologies
– A new app/media implemented only once
– Variation on “add another level of indirection”

Skype SSH NFS

Packet
radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate 
layers

24



In the context of the Internet

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

25

Three Observations
• Each layer:

– Depends on layer below
– Supports layer above
– Independent of others

• Multiple versions in layer
– Interfaces differ somewhat
– Components pick which 

lower-level protocol to use

• But only one IP layer
– Unifying protocol

26
26

Layering Crucial to Internet’s Success

• Reuse 

• Hides underlying detail

• Innovation at each level 
can proceed in parallel

• Pursued by very different 
communities

27
27

What are some of the drawbacks of 
protocols and layering?

28

Drawbacks of Layering

• Layer N may duplicate lower layer functionality
– e.g., error recovery to retransmit lost data

• Information hiding may hurt performance
– e.g., packet loss due to corruption vs. congestion

• Headers start to get really big
– e.g., typical TCP+IP+Ethernet is 54 bytes

• Layer violations when the gains too great to resist
– e.g., TCP-over-wireless 

• Layer violations when network doesn’t trust ends
– e.g., firewalls

29

Placing Network Functionality

• Hugely influential paper: “End-to-End Arguments in 
System Design” by Saltzer, Reed, and Clark (‘84)
– articulated as the “End-to-End Principle” (E2E)

• Endless debate over what it means

• Everyone cites it as supporting their position
(regardless of the position!)

30



Basic Observation
• Some application requirements can only be correctly 

implemented end-to-end
– reliability, security, etc.

• Implementing these in the network is hard
– every step along the way must be fail proof

• Hosts
– Can satisfy the requirement without network’s help
– Will/must do so, since they can’t rely on the network

31

Example: Reliable File Transfer

• Solution 1: make each step reliable, and 
string them together to make reliable end-to-
end process

OS

Appl.

OS

Appl.

Host A Host B
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Example: Reliable File Transfer

• Solution 1: make each step reliable, and string them together to make 
reliable end-to-end process

OS

Appl.

OS

Appl.

Host A Host B
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So what is the problem?
each component is 0.9 reliable
 leads to total system failure of >0.4*

Example: Reliable File Transfer

• Solution 1: make each step reliable, and 
string them together to make reliable end-to-
end process

• Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

34

Discussion
• Solution 1 is incomplete 

– What happens if any network element misbehaves? 
– Receiver has to do the check anyway! 

• Solution 2 is complete 
– Full functionality can be entirely implemented at application layer 

with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?

35

Summary of End-to-End Principle 

• Implementing functionality (e.g., reliability) in the network 
– Doesn’t reduce host implementation complexity 
– Does increase network complexity 
– Probably increases delay and overhead on all applications even 

if they don’t need the functionality (e.g. VoIP)

• However, implementing in the network can improve 
performance in some cases 
– e.g., consider a very lossy link

36



“Only-if-Sufficient” Interpretation

• Don’t implement a function at the lower 
levels of the system unless it can be 
completely implemented at this level

• Unless you can relieve the burden from 
hosts, don’t bother

37

“Only-if-Necessary” Interpretation

• Don’t implement anything in the network that 
can be implemented correctly by the hosts

• Make network layer absolutely minimal
– This E2E interpretation trumps performance 

issues
– Increases flexibility, since lower layers stay 
simple

38

“Only-if-Useful” Interpretation

• If hosts can implement functionality 
correctly, implement it in a lower layer only
as a performance enhancement

• But do so only if it does not impose burden
on applications that do not require that 
functionality

39

We have some tools:

• Abstraction
• Layering
• Layers and Communications
• Entities and Peers
• Protocol as motivation
• Examples of the architects process
• Internet Philosophy and Tensions

40

Distributing Layers Across Network

• Layers are simple if only on a single machine
– Just stack of modules interacting with those 

above/below

• But we need to implement layers across 
machines
– Hosts
– Routers (switches)

• What gets implemented where?
41

What Gets Implemented on Host?

• Bits arrive on wire, must make it up to 
application

• Therefore, all layers must exist at the host

source / destination
application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M

42



What Gets Implemented on a Router?

• Bits arrive on wire
– Physical layer necessary

• Packets must be delivered to next-hop 
– Datalink layer necessary

• Routers participate in global delivery 
– Network layer necessary

• Routers don’t support reliable delivery 
– Transport layer (and above) not supported

network
link

physical
HtHnHl M

HtHn M

HtHn M

router
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What Gets Implemented on Switches?
• Switches do what routers do, except they don’t 

participate in global delivery, just local delivery

• They only need to support Physical and 
Datalink
– Don’t need to support Network layer

• Won’t focus on the router/switch distinction
– Almost all boxes support network layer these days
– Routers have switches but switches do not have 

routers
link

physical

switch

HtHnHl M
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The Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

IP
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The middle-age Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IPv4 + v6 
The “narrow waist” facilitates interoperability(???)

SMTP HTTP NTPDNS

TCP UDP

IPv6

Ethernet SONET 802.11

Transport

FiberCopper Radio

46

IPv4
IPv4 & IPv6

TWO

Protocol Standardization (Redux)

• All hosts must  follow same protocol
– Very small modifications can make a big difference
– Or prevent it from working altogether

• This is why we have standards
– Can have multiple implementations of protocol

• Internet Engineering Task Force (IETF)
– Based on working groups that focus on specific 

issues
– Produces “Request For Comments” (RFCs)
– IETF Web site is http://www.ietf.org
– RFCs archived at http://www.rfc-editor.org

47

Alternative to Standardization?

• Have one implementation used by everyone

• Open-source projects
– Which has had more impact, Linux or POSIX?

• Or just sole-sourced implementation
– zoom, Signal, FaceTime, etc.

48
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Topic 3.0: The Physical Layer
Our goals:
• Understand physical channel fundamentals

– Physical channels can carry data in proportion to 
the signal and inversely in proportion to noise

– Modulation represents Digital data in analog 
channels

– Baseband vs. Broadband
– Synchronous vs. Asynchronous 

Physical Channels / The Physical Layer
these example physical channels are also known as Physical Media

Twisted Pair (TP)
• two insulated copper 

wires
– Category 3: traditional 

phone wires, 10 Mbps 
Ethernet

– Category 8: 
25Gbps Ethernet

• Shielded (STP)
• Unshielded (UTP)

Coaxial cable:
• two concentric copper 

conductors
• bidirectional
• baseband:

– single channel on cable
– legacy Ethernet

• broadband:
–  multiple channels on 

cable
–  HFC (Hybrid Fiber Coax)

Fiber optic cable:
• high-speed operation
• point-to-point 

transmission
• (10’s-100’s Gbps)
• low error rate
• immune to 

electromagnetic 
noise

3

More Physical media: Radio

• Bidirectional and multiple 
access

• propagation environment 
effects:
– reflection 
– obstruction by objects
– interference

Radio link types:
 terrestrial  microwave

 e.g. 90 Mbps channels
 LAN (e.g., Wifi)

 11Mbps, 54 Mbps, 600 Mbps
 wide-area (e.g., cellular)

 5G cellular: ~ 40 Mbps - 10Gbps
 satellite

 27-50MHz typical bandwidth
 geosynchronous versus low 

altitude
 For geosync - 270 msec end-end 

delay to orbit

4

Physical Channel Characteristics
- Fundamental Limits -

symbol type: generally,
an analog waveform —
voltage, current, photo
intensity etc.

capacity: bandwidth

delay: speed of light in
medium and distance
travelled

fidelity: signal to noise
ratio

• measure of the range of frequencies of sinusoidal 
signal that channel supports

• E.g., a channel that supports sinusoids from 1 MHz to 
1.1 MHz has a bandwidth of 100 KHz

• “supports” in this context means “comes out the 
other end of the channel”

• some frequencies supported better than others

• analysing what happens to an arbitrary waveform is 
done by examining what happens to its component 
sinusoids → Fourier analysis

• bandwidth is a resource

5

Analog meet Digital

6

Analog meet Digital

7

Square waves have high frequency components in them 

Channels attenuate frequencies irregularly: 
  changing the shape of the signal 

Receiver signal is related to the transmitted signal +  noise

Noise may be systematic or random

Systematic noise from interfering equipment 
   can in principle be eliminated (not always convenient)

Random noise caused by thermal vibration (thermal noise)
 
“White” noise is evenly distributed across frequencies 
   signal to noise ratio S/N 
        more distance more noise 



Noise: Enemy of Communications

Attenuation, External Noise, 
Systematic, non-systematic, 
digitization, interference, reflection, ….

8

Bandwidth vs Signal to Noise 
what’s better: high bandwidth or low 
signal to noise? 

• channels subject to white noise 
have information capacity C
measured in bits per second, of a 
channel 

B is the bandwidth of the 
channel S/N is the ratio of received 
signal power to received noise 
power. 

• channels with no noise have 
information capacity determined 
only by bandwidth

• channels with any signal have 
nonzero information capacity

• channels with signal to noise ratio 
of unity have an information 
capacity in bits per second equal 
to its bandwidth in hertz 

• (This is actually NOT the 
definition of information 
capacity; it is derived from the 
definition) 

9

(Digital) Channels
• Physical layer provides a 

channel

• Fixed rate for now

• Symbols are discrete values 
sent on the channel at fixed 
rate 

• Symbols need not be binary

• Fidelity of the channel usually 
measured as a bit error rate —
the probability that a bit sent 
as a 1 was interpreted as a 0 
by the receiver or vice versa. 

• Baud rate is the rate at which 
symbols can be transmitted 

• Data rate (or bit rate) is the 
equivalent number of binary 
digits which can be sent 

• E.g.,  if symbols represent with 
rate R then the data rate is 2 ×
R. 

10

Modulation
Two definitions:

• Transform an information signal into a signal more 
appropriate for transmission on a physical medium 

• The systematic alteration of a carrier waveform by an 
information signal

In general, we mean the first here
(which encompasses the second). 

11

analog channel

Modulator Demodulator

digital in digital out
Digital channel

12

Communications

13



Analog/Digital Digital/Analog

14

Recall from Digital Electronics

Conversion errors can occur in both directions
e.g.
 Noise leads to incorrect digitization
 Insufficient digitization resolution leads to information loss

15

More Challenges

Where are the bits?

WHEN are the bits?

Bit boundaries can be asynchronous or synchronous

Asynchronous versus Synchronous
• Transmission is sporadic, divided into 

frames 

• Receiver and transmitter have 
oscillators which are close in frequency 
producing tx clocks and rx clock

• Receiver synchronises the phase of the 
rx clock with the tx clock by looking at 
one or more bit transitions 

• RX clock drifts with respect to the tx
clock but stays within a fraction of a bit 
of tx clock throughout the duration of a 
frame 

• Transmission time is limited by accuracy 
of oscillators 

• Transmission is continuous 

• Receiver continually adjusts its 
frequency to track clock from incoming 
signal 

• Requires bit transitions to inform clock

• Phase locked loop: rx clock predicts 
when incoming clock will change and 
corrects slightly when wrong. 
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Asynchronous versus Synchronous
• Transmission is sporadic, divided into 

frames 

• Receiver and transmitter have 
oscillators which are close in frequency 
producing tx clocks and rx clock

• Receiver synchronises the phase of the 
rx clock with the tx clock by looking at 
one or more bit transitions 

• RX clock drifts with respect to the tx
clock but stays within a fraction of a bit 
of tx clock throughout the duration of a 
frame 

• Transmission time is limited by accuracy 
of oscillators 

• Transmission is continuous 

• Receiver continually adjusts its 
frequency to track clock from incoming 
signal 

• Requires bit transitions to inform clock

• Phase locked loop: rx clock predicts 
when incoming clock will change and 
corrects slightly when wrong. 
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Bit transitions are critical

Coding – a channel function
Change the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

18

MyPasswd

AA$$$$ff

MyPasswd

AA$$$$ff

AA$$$$ffff AA$$$$ffff

19



Coding
Change the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

1. Encryption:  MyPasswd  <-> AA$$$$ff
2. Error Detection: AA$$$$ff <-> AA$$$$ffff
3. Compression: AA$$$$ffff <-> A2$4f4
4. Analog: A2$4f4 <->   

20

0 1 1 1 1 10000

0 1 1 1 1 10000

0 1 1 1 1 10000

Non-Return-to-Zero (NRZ)

Non-Return-to-Zero-Mark (NRZM) 1 = transition 0 = no transition

Non-Return-to-Zero Inverted (NRZI) (note transitions on the 1)

Line Coding Examples
where Baud=bit-rate

21

0 1 0 1 1 11000

Non-Return-to-Zero (NRZ) (Baud = bit-rate)

Manchester example (Baud = 2 x bit-rate)

Clock

Line Coding Examples

0 1 0 1 1 11000

0 1 0 1 1 11000

Quad-level code (2 x Baud = bit-rate)

Clock

22

0 1 0 1 1 11000

Line Coding – Block Code example

Name 4b 5b Description
0 0000 11110 hex data 0
1 0001 01001 hex data 1
2 0010 10100 hex data 2
3 0011 10101 hex data 3
4 0100 01010 hex data 4
5 0101 01011 hex data 5
6 0110 01110 hex data 6
7 0111 01111 hex data 7
8   1000 10010 hex data 8
9   1001 10011 hex data 9
A 1010 10110 hex data A
B 1011 10111 hex data B
C 1100 11010 hex data C
D 1101 11011 hex data D
E 1110 11100 hex data E
F 1111 11101 hex data F

Name 4b 5b Description
Q -NONE- 00000 Quiet
I -NONE- 11111 Idle
J -NONE- 11000 SSD #1
K -NONE- 10001 SSD #2
T -NONE- 01101 ESD #1
R -NONE- 00111 ESD #2
H -NONE- 00100 Halt

0 1 1 0 0 11010

Block coding transfers data with a fixed
overhead: 20% less information per Baud in 
the case of 4B/5B

So to send data at 100Mbps; the line rate
(the Baud rate) must be 125Mbps.

1Gbps uses an 8b/10b codec; encoding 
entire bytes at a time but with 25% overhead

Data to send

Line-(Wire) representation

23

Line Coding Scrambling – with secrecy

Scrambling
Sequence

Scrambling
Sequence

Communications
ChannelMessage Message

Message
XOR

Sequence

Message
XOR

Sequence

24

Step 2

Step 1 ….G8wDFrB
EAFDSWbzQ7
BW2fbdTqeT
ImrukTYwQY
ndYdKb4….

Scrambling
Sequence

Scrambling
Sequence

REPLICATE
SECURELY

Step 3 Don’t ever reuse Scrambling sequence, ever.  <<< this is quite important

DISTRIBUTE
SECURELY

Whitfield 
Diffie

Martin 
Hellman

Line Coding Scrambling– no secrecy

Scrambling
Sequence

Scrambling
Sequence

Communications
ChannelMessage Message

Message
XOR

Sequence

Message
XOR

Sequence

δ δ δ δ δ

e.g. (Self-synchronizing) scrambler

25



Line Coding Examples (Hybrid)

δ δ δ δ δδ δ δ δ δ

…100111101101010001000101100111010001010010110101001001110101110100…

Inserted bits marking “start of frame/block/sequence”

…10011110110101000101000101100111010001010010110101001001110101110100…

Scramble / Transmit / Unscramble

…0100010110011101000101001011010100100111010111010010010111011101111000…

Identify (and remove) “start of frame/block/sequence”
This gives you the Byte-delineations for free 
64b/66b combines a scrambler and a framer. The start of frame is a pair of bits 01 or 10: 01 means “this frame is 
data” 10 means “this frame contains data and control” – control could be configuration information, length of 
encoded data or simply “this line is idle” (no data at all) 
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Code Division Multiple Access (CDMA)
(not to be confused with CSMA!)

• used  in several wireless broadcast channels (cellular, satellite, 
etc) standards 

• unique “code” assigned to each user; i.e., code set partitioning

• all users share same frequency, but each user has own 
“chipping” sequence (i.e., code) to encode data

• encoded signal = (original data) XOR (chipping sequence)

• decoding: inner-product of encoded signal and chipping 
sequence

• allows multiple users to “coexist” and transmit simultaneously 
with minimal interference (if codes are “orthogonal”)

30

CDMA Encode/Decode

slot 1 slot 0

d1 = -1

1 1 1 1

1- 1- 1- 1-

Zi,m= di
.cm

d0 = 1

1 1 1 1

1- 1- 1- 1-

1 1 1 1

1- 1- 1- 1-

1 1 11

1-1- 1- 1-

slot 0
channel
output

slot 1
channel
output

channel output Zi,m

sender
adds code code

data
bits

slot 1 slot 0

d1 = -1
d0 = 1

1 1 1 1

1- 1- 1- 1-

1 1 1 1

1- 1- 1- 1-

1 1 1 1

1- 1- 1- 1-

1 1 11

1-1- 1- 1-

slot 0
channel
output

slot 1
channel
outputreceiver

removes code

code

received
input

Di = S Zi,m
.cmm=1

M

M
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CDMA: two-sender interference

Each 
sender 
adds a 
unique
code

Sender one
removes
its unique
code
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Multiple Access Mechanisms

Each dimension is orthogonal (so may be trivially combined)
 Other dimensions are also available…
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Coding Examples summary
• Common Wired coding

– Block codecs: table-lookups
• fixed overhead, inline control signals

– Scramblers: shift registers
• overhead free

Like earlier coding schemes and error 
correction/detection; you can combine these

– e.g, 10Gb/s Ethernet may use a hybrid

CDMA (Code Division Multiple Access)
– coping intelligently with competing sources
– Mobile phones
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Error Detection and Correction
Transmission media are not perfect and cause signal 
impairments:
1. Attenuation

– Loss of energy to overcome medium’s resistance
2. Distortion

– The signal changes its form or shape, caused in composite 
signals

3. Noise
– Thermal noise, induced noise, crosstalk, impulse noise

Interference can change the shape or timing of a signal: 
0  1 or 1  0

How to use coding to deal with errors in 
data communication?

Noise

0000 0001

Basic Idea : 
1. Add additional information (redundancy) to a message. 
2. Detect an error and discard      
     Or, fix an error in the received message. 

0000 0000

Error Detection and Correction
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Coding – a channel function
Change the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

37



MyPasswd

AA$$$$ff

MyPasswd

AA$$$$ff

AA$$$$ffff AA$$$$ffff
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Coding Examples
Changig the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

1. Encryption:  MyPasswd  <-> AA$$$$ff
2. Error Detection: AA$$$$ff <-> AA$$$$ffff
3. Compression: AA$$$$ffff <-> A2$4f4
4. Analog: A2$4f4 <->   

39

Error Detection Code: Parity
Add one bit, such that the number of all 1’s is even.

Noise

0000 0

0001 1

1001 0

0001 0

0001 1

1111 0

X
✓

Problem: This simple parity cannot detect two-bit errors.
40

✓

Error Detection Code
Sender: 
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) ERROR;
else NOERROR

Noise

==
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Error Detection Code: CRC
• CRC means “Cyclic Redundancy Check”.
• “A sequence of redundant bits, called CRC, is appended to

the end of data so that the resulting data becomes exactly
divisible by a second, predetermined binary number.”

• CRC:= remainder (data÷ predetermined divisor)
• More powerful than parity. 
• It can detect various kinds of errors, including 2-bit errors.

• More complex: multiplication, binary division.
• Parameterized by n-bit divisor P. 
• Example: 3-bit divisor 101.
• Choosing good P is crucial.
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CRC with 3-bit Divisor 101 

Multiplication by 23

D2 = D * 23
Binary Division by 101
CheckBit = (D2) rem (101)

1001

1001000

11

Add three 0’s at the end

00

1111000

1111

0

0

CRC Parity
same check bits from Parity,
but different ones from CRC

43
Kurose p478 §5.2.3
Peterson URL §2.4



Error Detection Code
Sender: 
Y = generateCRC(X div P);
send(X);
send(Y);

Receiver:

receive(X1);
receive(Y1);
Y2=generateCRC(X1Y1 div P);
if (Y2 != 0s) ERROR;
else NOERROR

Noise
0s == 

44

Transforming Error Detection to…
Sender: 
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) ERROR;
else NOERROR

Noise

==
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Forward Error Correction (FEC)
Sender: 
Y = generateCheckBit(X);
send(XY);

Noise

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) FIXERROR(X1Y1);
else NOERROR

!=
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Forward Error Correction (FEC)
Sender: 
Y = generateCheckBit(X);
send(XY);

Noise

==

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) FIXERROR(X1Y1);
else NOERROR
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Basic Idea of Forward Error 
Correction

Replace erroneous data 
by its “closest” error-free data.

00 000

01 011

10 101

11 110

01 000
11 101

10 110

Good

Good Good

Good

Bad
Bad Bad

3

4

2

1

48

Error Detection vs Correction 
Error Correction:
• Cons: More check bits. False recovery.
• Pros: No need to re-send.
Error Detection:
• Cons: Need to re-send. 
• Pros: Less check bits. 
Usage:
• Correction: A lot of noise. Expensive to re-send.
• Detection: Less noise. Easy to re-send.
• Can be used together.

49
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Topic 3: The Data Link Layer
Our goals:
• understand principles behind data link layer services:

(these are methods & mechanisms in your networking toolbox)
– error detection, correction
– sharing a broadcast channel: multiple access
– link layer addressing
– reliable data transfer, flow control

• instantiation and implementation of various link 
layer technologies
– Wired Ethernet (aka 802.3)
– Wireless Ethernet (aka 802.11 WiFi)

• Algorithms
– Binary Exponential Back-off
– Spanning Tree (Dijkstra)

• General knowledge
– Random numbers are important and hard
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Link Layer: Introduction
Some reminder-terminology:
• hosts and routers are nodes
• communication channels that 

connect adjacent nodes along 
communication path are links
– wired links
– wireless links
– LANs

• layer-2 packet is a frame,
encapsulates datagram

data-link layer has responsibility of 
transferring datagram from one node 
to adjacent node over a link
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Link Layer (Channel) Services  - 1/2
• framing, physical addressing:

– encapsulate datagram into frame, adding header, trailer
– channel access if shared medium
– “MAC” addresses used in frame headers to identify source, destination  

• This is not an IP address!

• reliable delivery between adjacent nodes
– we revisit this again in the Transport Topic
– seldom used on low bit-error link (fiber, some twisted pair)
– wireless links: high error rates
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Link Layer (Channel) Services – 2/2
• flow control:

– pacing between adjacent sending and receiving nodes

• error control:
– error detection:
– errors caused by signal attenuation, noise. 
– receiver detects presence of errors: 

• signals sender for retransmission or drops frame 
– error correction:
– receiver identifies and corrects bit error(s) without resorting to 

retransmission

• access control: half-duplex and full-duplex
– with half duplex, nodes at both ends of link can transmit, but not at same 

time
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Where is the link layer implemented?

• in each and every host
• link layer implemented in 
“adaptor” (aka network 
interface card NIC)
– Ethernet card, PCMCI card, 

802.11 card
– implements link, physical 

layer
• attaches into host’s system 

buses
• combination of hardware, 

software, firmware

controller

physical
transmission

cpu memory

host 
bus 
(e.g., PCI)

network adapter
card

host schematic

application
transport
network

link

link
physical
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Adaptors Communicating

• sending side:
– encapsulates datagram in frame
– encodes data for the physical 

layer
– adds error checking bits, 

provide reliability, flow control, 
etc.

• receiving side
– decodes data from the 

physical layer
– looks for errors, provide 

reliability, flow control, etc
– extracts datagram, passes to 

upper layer at receiving side

controller controller

sending host receiving host

datagram datagram

datagram

frame
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Multiple Access Links and Protocols
Two types of “links”:
• point-to-point

– point-to-point link between Ethernet switch and host

• broadcast (shared wire or medium)
– old-fashioned wired Ethernet (here be dinosaurs – extinct)
– upstream HFC (Hybrid Fiber-Coax – the Coax may be broadcast)
– Home plug / Powerline networking
– 802.11 wireless LAN

shared wire (e.g., 
Coax cabled Ethernet)

shared RF
 (e.g., 802.11 WiFi)

shared RF
(satellite) 

humans at a
cocktail party 

(shared air, acoustical)
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Multiple Access protocols
• single shared broadcast channel 
• two or more simultaneous transmissions by nodes: 

interference 
– collision if node receives two or more signals at the same time

multiple access protocol
• distributed algorithm that determines how nodes share 

channel, i.e., determine when node can transmit
• communication about channel sharing must use channel itself! 

– no out-of-band channel for coordination
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Ideal Multiple Access Protocol
Broadcast channel of rate R bps
1. when one node wants to transmit, it can send at rate R
2. when M nodes want to transmit, 

each can send at average rate R/M
3. fully decentralized:

– no special node to coordinate transmissions
– no synchronization of clocks, slots

4. simple
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MAC Protocols: a taxonomy
Three broad classes:
• Channel Partitioning

– divide channel into smaller “pieces” (time slots, frequency, code)
– allocate piece to node for exclusive use

• Random Access
– channel not divided, allow collisions
– “recover” from collisions

• “Taking turns”
– nodes take turns, but nodes with more to send can take longer 

turns
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Channel Partitioning MAC protocols: TDMA
(we discussed this earlier)

TDMA: time division multiple access
• access to channel in "rounds" 
• each station gets fixed length slot (length = pkt trans time) 

in each round 
• unused slots go idle 
• example: station LAN, 1,3,4 have pkt, slots 2,5,6 idle 

1 3 4 1 3 4

frame

6 slots
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Channel Partitioning MAC protocols: FDMA
(we discussed this earlier)

FDMA: frequency division multiple access
• channel spectrum divided into frequency bands
• each station assigned fixed frequency band
• unused transmission time in frequency bands go idle 
• example: station LAN, 1,3,4 have pkt, frequency bands 2,5,6 

idle 

fre
qu

en
cy

 b
an

ds

time

FDM cable
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“Taking Turns”MAC protocols
channel partitioning MAC protocols:

– share channel efficiently and fairly at high load
– inefficient at low load: delay in channel access, 1/N 

bandwidth allocated even if only 1 active node! 
random access MAC protocols:

– efficient at low load: single node can fully utilize 
channel

– high load: collision overhead
“taking turns” protocols:

look for best of both worlds!
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“Taking Turns”MAC protocols
Polling:
• Primary node “invites”

subordinates nodes to 
transmit in turn

• typically used with 
simpler subordinate 
devices

• concerns:
– polling overhead 
– latency
– single point of failure 

(primary)

primary

subordinates

poll

data

data
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“Taking Turns”MAC protocols
Token passing:
r control token passed from 

one node to next 
sequentially.

r token message
r concerns:

m token overhead 
m latency
m single point of failure (token)

m concerns fixed in part by a slotted 
ring (many simultaneous tokens)  

 

T

data

(nothing
to send)

T

ATM

1 3 4 1 3 4

slot
frame

1 3 4 11 4

ATM = Asynchronous Transfer Mode – an ugly expression
think of it as ATDM – Asynchronous Time Division Multiplexing

That’s a variant of PACKET SWITCHING to the rest of us – just like Ethernet
       but using fixed length slots/packets/cells

Use the media when you need it, but
 ATM had virtual circuits and these needed setup….
       

In TDM a sender may only use a pre-allocated slot

In ATM a sender transmits labeled cells whenever necessary 

3
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“Taking Turns”MAC protocols
channel partitioning MAC protocols:

– share channel efficiently and fairly at high load
– inefficient at low load: delay in channel access, 1/N 

bandwidth allocated even if only 1 active node! 
random access MAC protocols:

– efficient at low load: single node can fully utilize 
channel

– high load: collision overhead
“taking turns” protocols:

look for best of both worlds! Rec
all…

..

Cable access network: FDM, TDM and
random access!

cable headend

CMTS

ISP cable modem
termination system

cable
modemsplitter

…

…

Internet frames, TV channels, control  transmitted 
downstream at different frequencies

 multiple downstream (broadcast) FDM channels: up to 1.6 Gbps/channel 
 single CMTS transmits into channels

 multiple upstream channels (up to 1 Gbps/channel)
 multiple access: all users contend (random access) for certain upstream 

channel time slots; others assigned TDM



Cable access network:

DOCSIS: data over cable service interface specification
 FDM over upstream, downstream frequency channels
 TDM upstream: some slots assigned, some have contention

• downstream MAP frame: assigns upstream slots
• request for upstream slots (and data) transmitted random access (binary 

backoff) in selected slots
 

Residences with cable modems

Downstream channel i

Upstream channel j

MAP frame for
Interval [t1, t2]

t1 t2

Assigned minislots containing cable modem
upstream data frames

Minislots containing 
minislots request frames

cable headend

CMTS

Random Access MAC Protocols
• When node has packet to send

– Transmit at full channel data rate
– No a priori coordination among nodes

• Two or more transmitting nodes Þ collision
– Data lost

• Random access MAC protocol specifies: 
– How to detect collisions
– How to recover from collisions 

• Examples 
– ALOHA and Slotted ALOHA
– CSMA, CSMA/CD, CSMA/CA (wireless)
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Key Ideas of Random Access
• Carrier sense

– Listen before speaking, and don’t interrupt
– Checking if someone else is already sending data
– … and waiting till the other node is done

• Collision detection
– If someone else starts talking at the same time, stop
– Realizing when two nodes are transmitting at once
– …by detecting that the data on the wire is garbled

• Randomness
– Don’t start talking again right away
– Waiting for a random time before trying again
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CSMA (Carrier Sense Multiple Access)

• CSMA: listen before transmit
– If channel sensed idle: transmit entire frame
– If channel sensed busy, defer transmission 

• Human analogy: don’t interrupt others!

• Does this eliminate all collisions?
– No, because of nonzero propagation delay
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CSMA Collisions
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Propagation delay: two 
nodes may not hear each 
other’s before sending.

Would slots hurt or help?

CSMA reduces but does not 
eliminate collisions

Biggest remaining problem?

Collisions still take full slot!
How do you fix that?

CSMA/CD (Collision Detection)
• CSMA/CD: carrier sensing, deferral as in CSMA

– Collisions detected within short time
– Colliding transmissions aborted, reducing wastage 

• Collision detection easy in wired LANs:
– Compare transmitted, received signals

• Collision detection difficult in wireless LANs:
– Reception shut off while transmitting (well, perhaps not)
– Not perfect broadcast (limited range) so collisions local
– Leads to use of collision avoidance instead (later)
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CSMA/CD Collision Detection

74

B and D can tell that 
collision occurred.

Note: for this to work, 
need restrictions on 
minimum frame size and 
maximum distance.  Why?

Limits on CSMA/CD Network 
Length

• Latency depends on physical length of link
– Time to propagate a packet from one end to the other

• Suppose A sends a packet at time t
– And B sees an idle line at a time just before t+d
– … so B happily starts transmitting a packet

• B detects a collision, and sends jamming signal
– But A can’t see collision until t+2d
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latency d
A B

Performance of CSMA/CD
• Time wasted in collisions

– Proportional to distance d
• Time spend transmitting a packet

– Packet length p divided by bandwidth b
• Rough estimate for efficiency (K some constant)

• Note:
– For large packets, small distances, E ~ 1
– As bandwidth increases, E decreases
– That is why high-speed LANs are all switched aka 

packets are sent via a switch - (any d is bad) 76

Ethernet…
yet another product of XEROX/PARC
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Ethernet: CSMA/CD Protocol

• Carrier sense: wait for link to be idle
• Collision detection: listen while transmitting

– No collision: transmission is complete
– Collision: abort transmission & send jam signal

• Random access: binary exponential back-off
– After collision, wait a random time before trying again
– After mth collision, choose K randomly from {0, …, 2m-1}
– … and wait for K*512 bit times before trying again

• Using min packet size as “slot”
• If transmission occurring when ready to send, wait until end of 

transmission (CSMA)
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Benefits of Ethernet

• Easy to administer and maintain
• Inexpensive
• Increasingly higher speed
• Evolvable!
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Evolution of Ethernet
• Changed everything except the frame format

– From single coaxial cable to hub-based star
– From shared media to switches
– From electrical signaling to optical

• Lesson #1
– The right interface can accommodate many changes
– Implementation is hidden behind interface

• Lesson #2
– Really hard to displace the dominant technology
– Slight performance improvements are not enough
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4G5G

6G

The Wireless Spectrum
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Metrics for evaluation / comparison of wireless 
technologies
• Bitrate or Bandwidth
• Range - PAN, LAN, MAN, WAN  
• Two-way / One-way 
• Multi-Access / Point-to-Point
• Digital / Analog
• Applications and industries
• Frequency – Affects most physical properties:

 Distance (free-space loss)
 Penetration, Reflection, Absorption
 Energy proportionality 
 Policy: Licensed / Deregulated

 Line of Sight (Fresnel zone)
 Size of antenna 
  Determined by wavelength –                )
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Wireless Communication Standards 
• Cellular (800/900/1700/1800/1900Mhz):

– 2G: GSM / CDMA / GPRS /EDGE
– 3G: CDMA2000/UMTS/HSDPA/EVDO 
– 4G: LTE, WiMax

• IEEE 802.11 (aka WiFi): (some examples)
– b:  2.4Ghz band, 11Mbps (~4.5 Mbps operating rate)
– g:  2.4Ghz, 54-108Mbps (~19 Mbps operating rate)
– a:  5.0Ghz band, 54-108Mbps (~25 Mbps operating rate)
– n:  2.4/5Ghz, 150-600Mbps (4x4 mimo)
– ac: 2.4/5Ghz, 433-1300Mbps (improved coding 256-QAM)
– ad: 60Ghz, 7Gbps 
– af: 54/790Mhz, 26-35Mbps (TV whitespace)

• IEEE 802.15 – lower power wireless:
– 802.15.1:  2.4Ghz, 2.1 Mbps (Bluetooth)
– 802.15.4:  2.4Ghz, 250 Kbps (Sensor Networks)
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What Makes Wireless Different?

• Broadcast and multi-access medium…
– err, so….

• BUT, Signals sent by sender don’t always end 
up at receiver intact
– Complicated physics involved, which we won’t 

discuss
– But what can go wrong?

85



Lets focus on 802.11
aka - WiFi … 
What makes it special?

Deregulation > Innovation > Adoption > Lower cost = Ubiquitous technology

JUST LIKE ETHERNET – not lovely but sufficient
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IEEE 802.11 Wireless LAN

Wireless and Mobile Networks: 7

IEEE 802.11 
standard

Year Max data rate Range Frequency

802.11b 1999 11 Mbps 30 m 2.4 Ghz
802.11g 2003 54 Mbps 30m 2.4 Ghz
802.11n  (WiFi 4) 2009 600 70m 2.4, 5 Ghz

802.11ac (WiFi 5) 2013 3.47Gpbs 70m 5 Ghz 

802.11ax (WiFi 6) 2020 (exp.) 14 Gbps 70m 2.4, 5 Ghz 

802.11af 2014 35 – 560 
Mbps

1 Km unused TV bands 
(54-790 MHz)

802.11ah 2017 347Mbps 1 Km 900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc 
network versions

802.11 Architecture

• Designed for limited area
• AP’s (Access Points) set to specific channel
• Broadcast beacon messages with SSID (Service Set Identifier) and MAC Address 

periodically
• Hosts scan all the channels to discover the AP’s

– Host associates with AP

802.11 frames 
exchanges

802.3 (Ethernet) 
frames exchanged
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Wireless Multiple Access Technique?

• Carrier Sense?
– Sender can listen before sending
– What does that tell the sender?

• Collision Detection?
– Where do collisions occur?
– How can you detect them?
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• A and C can both send to B but can’t hear each other
– A is a hidden terminal for C and vice versa

• Carrier Sense will be ineffective

Hidden Terminals

A B C

transmit range
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Exposed Terminals

• Exposed node: B sends a packet to A; C hears this and decides 
not to send a packet to D (despite the fact that this will not 
cause interference)!

• Carrier sense would prevent a successful transmission.

A B C D
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Key Points
• No concept of a global collision

– Different receivers hear different signals
– Different senders reach different receivers

• Collisions are at receiver, not sender
– Only care if receiver can hear the sender clearly
– It does not matter if sender can hear someone else
– As long as that signal does not interfere with receiver

• Goal of protocol:
– Detect if receiver can hear sender
– Tell senders who might interfere with receiver to shut up
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Basic Collision Avoidance
• Since can’t detect collisions, we try to avoid

them
• Carrier sense:

– When medium busy, choose random interval
– Wait that many idle timeslots to pass before sending 

• When a collision is inferred, retransmit with 
binary exponential backoff (like Ethernet) 
– Use ACK from receiver to infer “no collision”
– Use exponential backoff to adapt contention window
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IEEE 802.11 MAC Protocol: CSMA/CA

Wireless and Mobile Networks: 7

802.11 sender

1 if sense channel idle for DIFS  then 
transmit entire frame (no CD)

sender receiver

DIFS

data

SIFS

ACK802.11 receiver
 if frame received OK
   return ACK after SIFS (ACK needed due to hidden 

terminal problem) 

2 if sense channel busy then 
start random backoff time
timer counts down while channel idle
transmit when timer expires
if no ACK, increase random backoff interval, repeat 2

Avoiding collisions

Wireless and Mobile Networks: 7

idea: sender “reserves” channel use for data frames using small reservation 
packets

 sender first transmits small request-to-send (RTS) packet to BS using CSMA
• RTSs may still collide with each other (but they’re short)

 BS broadcasts clear-to-send CTS in response to RTS
 CTS heard by all nodes

• sender transmits data frame
• other stations defer transmissions 

CSMA/CA – and in this case RTS/CTS

• Before every data transmission 
– Sender sends a Request to Send (RTS) frame containing the length of the 

transmission
– Receiver respond with a Clear to Send (CTS) frame
– Sender sends data
– Receiver sends an ACK; now another sender can send data

• When sender doesn’t get a CTS back, it assumes collision 

sender receiver
other node in 
sender’s range

RTS

ACK

data
CTS
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CSMA/CA, con’t

• If other nodes hear RTS, but not CTS: send
– Presumably, destination for first sender is out of node’s 

range …
– … Can cause problems when a CTS is lost

• When you hear a CTS, you keep quiet until scheduled 
transmission is over (hear ACK)

sender receiver
other node in 
sender’s range

RTS

ACK

data
CTS
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Overcome hidden terminal problems with 
contention-free protocol
1. B sends to C Request To Send (RTS)
2. A hears RTS and defers (to allow C to answer)
3. C replies to B with Clear To Send (CTS)
4. D hears CTS and defers to allow the data
5. B sends to C

RTS / CTS Protocols (CSMA/CA)

B C D
RTS

CTS
A

B sends to C
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Preventing Collisions Altogether
• Frequency Spectrum partitioned into several channels

– Nodes within interference range can use separate channels

– Now A and C can send without any interference!
• Most cards have only 1 transceiver

– Not Full Duplex:  Cannot send and receive at the same time

– Aggregate Network throughput doubles

A
B

C
D
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100 101
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Wifi has been evolving!

Using dual band (2.4GHz + 5GHz), multiple channels, MIMO, Meshing WiFi

Outside this introduction but the state of the art is very fast and very flexible

CSMA/CA and RTS/CTS
sender receiver

RTS

ACK

data
CTS
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sender receiver

ACK

data

RTS/CTS
• helps with hidden terminal
• good for high-traffic Access Points
• often turned on/off dynamically

Without RTS/CTS
• lower latency -> faster!
• reduces wasted b/w
  if the Pr(collision) is low
• good for when net is small and 

not weird
eg no hidden/exposed terminals



CSMA/CD vs CSMA/CA
(without RTS/CTS) 

CD Collision Detect
wired – listen and talk

1. Listen for others
2. Busy? goto 1.
3. Send message (and listen)
4. Collision?

a. JAM
b. increase your BEB
c. sleep
d. goto 1.

CA Collision Avoidance
wireless – talk OR listen

1. Listen for others
2. Busy? goto 1.
3. Send message
4. Wait for ACK (MAC ACK)
5. Got No ACK from MAC?

a. increase your BEB
b. sleep
c. goto 1. 
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802.11: advanced capabilities

Wireless and Mobile Networks: 7

power management
 node-to-AP: “I am going to sleep until next beacon frame”
• AP knows not to transmit frames to this node
• node wakes up before next beacon frame

 beacon frame: contains list of mobiles with AP-to-mobile 
frames waiting to be sent
• node will stay awake if AP-to-mobile frames to be sent; 

otherwise sleep again until next beacon frame

Personal area networks: Bluetooth

Wireless and Mobile Networks: 7

 TDM, 625 µsec sec. slot
 FDM: sender uses 79 frequency 

channels in known, pseudo-random 
order slot-to-slot (spread spectrum)
• other devices/equipment not in piconet only 

interfere in some slots

 parked mode: clients can “go to sleep” 
(park) and later wakeup (to preserve 
battery)

 bootstrapping: nodes self-assemble 
(plug and play) into piconet

radius of
coverage

C

CC

P

P

P

P

M

C

master device

client device

parked device (inactive)P

M
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Summary of MAC protocols
• channel partitioning, by time, frequency or code

– Time Division (TDMA), Frequency Division (FDMA), Code Division (CDMA)

• random access (dynamic), 
– ALOHA, S-ALOHA, CSMA, CSMA/CD
– carrier sensing: easy in some technologies (wire), hard in others 

(wireless)
– CSMA/CD used in (old-style, coax) Ethernet, and PowerLine
– CSMA/CA used in 802.11

• taking turns
– polling from central site, token passing
– Bluetooth, FDDI, IBM Token Ring 
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MAC Addresses 

• MAC (or LAN or physical or Ethernet) address:
– function: get frame from one interface to another 

physically-connected interface (same network)
– 48 bit MAC address (for most LANs)

• burned in NIC ROM, nowadays usually software 
settable and set at boot time
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LAN Address (more)
• MAC address allocation administered by IEEE
• manufacturer buys portion of MAC address space (to assure 

uniqueness)
• analogy:

(a) MAC address: like a National Insurance Number
(b) IP address: like a postal address

• MAC flat address  ➜ portability 
– can move LAN card from one LAN to another

• IP hierarchical address NOT portable
– address depends on IP subnet to which node is attached
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Hubs
… physical-layer (“dumb”) repeaters:

– bits coming in one link go out all other links at same rate
– all nodes connected to hub can collide with one another
– no frame buffering
– no CSMA/CD at hub: host NICs detect collisions

Co-ax or twisted pair

hub

Collision Domain
in CSMA/CD speak

CSMA in our home
Home Plug Powerline Networking….
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Home Plug and similar Powerline 
Networking….

112

Collision Domain
in CSMA speak

To secure network traffic on a specific HomePlug network, each set of 
adapters use an encryption key  common to a specific HomePlug network
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Switch (example: Ethernet Switch)
• link-layer device: smarter than hubs, take active role

– store, forward Ethernet frames
– examine incoming frame’s MAC address, selectively

forward  frame to one-or-more outgoing links when 
frame is to be forwarded on segment, uses CSMA/CD to 
access segment

• transparent
– hosts are unaware of presence of switches

• plug-and-play, self-learning
– switches do not need to be configured

If you want to connect different physical media
(optical – copper – coax – wireless - ….) 
           you NEED a switch.
Why? (Because each link, each media access protocol is specialised)
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Switch:  allows multiple simultaneous 
transmissions

• hosts have dedicated, direct 
connection to switch

• switches buffer packets
• Ethernet protocol used on each

incoming link, but no collisions; 
full duplex
– each link is its own collision 

domain
• switching: A-to-A’ and B-to-B’

simultaneously, without 
collisions 
– not possible with dumb hub

A

A’

B

B’

C

C’

switch with six interfaces
(1,2,3,4,5,6)  

1 2 3
45

6
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Switch Table

• Q: how does switch know that A’
reachable via interface 4, B’
reachable via interface 5?

• A: each switch has a switch table, 
each entry:
– (MAC address of host, interface to 

reach host, time stamp)

• looks like a routing table!
• Q: how are entries created, 

maintained in switch table? 
– something like a routing protocol?

A

A’

B

B’

C

C’

switch with six interfaces
(1,2,3,4,5,6)  

1 2 3
45

6
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Switch: self-learning
• switch learns which hosts can 

be reached through which 
interfaces
– when frame received, switch 
“learns” location of sender: 
incoming LAN segment

– records sender/location pair in 
switch table

A

A’

B

B’

C

C’

1 2 3
45

6

A A’

Source: A
Dest: A’

MAC addr       interface        TTL
Switch table 

(initially empty)
A 1 60
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Switch: frame filtering/forwarding
When  frame received:

1. record link associated with sending host
2. index switch table using MAC dest address
3. if entry found for destination

then {
if dest on segment from which frame arrived

then drop the frame
else forward the frame on interface indicated

}   
else flood forward on all but the interface 

on which the frame arrived
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Self-learning, 
forwarding: 

example
A

A’

B

B’

C

C’

1 2 3
45

6

A A’

Source: A
Dest: A’

MAC addr       interface      TTL
Switch table 

(initially empty)
A 1 60

A A’A A’A A’A A’A A’

• frame destination 
unknown: flood

A’ A

r destination A location 
known:

A’ 4 60

selective send
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Interconnecting switches
• switches can be connected together

A

B

r Q: sending from A to G - how does S1 know to forward 
frame destined to F via S4 and S3?

r A: self learning! (works exactly the same as in single-switch 
case – flood/forward/drop)

S1

C D

E

F
S2

S4

S3

H
I

G

Flooding Can Lead to Loops
• Flooding can lead to forwarding loops

– E.g., if the network contains a cycle of switches
– “Broadcast storm”

120

Solution: Spanning Trees
• Ensure the forwarding topology has no loops

– Avoid using some of the links when flooding
– … to prevent loop from forming

• Spanning tree  
– Sub-graph that covers all vertices but contains no 

cycles
– Links not in the spanning tree do not forward frames

Graph Has Cycles!

Graph Has 
No Cycles!

121



What Do We Know?
• “Spanning tree algorithm is an algorithm to create a

tree out of a graph that includes all nodes with a
minimum number of edges connecting to vertices.”

• Shortest paths to (or from) a node form a tree

• So, algorithm has two aspects :
– Pick a root
– Compute shortest paths to it

• Only keep the links on shortest-path
122

Constructing a Spanning Tree
• Switches need to elect a root

– The switch w/ smallest identifier (MAC addr)
• Each switch determines if each interface 

is on the shortest path from the root
– Excludes it from the tree if not

• Messages (Y, d, X)
– From node X
– Proposing Y as the root
– And the distance is d

root

One hop

Three hops123

Steps in Spanning Tree Algorithm
• Initially, each switch proposes itself as the root

– Switch sends a message out every interface
– … proposing itself as the root with distance 0
– Example: switch X announces (X, 0, X)

• Switches update their view of the root
– Upon receiving message (Y, d, Z) from Z, check Y’s id
– If new id smaller, start viewing that switch as root

• Switches compute their distance from the root
– Add 1 to the distance received from a neighbor
– Identify interfaces not on shortest path to the root
– … and exclude them from the spanning tree

• If root or shortest distance to it changed, “flood” 
updated message (Y, d+1, X)
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Example From Switch #4’s Viewpoint
• Switch #4 thinks it is the root

– Sends (4, 0, 4) message to 2 and 7

• Then, switch #4 hears from #2
– Receives (2, 0, 2) message from 2
– … and thinks that #2 is the root
– And realizes it is just one hop away

• Then, switch #4 hears from #7
– Receives (2, 1, 7) from 7
– And realizes this is a longer path
– So, prefers its own one-hop path
– And removes 4-7 link from the tree

1

5

#root
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7

2
4

3

6

Example From Switch #4’s Viewpoint
• Switch #2 hears about switch #1

– Switch 2 hears (1, 1, 3) from 3
– Switch 2 starts treating 1 as root
– And sends (1, 2, 2) to neighbors

• Switch #4 hears from switch #2
– Switch 4 starts treating 1 as root
– And sends (1, 3, 4) to neighbors

• Switch #4 hears from switch #7
– Switch 4 receives (1, 3, 7) from 7
– And realizes this is a longer path
– So, prefers its own three-hop path
– And removes 4-7 Iink from the tree

1

2

3

4

5
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#root

6
7

Robust Spanning Tree Algorithm
• Algorithm must react to failures

– Failure of the root node
• Need to elect a new root, with the next lowest identifier

– Failure of other switches and links
• Need to recompute the spanning tree

• Root switch continues sending messages
– Periodically reannouncing itself as the root (1, 0, 1)
– Other switches continue forwarding messages

• Detecting failures through timeout (soft state)
– If no word from root, times out and claims to be the root
– Delay in reestablishing spanning tree is major problem
– Work on rapid spanning tree algorithms…

Given a switch-tree of a given size, link length, speed of 
computation, …

How long does a failure take to rectify?
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Weirder “Data Link Layer” Networks
VLAN VPN

Datacenter
“so you think your LAN has a lot of computers….”

128

Application
Transport

Data Link (L2)
Physical

Network
Data Link (L2)

Application
Transport
Network

Data Link (L2)
Physical

Transport

Network

Datacenter networks
10’s to 100’s of thousands of hosts, often closely coupled, in 
close proximity:
 e-business (e.g. Amazon)
 content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 search engines, data mining (e.g., Google)

challenges:
 multiple applications, each serving 

massive numbers of clients 
 reliability
 managing/balancing load, avoiding 

processing, networking, data 
bottlenecks  Inside a 40-ft Microsoft container, Chicago data center

Datacenter networks: network 
elements

Server racks
 20- 40 server blades: hosts 

Top of Rack (TOR) switch
 one per rack
 40-100Gbps Ethernet to 

blades      

Tier-2 switches
 connecting to  ~16 TORs below

Tier-1 switches
 connecting to  ~16 T-2s below

Border routers
 connections outside datacenter

…

…

…

…

…

…

…

…

Datacenter networks: network 
elements

Facebook F16 data center network topology:

https://engineering.fb.com/data-center-engineering/f16-minipack/    (posted 3/2019)

Datacenter networks: multipath

9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

two disjoint paths highlighted between racks 1 and 11

 rich interconnection among switches, racks:
• increased throughput between racks (multiple routing paths possible)
• increased reliability via redundancy

…

…

…

…

…

…

…

…

Datacenter networks: application-
layer routing

Load 
balancer

Internet

load balancer: 
application-layer 
routing
 receives external 

client requests
 directs workload 

within data center
 returns results to 

external client 
(hiding data center 
internals from client)



Summary
• principles behind data link layer services:

– error detection, correction
– sharing a broadcast channel: multiple access
– link layer addressing

• instantiation and implementation of various link layer 
technologies
– Ethernet
– switched LANS
– WiFi

• algorithms
– Binary Exponential Backoff
– Spanning Tree
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Topic 4: Network Layer
Our goals:
• understand principles behind network layer 

services:
– network layer service models
– forwarding versus routing (versus switching)
– how a router works
– routing (path selection)
– IPv6

For the most part, the Internet is our example – again.

Name: a something

Address: Where is a something

Routing: How do I get to the something

Forwarding: What path do I take next
to get to the something

2

Recall: Network layer is responsible 
for GLOBAL delivery

Addressing (at a conceptual level)
• Assume all hosts have unique IDs

• No particular structure to those IDs

• Later in topic I will talk about real IP addressing

• Do I route on location or identifier? 

• If a host moves, should its address change?
– If not, how can you build scalable Internet?
– If so, then what good is an address for identification?

3 3

Packets (at a conceptual level)

• Assume packet headers contain:
– Source ID, Destination ID, and perhaps other 

information

4

Destination
Identifier

Source
Identifier

Payload

Why include
this?

Switches/Routers

• Multiple ports (attached to other switches or hosts)

• Ports are typically duplex (incoming and outgoing)

5

incoming links outgoing linksSwitch

A Variety of (Internet Protocol-based) Networks

• ISPs: carriers
– Backbone
– Edge
– Border (to other ISPs)

• Enterprises: companies, universities
– Core
– Edge
– Border (to outside)

• Datacenters: massive collections of machines
– Top-of-Rack
– Aggregation and Core
– Border (to outside)

6



A Variety of (Internet Protocol-based) Routers

• ISPs: carriers
– Backbone
– Edge
– Border (to other ISPs)

• Enterprises: companies, universities
– Core
– Edge
– Border (to outside)

• Datacenters: massive collections of machines
– Top-of-Rack
– Aggregation and Core
– Border (to outside)

7

Switches forward packets

EDINBURGH

OXFORD

GLASGOW

UCL

Destination Next Hop

GLASGOW 4

OXFORD 5

EDIN 2

UCL 3

Forwarding Table
111010010 EDIN

switch#2

switch#5

switch#3

switch#4

8

Recall….

Forwarding Decisions
• When packet arrives..

– Must decide which outgoing port to use
– In single transmission time 
– Forwarding decisions must be simple

• Routing state dictates where to forward packets
– Assume decisions are deterministic

• Global routing state is the collection of routing state in 
each of the routers
– Will focus on where this routing state comes from
– But first, a few preliminaries….

9

Forwarding vs Routing

• Forwarding: “data plane”
– Directing a data packet to an outgoing link
– Individual router using routing state

• Routing: “control plane”
– Computing paths the packets will follow
– Routers talking amongst themselves
– Jointly creating the routing state

• Two very different timescales….

10

Router definitions

1

2

3

45
…

N-1

N

• N = number of external router “ports”
• R = speed (“line rate”) of a port
• Router capacity = N x R

R bits/sec

Networks and routers

AT&T INTEL

MIT

JANET

core

core

edge (ISP)

edge (enterprise)

home,
 small business

BT



Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
R3E
R3D
Next HopDestination

D

Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
R4E
R4D
Next HopDestination

D

Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
Port EE
Port DD
Next HopDestination

D

What does a router do?
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
R3E
R3D
Next HopDestination

D

16 3241

Data
Options (if any)

Destination Address
Source Address

Header ChecksumProtocolTTL
Fragment OffsetFlagsFragment ID

Total Packet LengthT.ServiceHLenVer

20
 b

yt
es

 

What does a router do?

A

B

C

R1

R2

R3

R4 D

E

FR5

1. Every router performs a per-packet lookup for every packet
2. Each router performs a lookup in it’s local lookup table
3. Each router performs lookups (ENTIRELY) independently of every other router

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control 
Processor

Linecards (output)

Processes packets
 on their way in

Processes packets
 before they leave

Transfers packets 
from input to 
output ports

Input and Output for
 the same port are on one 

physical linecard 



What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control 
Processor

Linecards (output)

(1) Implement IGP
 and BGP protocols;

compute routing tables
(2) Push forwarding 

tables to the line cards

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
Fabric

Route/Control 
Processor

Linecards (output)

Constitutes the 
data plane

Constitutes the 
control plane

A decision for 
each packet.

Makes decisions 
over long time 
horizons : network 
change

Router architecture overview
high-level view of generic router architecture:

high-speed 
switching

fabric

routing 
processor

router input ports router output ports

forwarding data 
plane  (hardware) 

operates in 
nanosecond 

timeframe

routing, management
control plane (software)
operates in millisecond 

time frameProcesses packets
 on their way in Processes packets

 before they leave

Transfers packets 
from input to 
output ports

Input and Output for
 the same port are on one 

physical linecard Input port functions

switch
fabric

line
termination

physical layer:
bit-level reception

link 
layer 

protocol
(receive)

link layer:
e.g., Ethernet

(Topic3)

lookup,
forwarding

queueing

decentralized switching: 
 using header field values, lookup output port using 

forwarding table in input port memory (“match plus action”)
 goal: complete input port processing at ‘line speed’
 input port queuing: if datagrams arrive faster than 

forwarding rate into switch fabric

Input port functions

line
termination

lookup,
forwarding

queueing

decentralized switching: 
 using header field values, lookup output port using 

forwarding table in input port memory (“match plus action”)
 destination-based forwarding: forward based only on 

destination IP address (traditional)
 generalized forwarding: forward based on any set of header 

field values

physical layer:
bit-level reception

switch
fabric

link 
layer 

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)

 transfer packet from input link to appropriate output link

Switching fabrics

high-speed 
switching

fabric
N input ports N output ports

. . . 

. . . 

 switching rate: rate at which packets can be transfer from 
inputs to outputs
• often measured as multiple of input/output line rate
• N inputs: switching rate N times line rate desirable

R

R

R

R

(rate: NR, 
ideally)



Switching fabrics

busmemory

memory

interconnection
network

 three major types of switching fabrics:

 transfer packet from input link to appropriate output link
 switching rate: rate at which packets can be transfer from 

inputs to outputs
• often measured as multiple of input/output line rate
• N inputs: switching rate N times line rate desirable

first generation routers:
 traditional computers with switching under direct control of CPU
 packet copied to system’s memory
 speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via memory

input
port

(e.g.,
Ethernet)

memory
output
port

(e.g.,
Ethernet)

system bus

datagram from input port memory to output port memory 
via a shared bus

bus contention: switching speed limited by bus bandwidth
32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via a bus

 Crossbar, Clos networks, other 
interconnection nets initially 
developed to connect processors in 
multiprocessor

Switching via interconnection network

8x8 multistage switch 
built from smaller-sized switches

3x3 crossbar multistage switch: nxn switch from 
multiple stages of smaller switches

 exploiting parallelism: 
• fragment datagram into fixed length cells on 

entry
• switch cells through the fabric, reassemble 

datagram at exit

3x3 crossbar

 scaling, using multiple switching “planes” in parallel: 
 speedup, scaleup via parallelism

Switching via interconnection network

fabric plane 0

. .
 .

. .
 .

fabric plane 1

. .
 .

. .
 .

fabric plane 2

. .
 .

. .
 .

fabric plane 3

. .
 .

. .
 .

fabric plane 4

. .
 .

. .
 .

fabric plane 5

. .
 .

. .
 .

fabric plane 6

. .
 .

. .
 .

fabric plane 7

. .
 .

. .
 .

 Cisco CRS router:
 basic unit: 8 

switching planes
 each plane: 3-stage 

interconnection 
network

 up to 100’s Tbps 
switching capacity

 If switch fabric slower than input ports combined -> queueing may 
occur at input queues 
• queueing delay and loss due to input buffer overflow!

Input port queuing

output port contention: only one red 
datagram can be transferred. lower red 

packet is blocked

switch
fabric

one packet time later: green 
packet experiences HOL 

blocking

switch
fabric

Head-of-the-Line (HOL) blocking: queued datagram at front of queue 
prevents others in queue from moving forward



Output port queuing

 Buffering required when datagrams 
arrive from fabric faster than link 
transmission rate. Drop policy: which 
datagrams to drop if no free buffers?

 Scheduling discipline chooses 
among queued datagrams for 
transmission

Datagrams can be lost 
due to congestion, lack of 
buffers

Priority scheduling – who 
gets best performance, 
network neutrality

This is a really important slide

line
termination

link 
layer 

protocol
(send)

switch
fabric

(rate: NR)

datagram
buffer

queueing R

Output port queuing

at t, packets more
from input to output

one packet time later

switch
fabric

switch
fabric

 buffering when arrival rate via switch exceeds output line speed
 queueing (delay) and loss due to output port buffer overflow!

 RFC 3439 rule of thumb: average buffering equal to “typical” RTT 
(say 250 msec) times link capacity C
• e.g., C = 10 Gbps link: 2.5 Gbit buffer

How much buffering? (related material in Topic 5)

 but too much buffering can increase delays (particularly in home 
routers)
• long RTTs: poor performance for realtime apps, sluggish TCP response 
• recall delay-based congestion control: “keep bottleneck link just full 

enough (busy) but no fuller”

RTT  C.
N

more recent recommendation: with N flows, buffering equal to 

Buffer Management

buffer management: 
 drop: which packet to add, 

drop when buffers are full
• tail drop: drop arriving 

packet
• priority: drop/remove on 

priority basis

line
termination

link 
layer 

protocol
(send)

switch
fabric

datagram
buffer

queueing 
scheduling

 marking: which packets to 
mark to signal congestion 
(ECN, RED)

R

queue
(waiting area)

packet
arrivals

packet
departures

link
 (server)

Abstraction: queue

R

packet scheduling: deciding 
which packet to send next on 
link
• first come, first served
• priority
• round robin
• weighted fair queueing

Packet Scheduling: FCFS

FCFS: packets transmitted in 
order of arrival to output 
port
 also known as: First-in-first-

out (FIFO) 
 real world examples?

queue
(waiting area)

packet
arrivals

packet
departures

link
 (server)

Abstraction: queue

R

Priority scheduling: 
 arriving traffic classified, 

queued by class
• any header fields can be 

used for classification

Scheduling policies: priority

high priority queue

low priority queue

arrivals

classify departureslink
 

1 3 2 4 5

arrivals

departures

packet 
in 

service

 send packet from highest 
priority queue that has 
buffered packets
• FCFS within priority class

1 3 4
2

5

1 3 2 4 5



Round Robin (RR) scheduling:
 arriving traffic classified, 

queued by class
• any header fields can be used 

for classification

Scheduling policies: round robin

classify 
arrivals

departureslink

Rserver cyclically, repeatedly  
scans class queues, 
sending one complete 
packet from each class (if 
available) in turn

Weighted Fair Queuing (WFQ): 
 generalized Round Robin

Scheduling policies: weighted fair queueing

classify 
arrivals

departureslink

R

w1

w2

w3

wi

Sjwj
 minimum bandwidth 

guarantee (per-traffic-class)

 each class, i, has weight, wi, 
and gets weighted amount 
of service in each cycle:

Context and Terminology
“End hosts”

“Clients”, “Users”
“End points”

“Interior Routers”

“Border Routers”

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“Route” or “Path”
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Context and Terminology

111010010

M
I
T

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

MIT
Internet routing protocols are responsible for constructing 

and updating the forwarding tables at routers

Routing Protocols

• Routing protocols implement the core function of a network
– Establish paths between nodes
– Part of the network’s “control plane” 

• Network modeled as a graph
– Routers are graph vertices 
– Links are edges
– Edges have an associated “cost”

• e.g., distance, loss  

• Goal: compute a “good” path from source to destination
– “good” usually means the shortest (least cost) path

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
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Internet Routing

• Internet Routing works at two levels

• Each AS runs an intra-domain routing protocol that 
establishes routes within its domain 
– (AS -- region of network under a single administrative entity)
– Link State, e.g., Open Shortest Path First (OSPF)
– Distance Vector, e.g., Routing Information Protocol (RIP)

• ASes participate in an inter-domain routing protocol that 
establishes routes between domains
– Path Vector, e.g., Border Gateway Protocol (BGP)
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Addressing (to date)
- a reminder -

Recall each host has a unique ID (address)

• No particular structure to those IDs
(e.g. Ethernet)

• IP addressing – in contrast – has implicit 
structure

(Why???)

43

Outline

• Popular Routing Algorithms:
– Link State Routing
– Distance Vector Algorithm 

• Routing: goals and metrics

44

Link-State Routing

45

Examples:

Open Shortest Path First (OSPF) or 
Intermediate System to Intermediate System

(written as IS-IS/ISIS and pronounced eye-esss-eye-esss)

The two common Intradomain routing or
interior gateway protocols (IGP)

Link State Routing
• Each node maintains its local “link state” (LS)

– i.e., a list of its directly attached links and their costs

(N1,N2)
(N1,N4)
(N1,N5)

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6
46

Link State Routing
• Each node maintains its local “link state” (LS)
• Each node floods its local link state 

– on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)
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Link State Routing
• Each node maintains its local “link state” (LS)
• Each node floods its local link state 
• Hence, each node learns the entire network topology

– Can use Dijkstra’s to compute the shortest paths between nodes

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C
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Dijkstra’s Shortest Path Algorithm
• INPUT:

– Network topology (graph), with link costs

• OUTPUT:
– Least cost paths from one node to all other nodes

• Iterative: after k iterations, a node knows the 
least cost path to its k closest neighbors

• This is covered in Algorithms

49

• Running Dijkstra at node A gives the shortest 
path from A to all destinations

• We then construct the forwarding table

The Forwarding Table

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5 Destination Link
B (A,B)

C (A,D)

D (A,D)

E (A,D)

F (A,D)
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Issue #1: Scalability

• How many messages needed to flood link state messages? 
– O(N x E), where N is #nodes; E is #edges in graph

• Processing complexity for Dijkstra’s algorithm?
– O(N2), because we check all nodes w not in S at each 

iteration and we have O(N) iterations
– more efficient implementations: O(N log(N))

• How many entries in the LS topology database? O(E)

• How many entries in the forwarding table? O(N)
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• Inconsistent link-state database
– Some routers know about failure before 

others
– The shortest paths are no longer consistent
– Can cause transient forwarding loops

Issue#2: Transient Disruptions

A

ED

CB

F

A and D think that this
is the path to C

E thinks that this
is the path to C

A

ED

CB

F

Loop!
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Distance Vector Routing
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Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles
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Experiment
• Your job: find the (route to) the youngest person in the room

• Ground Rules
– You may not leave your seat, nor shout loudly

across the class 
– You may talk with your immediate neighbors

(N-S-E-W only) 
(hint: “exchange updates” with them)

• At the end of 5 minutes, I will pick a victim and ask: 
– who is the youngest person in the room? (date&name)
– which one of your neighbors first told you this info.? 

55
EQUIPMENT REQUIRED: PIECE OF PAPER and a PEN (or your emotional equivalent)

Go!
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Distance-Vector Routing
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Example:

Routing Information Protocol (RIP)

Example of Distributed Computation

I am one hop away

I am one hop away

I am one hop away

I am two hops away

I am two hops away

I am two hops away

I am two hops away
I am three hops away

I am three hops away

Destination
I am three hops away
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Distance Vector Routing

Each router sends its knowledge about the “whole” network
to its neighbors. Information sharing at regular intervals.

• Each router knows the links to its neighbors
– Does not flood this information to the whole network

• Each router has provisional “shortest path” to 
every other router
– E.g.:  Router A: “I can get to router B with cost 11”

• Routers exchange this distance vector information with 
their neighboring routers
– Vector because one entry per destination

• Routers look over the set of options offered by their 
neighbors and select the best one

• Iterative process converges to set of shortest paths
59

A few other inconvenient truths

• What if we use a non-additive metric?
– E.g., maximal capacity

• What if routers don’t use the same metric?
– I want low delay, you want low loss rate?

• What happens if nodes lie?

60



Can You Use Any Metric?

• I said that we can pick any metric.  Really?
• What about maximizing capacity?

61

What Happens Here?
All nodes want to maximize capacityA high capacity link gets reduced to low capacityProblem:“cost” does not change around loop

Additive measures avoid this problem! 62

No agreement on metrics?
• If the nodes choose their paths according to 

different criteria, then bad things might happen
• Example

– Node A is minimizing latency
– Node B is minimizing loss rate
– Node C is minimizing price

• Any of those goals are fine, if globally adopted
– Only a problem when nodes use different criteria

• Consider a routing algorithm where paths are 
described by delay, cost, loss

63

What Happens Here?

Low price link

Low loss link

Low delay linkLow loss link

Low delay link

Low price link

Cares about price, 
then loss

Cares about delay,
then price

Cares about loss,
then delay
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Must agree on loop-avoiding metric

• When all nodes minimize same metric

• And that metric increases around loops

• Then process is guaranteed to converge
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What happens when routers lie?

• What if a router claims a 1-hop path to 
everywhere?

• All traffic from nearby routers gets sent there

• How can you tell if they are lying?

• Can this happen in real life?
– It has, several times….
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Link State vs. Distance Vector

• Core idea
– LS: tell all nodes about your immediate neighbors
– DV: tell your immediate neighbors about (your least 

cost distance to) all nodes
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Link State vs. Distance Vector

• LS: each node learns the complete network map; each node 
computes shortest paths independently and in parallel

• DV: no node has the complete picture; nodes cooperate to 
compute shortest paths in a distributed manner

LS has higher messaging overhead
LS has higher processing complexity
LS is less vulnerable to looping
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Link State vs. Distance Vector

Message complexity
• LS: O(NxE) messages; 

– N is #nodes; E is #edges

• DV: O(#Iterations x E)
– where #Iterations is ideally 

O(network diameter) but varies due 
to routing loops or the 
count-to-infinity problem

Processing complexity
• LS: O(N2)
• DV: O(#Iterations x N)

Robustness: what happens if router 
malfunctions?

• LS: 
– node can advertise incorrect link

cost
– each node computes only its own

table
• DV:

– node can advertise incorrect path
cost

– each node’s table used by others; 
error propagates through network
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Routing: Just the Beginning

• Link state and distance-vector are the 
deployed routing paradigms for intra-domain 
routing 

• Inter-domain routing (BGP)
– more Part II (Principles of Communications)
– A version of DV
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What are desirable goals for a routing 
solution?

• “Good” paths (least cost)
• Fast convergence after change/failures

– no/rare loops
• Scalable 

– #messages
– table size 
– processing complexity

• Secure
• Policy
• Rich metrics (more later)
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Delivery models

• What if a node wants to send to more than 
one destination?
– broadcast: send to all
– multicast: send to all members of a group
– anycast: send to any member of a group

• What if a node wants to send along more 
than one path?
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Metrics

• Propagation delay
• Congestion
• Load balance
• Bandwidth (available, capacity, maximal, bbw)
• Price
• Reliability 
• Loss rate 
• Combinations of the above

In practice, operators set abstract “weights” (much 
like our costs); how exactly is a bit of a black art
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From Routing back to Forwarding

• Routing: “control plane”
– Computing paths the packets will follow
– Routers talking amongst themselves
– Jointly creating the routing state

• Forwarding: “data plane”
– Directing a data packet to an outgoing link
– Individual router using routing state

• Two very different timescales….

74
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Basic Architectural Components
of an IP Router

Control Plane
network-change

processing

Datapath
per-packet 
processing

SwitchingForwarding
Table

Routing
  Table

Routing 
Protocols

Management
& CLI Softw

are
H

ardw
are
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Independent operation!

Control Plane
network-change

processing

Datapath
per-packet 
processing

SwitchingForwarding
Table

Routing
  Table

Routing 
Protocols

Management
& CLI Softw

are
H

ardw
are

If the control-plane fails…..

The data-path is not affected…
like a loyal pet it will keep going using the current (last) 

table update

This is a feature not a bug
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Per-packet processing in an IP 
Router

1. Accept packet arriving on an incoming link.
2. Lookup packet destination address in the 

forwarding table, to identify outgoing port(s).
3. Manipulate packet header: e.g., decrement 

TTL, update header checksum.
4. Send packet to the outgoing port(s).
5. Buffer packet in the queue.
6. Transmit packet onto outgoing link.
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Generic Router Architecture

Lookup
IP Address

Update
Header

Header Processing
Data Hdr Data Hdr

~1M prefixes
Off-chip DRAM

Address
Table

IP Address Next Hop

Queue
Packet

Buffer
Memory

~1M packets
Off-chip DRAM



Forwarding tables

Entry Destination Port
1
2
⋮

232

0.0.0.0
0.0.0.1
⋮

255.255.255.255

1
2
⋮

12
~ 4 billion entries

Naïve approach:
One entry per address

Improved approach:
Group (and SORT) entries to reduce table size
Entry Destination Port

1
2
⋮

50

0.0.0.0 – 127.255.255.255
128.0.0.1 – 128.255.255.255

⋮
248.0.0.0 – 255.255.255.255

1
2
⋮

12

IP address 32 bits wide → ~ 4 billion unique address
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Generic Router Architecture
Lookup

IP Address
Update
Header

Header Processing

Address
Table

Lookup
IP Address

Update
Header

Header Processing

Address
Table

Lookup
IP Address

Update
Header

Header Processing

Address
Table

Data Hdr

Data Hdr

Data Hdr

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Data Hdr

Data Hdr

Data Hdr

IP addresses as a line

0 232-1

Entry Destination Port
1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

All IP addresses

EuropeUSA

OxfordCambridge

Your computer My computer
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Longest Prefix Match (LPM)
Entry Destination Port

1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Universities

Continents

Planet

DataTo: 
Cambridge

Matching entries:
• Cambridge
• Europe
• Everywhere

Most specific

82

Longest Prefix Match (LPM)
Entry Destination Port

1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Universities

Continents

Planet

DataTo: France

Matching entries:
• Europe
• Everywhere

Most specific
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Implementing Longest Prefix Match

Entry Destination Port
1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Most specific

Least specific

Searching

FOUND
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Forwarding table realities
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• High Speed: Must be “packet-rate” lookup
• about 200M lookups / second for 100Gbps

• Large (messy) tables – (BGP Jan 2021 stats)
• 866,000+ routing prefix entries for IPv4
• 104,000+ routing prefix entries for IPv6

• Changing and Growing
   the harsh side of “up and to the right”

Hudson 2020 report https://blog.apnic.net/2021/01/05/bgp-in-2020-the-bgp-table/

Open problems : continual growth is continual demand for innovation 
opportunities in control, algorithms, & network hardware 86

The Internet version of a Network layer

forwarding
table

Host, router network layer functions:

Routing protocols
•path selection
•RIP, OSPF, BGP

IP protocol
•addressing conventions
•datagram format
•packet handling conventions

ICMP protocol
•error reporting
•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer

IPv4 Packet Structure
20 Bytes of Standard Header, then Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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(Packet) Network Tasks One-by-One

• Read packet correctly
• Get packet to the destination
• Get responses to the packet back to source
• Carry data
• Tell host what to do with packet once arrived
• Specify any special network handling of the 

packet
• Deal with problems that arise along the path

88
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Reading Packet 
Correctly

• Version number (4 bits)
– Indicates the version of the IP protocol
– Necessary to know what other fields to expect
– Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
– Number of 32-bit words in the header
– Typically “5” (for a 20-byte IPv4 header)
– Can be more when IP options are used

• Total length (16 bits)
– Number of bytes in the packet
– Maximum size is 65,535 bytes (216 -1)
– … though underlying links may impose smaller limits

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Getting Packet to 
Destination and Back

• Two IP addresses
– Source IP address (32 bits)
– Destination IP address (32 bits)

• Destination address
– Unique identifier/locator for the receiving host
– Allows each node to make forwarding decisions

• Source address
– Unique identifier/locator for the sending host
– Recipient can decide whether to accept packet
– Enables recipient to send a reply back to source
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4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Telling Destination Host 
How to Handle Packet

• Protocol (8 bits)
– Identifies the higher-level protocol
– Important for demultiplexing at receiving host

• Most common examples
– E.g., “6” for the Transmission Control Protocol (TCP)
– E.g., “17” for the User Datagram Protocol (UDP)

IP header IP header

TCP header UDP header

protocol=6 protocol=17

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Special Handling

• Type-of-Service (8 bits)
– Allow packets to be treated differently based on 

needs
– E.g., low delay for audio, high bandwidth for bulk 

transfer
– Has been redefined several times
– Rarely actually used and never consistently…..

• Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Potential Problems IPv4 solves

• Header Corrupted: Checksum

• Loop: TTL

• Packet too large: Fragmentation
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Header Corruption

• Checksum (16 bits)
– Particular form of checksum over packet header

• If not correct, router discards packets
– So it doesn’t act on bogus information

• Checksum recalculated at every router
– Why?
– Why include TTL?
– Why only header?94

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Preventing Loops
(aka Internet Zombie plan)

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

• Forwarding loops cause packets to cycle forever
– As these accumulate, eventually consume all capacity

• Time-to-Live (TTL) Field  (8 bits)
– Decremented at each hop, packet discarded if reaches 0
– …and “time exceeded” message is sent to the source

• Using “ICMP” control message; basis for traceroute 96

Fragmentation
(some assembly required)

• Fragmentation: when forwarding a packet, an 
Internet router can split it into multiple pieces 
(“fragments”) if too big for next hop link

• Must reassemble to recover original packet
– Need fragmentation information (32 bits)
– Packet identifier, flags, and fragment offset

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



IP Fragmentation & Reassembly
• network links have MTU 

(max.transfer size) - largest 
possible link-level frame.
– different link types, different 

MTUs 
• large IP datagram divided 

(“fragmented”) within net
– one datagram becomes 

several datagrams
– “reassembled” only at final 

destination
– IP header bits used to identify, 

order related fragments

• IPv6 does things differently…

fragmentation: 
in: one large datagram
out: 3 smaller datagrams

reassembly
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IP Fragmentation and Reassembly
ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=185

fragflag
=1

length
=1500

ID
=x

offset
=370

fragflag
=0

length
=1040

One large datagram becomes
several smaller datagrams

Example
r 4000 byte datagram
r MTU = 1500 bytes

1480 bytes in 
data field

offset =
1480/8 

Question: What happens when a fragment is lost?
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4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Fragmentation 
Details

• Identifier (16 bits): used to tell which fragments 
belong together

• Flags (3 bits):
– Reserved (RF): unused bit
– Don’t Fragment (DF): instruct routers to not fragment 

the packet even if it won’t fit
• Instead, they drop the packet and send back a “Too Large”

ICMP control message
• Forms the basis for “Path MTU Discovery”

– More (MF): this fragment is not the last one
• Offset (13 bits): what part of datagram this 

fragment covers in 8-byte units 
Pop quiz question: Why do frags use offset and not a frag number? 99

Options

• End of Options List
• No Operation (padding between options)
• Record Route
• Strict Source Route
• Loose Source Route
• Timestamp
• Traceroute
• Router Alert
• …..100

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Few are used as each requires special 
handling in an IP router.
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IP Addressing: introduction
• IP address: 32-bit 

identifier for host, router 
interface

• interface: connection 
between host/router and 
physical link
– routers typically have 

multiple interfaces
– host typically has one 

interface
– IP addresses associated 

with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

102

Subnets
• IP address:

– subnet part (high order bits)
– host part (low order bits) 

• What’s a subnet ?
– device interfaces with same 

subnet part of IP address
– can physically reach each 

other without intervening 
router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet

223.1.1.0/24 223.1.2.0/24

223.1.3.0/24

Subnet mask: /24

11011111  00000001  00000011 00000000

subnet
part

host
part

223.1.3.0/24
CIDR: Classless InterDomain Routing

– subnet portion of address of arbitrary length
– address format: a.b.c.d/x, where x is # bits in 

subnet portion of address
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IP addresses: how to get one?

Q: How does a host get IP address?

• hard-coded by system admin in a file
– Windows: control-panel->network->configuration-

>tcp/ip->properties
– UNIX: /etc/rc.config (circa 1980’s your mileage will vary)

• DHCP: Dynamic Host Configuration Protocol: dynamically get address 
from as server
– “plug-and-play”
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DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

DHCP 
server

DHCP server: 223.1.2.5 arriving
 client

time

DHCP discover

src : 0.0.0.0, 68     
dest.: 255.255.255.255,67
yiaddr:    0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src:  0.0.0.0, 68     
dest::  255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

arriving DHCP 
client needs
address in this
network

Goal: allow host to dynamically 
obtain its IP address from network 
server when it joins network

Can renew its lease on address in use
Allows reuse of addresses (only hold 
address while connected an “on”)
Support for mobile users who want to 
join network (more shortly)

105

IP addresses: how to get one?

Q: How does network get subnet part of IP addr?
A: gets allocated portion of its provider ISP’s 

address space

ISP's block          11001000  00010111  00010000  00000000    200.23.16.0/20 

Organization 0    11001000  00010111  00010000  00000000    200.23.16.0/23 
Organization 1    11001000  00010111  00010010  00000000    200.23.18.0/23 
Organization 2    11001000  00010111  00010100  00000000    200.23.20.0/23 
   ...                                          …..                                   ….                ….
Organization 7    11001000  00010111  00011110  00000000    200.23.30.0/23 
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Hierarchical addressing: route aggregation

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

Hierarchical addressing allows efficient advertisement of routing 
information:
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Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...
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IP addressing: the last word...

Q: How does an ISP get a block of addresses?
A: ICANN: Internet Corporation for Assigned 

Names and Numbers
– allocates addresses
– manages DNS
– assigns domain names, resolves disputes

There are regional subordinates but the (US location) of the ICANN 
dominates proceedings…..
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or 
destination in this network
have 10.0.0/24 address for 

source, destination (as usual)

All datagrams leaving local
network have same single source NAT IP 

address: 138.76.29.7,
different source port numbers

Cant get more IPv4 addresses?  well there is always…..
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NAT: Network Address Translation

• Motivation: local network uses just one IP address as far as 
outside world is concerned:

– range of addresses not needed from ISP:  just one IP 
address for all devices

– can change addresses of devices in local network 
without notifying outside world

– can change ISP without changing addresses of 
devices in local network

– devices inside local net not explicitly addressable, 
visible by outside world (a security plus).
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NAT: Network Address Translation
Implementation: NAT router must:

– outgoing datagrams: replace (source IP address, port #) 
of every outgoing datagram to (NAT IP address, new port 
#)

. . . remote clients/servers will respond using (NAT IP address, 
new port #) as destination addr.

– remember (in NAT translation table) every (source IP 
address, port #)  to (NAT IP address, new port #) 
translation pair

– incoming datagrams: replace (NAT IP address, new port 
#) in dest fields of every incoming datagram with 
corresponding (source IP address, port #) stored in NAT 
table
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40.186, 80

NAT translation table
WAN side addr        LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345

……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345 

113

NAT: Network Address Translation

• 16-bit port-number field: 
– 60,000+ simultaneous connections with a single 

WAN-side address!
• NAT is controversial:

– routers should only process up to layer 3
– violates end-to-end argument (?)

• NAT possibility must be taken into account by app 
designers, eg, P2P applications

– address shortage “should” instead be solved by IPv6
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NAT traversal problem
• client wants to connect to 

server with address 10.0.0.1
– server address 10.0.0.1 local to 

LAN (client can’t use it as 
destination addr)

– only one externally visible NATted
address: 138.76.29.7

• solution 1: statically configure 
NAT to forward incoming 
connection requests at given 
port to server
– e.g., (138.76.29.7, port 2500) 

always forwarded to 10.0.0.1 port 
25000

10.0.0.1

10.0.0.4

NAT 
router

138.76.29.7

Client ?
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NAT traversal problem
• solution 2: Universal Plug and Play 

(UPnP) Internet Gateway Device 
(IGD) Protocol.  Allows NATted host 
to:
learn public IP address 

(138.76.29.7)
add/remove port mappings 

(with lease times)

i.e., automate static NAT port 
map configuration

10.0.0.1

10.0.0.4

NAT 
router

138.76.29.7

IGD
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NAT traversal problem
• solution 3: relaying (was used in (really old) Skype)

– NATed client establishes connection to relay
– External client connects to relay
– relay bridges packets between to connections

138.76.29.7

Client

10.0.0.1

NAT 
router

1. connection to
relay initiated
by NATted host

2. connection to
relay initiated
by client

3. relaying 
established

Remember this?  Traceroute at work…

traceroute munnari.oz.au
traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets
1  gatwick.net.cl.cam.ac.uk (128.232.32.2)  0.416 ms 0.384 ms 0.427 ms
2  cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9)  0.393 ms 0.440 ms 0.494 ms
 3  route-nwest.route-mill.net.cam.ac.uk (192.84.5.137)  0.407 ms  0.448 ms  0.501 ms
4  route-mill.route-enet.net.cam.ac.uk (192.84.5.94)  1.006 ms  1.091 ms  1.163 ms
5  xe-11-3-0.camb-rbr1.eastern.ja.net (146.97.130.1)  0.300 ms  0.313 ms  0.350 ms
6  ae24.lowdss-sbr1.ja.net (146.97.37.185)  2.679 ms  2.664 ms  2.712 ms
7  ae28.londhx-sbr1.ja.net (146.97.33.17)  5.955 ms  5.953 ms  5.901 ms
8  janet.mx1.lon.uk.geant.net (62.40.124.197)  6.059 ms  6.066 ms  6.052 ms
9  ae0.mx1.par.fr.geant.net (62.40.98.77)  11.742 ms  11.779 ms  11.724 ms
10  ae1.mx1.mad.es.geant.net (62.40.98.64)  27.751 ms  27.734 ms  27.704 ms
11  mb-so-02-v4.bb.tein3.net (202.179.249.117)  138.296 ms 138.314 ms 138.282 ms
12  sg-so-04-v4.bb.tein3.net (202.179.249.53)  196.303 ms 196.293 ms 196.264 ms
13  th-pr-v4.bb.tein3.net (202.179.249.66)  225.153 ms  225.178 ms  225.196 ms
14  pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10)  225.163 ms  223.343 ms  223.363 ms
15  202.28.227.126 (202.28.227.126)  241.038 ms  240.941 ms  240.834 ms
16  202.28.221.46 (202.28.221.46)  287.252 ms  287.306 ms  287.282 ms
17  * * *
18  * * *
19  * * *
20  coe-gw.psu.ac.th (202.29.149.70)  241.681 ms  241.715 ms  241.680 ms
21  munnari.OZ.AU (202.29.151.3)  241.610 ms  241.636 ms  241.537 ms

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on windows is similar)

Three delay measurements from 
rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

* means no response (probe lost, router not replying)

trans-continent
link
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Traceroute and ICMP
• Source sends series of UDP 

segments to dest
– First has TTL =1
– Second has TTL=2, etc.
– Unlikely port number

• When nth datagram arrives to nth 
router:
– Router discards datagram
– And sends to source an ICMP 

message (type 11, code 0)
– Message includes name of 

router& IP address

• When ICMP message arrives, 
source calculates RTT

• Traceroute does this 3 times
Stopping criterion
• UDP segment eventually arrives 

at destination host
• Destination returns ICMP “host 

unreachable” packet (type 3, 
code 3)

• When source gets this ICMP, 
stops.
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ICMP: Internet Control Message Protocol

• used by hosts & routers to 
communicate network-level 
information
– error reporting: unreachable 

host, network, port, protocol
– echo request/reply (used by 

ping)
• network-layer “above” IP:

– ICMP msgs carried in IP 
datagrams

• ICMP message: type, code plus first 8 
bytes of IP datagram causing error

Type  Code  description
0        0         echo reply (ping)
3        0         dest. network unreachable
3        1         dest host unreachable
3        2         dest protocol unreachable
3        3         dest port unreachable
3        6         dest network unknown
3        7         dest host unknown
4        0         source quench (congestion
                     control - not used)
8        0         echo request (ping)
9        0         route advertisement
10      0         router discovery
11      0         TTL expired
12      0         bad IP header
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Gluing it together:
  How does my Network (address) interact
   with my Data-Link (address) ?
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Switches vs. Routers Summary
• both (can be implemented as) store-and-forward devices

– routers: network layer devices (manipulate network layer headers eg IP)
– switches are link layer devices (examine Data-Link-Layer headers eg Ethernet)

• Routers: implement routing algorithms, maintain routing tables of the 
network – create network forwarding tables from routing tables

• Switches: implement learning algorithms, learn switch/DLL forwarding 
tables

Switch
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MAC Addresses (and IPv4 ARP)
or How do I glue my network to my data-link?

• 32-bit IP address: 
– network-layer address
– used to get datagram to destination IP subnet 

• MAC (or LAN or physical or Ethernet) address:
– function: get frame from one interface to another 

physically-connected interface (same network)
– 48 bit MAC address (for most LANs)

• burned in NIC ROM, firmware, etc.
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LAN Addresses and ARP
Each adapter on LAN has unique LAN (MAC) address

Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-709-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-6F7-2B-08-53

LAN
(wired or
wireless)
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Address Resolution Protocol
• Every node maintains an ARP table

– <IP address, MAC address> pair

• Consult the table when sending a packet
– Map destination IP address to destination MAC address
– Encapsulate and transmit the data packet

• But: what if IP address not in the table?
– Sender broadcasts: “Who has IP address 1.2.3.156?”
– Receiver responds: “MAC address 58-23-D7-FA-20-B0”
– Sender caches result in its ARP table
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Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B
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Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B

1. A sends packet to R.
2. R sends packet to B.

B A A R B A R B
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Host A Decides to Send Through R

A

R
B

• Host A constructs an IP packet to send to B
– Source 111.111.111.111, destination 222.222.222.222

• Host A has a gateway router R
– Used to reach destinations outside of 111.111.111.0/24
– Address 111.111.111.110 for R learned via DHCP/config

B A B A
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Host A Sends Packet Through R
• Host A learns the MAC address of R’s interface

– ARP request: broadcast request for 111.111.111.110
– ARP response: R responds with E6-E9-00-17-BB-4B

• Host A encapsulates the packet and sends to R

A

R
B

B A A R

I’m 111.111.111.110 on e6-e9-00-17-bb-4b 

MAC address for 111.111.111.110 pleaseMAC address for 111.111.111.110 please

129

R Decides how to Forward Packet
• Router R’s adaptor receives the packet

– R extracts the IP packet from the Ethernet frame
– R sees the IP packet is destined to 222.222.222.222

• Router R consults its forwarding table
– Packet matches 222.222.222.0/24 via other adaptor

A

R
B

B A A R
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R Sends Packet to B
• Router R’s learns the MAC address of host B

– ARP request: broadcast request for 222.222.222.222
– ARP response: B responds with 49-BD-D2-C7-52A

• Router R encapsulates the packet and sends to B

A

R
B

B A R B

R broadcasts: Who is 
222.222.22.222.222?

B replies to R 
Me! I’m 222.22.222.222 on 
49-BD-D2-C7-56-2A
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Security Analysis of ARP
• Impersonation

– Any node that hears request can answer …
– … and can say whatever they want

• Actual legit receiver never sees a problem
– Because even though later packets carry its IP 

address, its NIC doesn't capture them since the 
(naughty) packets are not its MAC address

132

Key Ideas in Both ARP and DHCP

• Broadcasting: Can use broadcast to make contact
– Scalable because of limited size

• Caching: remember the past for a while
– Store the information you learn to reduce overhead
– Remember your own address & other host’s addresses

• Soft state: eventually forget the past
– Associate a time-to-live field with the information
– … and either refresh or discard the information
– Key for robustness in the face of unpredictable change



Why Not Use DNS-Like Tables?
• When host arrives:

– Assign it an IP address that will last as long it is 
present

– Add an entry into a table in DNS-server that maps 
MAC to IP addresses

• Answer: 
– Names: explicit creation, and are plentiful
– Hosts: come and go without informing network

• Must do mapping on demand
– Addresses: not plentiful, need to reuse and remap

• Soft-state enables dynamic reuse
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IPv6
• Motivated by address exhaustion

– addresses are larger
– packet headers are laid out differently
– address management and configuration are completely different
– some DNS behavior changes
– some sockets code changes
– everybody now has a hard time parsing IP addresses

• Steve Deering focused on simplifying IP
– Got rid of all fields that were not absolutely necessary
– “Spring Cleaning” for IP

• Result is an elegant, if unambitious, protocol
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prematurely
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IPv4 IPv6 
Addresses are 32 bits (4 bytes) in length. Addresses are 128 bits (16 bytes) in length 

Address (A) resource records in DNS to map 
host names to IPv4 addresses. 

Address (AAAA) resource records in DNS to map 
host names to IPv6 addresses. 

Pointer (PTR) resource records in the IN-
ADDR.ARPA DNS domain to map IPv4 addresses 
to host names. 

Pointer (PTR) resource records in the IP6.ARPA 
DNS domain to map IPv6 addresses to host 
names. 

IPSec is optional and should be supported 
externally 

IPSec support is not optional 

Header does not identify packet flow for QoS
handling by routers 

Header contains Flow Label field, which 
Identifies packet flow for QoS handling by 
router. 

Both routers and the sending host fragment 
packets. 

Routers do not support packet fragmentation. 
Sending host fragments packets 

Header includes a checksum. Header does not include a checksum. 

Header includes options. Optional data is supported as extension headers. 

ARP uses broadcast ARP request to resolve IP to 
MAC/Hardware address. 

Multicast Neighbor Solicitation messages resolve 
IP addresses to MAC addresses. 

Internet Group Management Protocol (IGMP) 
manages membership in local subnet groups. 

Multicast Listener Discovery (MLD) messages 
manage membership in local subnet groups. 

Broadcast addresses are used to send traffic to 
all nodes on a subnet. 

IPv6 uses a link-local scope all-nodes multicast 
address. 

Configured either manually or through DHCP. Does not require manual configuration or DHCP. 

Must support a 576-byte packet size (possibly 
fragmented). 

Must support a 1280-byte packet size (without 
fragmentation). 

Larger Address Space
• IPv4 = 4,294,967,295 addresses
• IPv6 = 340,282,366,920,938,463,374,607,432,768,211,456 addresses
• 4x in number of bits translates to huge increase in address space!
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Other Significant Protocol Changes - 1
• Increased minimum MTU from 576 to 1280
• No enroute fragmentation… fragmentation only at source
• Header changes (20bytes to 40bytes)
• Replace broadcast with multicast
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Fragment 
OffsetFlags

Total LengthType of 
ServiceIHL

PaddingOptions
Destination Address

Source Address

Header ChecksumProtocolTime to Live

Identification

Version

Next 
Header Hop Limit

Flow LabelTraffic 
Class

Destination Address

Source Address

Payload Length

Version

Field’s Name Kept from IPv4 to IPv6

Fields Not Kept in IPv6
Name and Position Changed in IPv6

New Field in IPv6Le
ge

nd

IPv4 IPv6

Ok, so the default header got a 
little bit bigger…

Other Significant Protocol Changes - 2
operation is intended to be simpler within the network:
• no in-network fragmentation

• no checksums in IPv6 header

• UDP checksum required (wasn’t in IPv4) rfc6936: No more zero

• optional state carried in extension headers

– Extension headers notionally replace IP options
– Each extension header indicates the type of the following 

header,  so they can be chained
– The final ‘next header’ either indicates there is no ‘next’, or  

escapes into a transport-layer header (e.g., TCP)
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IPv6 Basic Address Structure
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IPv6 addresses are split into two primary parts:

► 64 bits is dedicated to an addressable interface (equivalent to the  
host, if it only has one interface)

► The network prefix allocated to a network by a registry can be up to 
64-bits long

► An allocation of a /64 (i.e. a 64-bit network prefix) allows one
 subnet (it cannot be subdivided)
► A /63 allows two subnets; a /62 offers four, etc. /48s are common for 

older allocations (RFC 3177, obsoleted by RFC 6177).
► Longest-prefix matching operates as in IPv4.

IPv6 Address Representation (quick)
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IPv6 addresses represented as eight 16-bit blocks (4 hex 
chars)  separated by colons:
•  2001:4998:000c:0a06:0000:0000:0002:4011

But we can condense the representation by removing leading 
zeros in  each block:
•  2001:4998:c:a06:0:0:2:4011

And by reducing the consecutive block of zeros to a “::”
 (this double colon rule can only be applied once)
•  2001:4998:c:a06::2:4011

IPv6 Address Families
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The address space is carved, like v4, into certain categories 1:
host-local : localhost; ::1 is equivalent to 127.0.0.1
link-local : not routed: fe80::/10 is equivalent to

169.254.0.0/16
site-local : not routed globally: fc00::/7 is equivalent to

192.168.0.0/16 or 10.0.0.0/8
global unicast : 2000::/3 is basically any v4 address not 

reserved in  some other way
multicast : ff00::/8 is equivalent to 224.0.0.0/4

1http://www.ripe.net/lir-services/new-lir/ipv6_reference_card.pdf

Problem with /64 Subnets
• Scanning a subnet becomes a DoS attack!

– Creates IPv6 version of 264 ARP entries in routers
– Exhaust address-translation table space

• So now we have:
ping6 ff02::1 All nodes in broadcast domain
ping6 ff02::2 All routers in broadcast domain

• Solutions
– RFC 6164 recommends use of /127 to protect router-router links
– RFC 3756 suggest “clever cache management” to address more generally
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Neighbour Discovery
• The Neighbour Discovery Protocol2 specifies a set of ICMPv6  

message types that allow hosts to discover other hosts or routing  
hardware on the network
– neighbour solicitation
– neighbour advertisement
– router solicitation
– router advertisement
– redirect

• In short, a host can solicit neighbour (host) state to determine the  
layer-2 address of a host or to check whether an address is in use

• or it can solicit router state to learn more about the network  
configuration

• In both cases, the solicit message is sent to a well-known  
multicast address

2
http://tools.ietf.org/html/rfc4861
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IPv6 Dynamic Address Assignment
We have the two halves of the IPv6 address: the 
network component  and the host component. 
Those are derived in different ways.

Network (top 64 bits):
– Router Advertisements (RAs)  

Interface

Identifier (bottom 64 bits):
– Stateless, automatic: SLAAC
– Stateful, automatic: DHCPv6
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SLAAC: overview

SLAAC is:
• ... intended to make network configuration 

easy without manual  configuration or 
even a DHCP server

• ... an algorithm for hosts to automatically 
configure their network  interfaces (set up 
addresses, learn routes) without
intervention
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SLAAC: overview

• When a host goes live or an interface comes up, 
the system  wants to know more about its
environment

• It can configure link-local addresses for its 
interfaces: it uses the  interface identifier, the EUI-64

• It uses this to ask (solicit) router advertisements 
sooner than the  next periodic announcements; ask 
the network for information
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SLAAC: overview

The algorithm (assuming one interface):

1. Generate potential link-local address
2. Ask the network (multicast4) if that 

address is in use: neighbour  solicitation

3. Assuming no responses, assign to
interface
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4https://tools.ietf.org/html/rfc2373

The EUI-64 Interface Identifier
• IEEE 64-bit Extended Unique Identifier (EUI-64)3

• There are various techniques to derive a 64-bit value, 
but  often times we derive from the 48-bit MAC address

1493http://tools.ietf.org/html/rfc2373

the seventh bit from the left, or the 
universal/local (U/L) bit, needs to be inverted, 
0 = local admin 1 = universal admin

SLAAC: overview; Router Solicitation
Then,
• Once the host has a unique link-local address, it can send  packets 

to anything else sharing that link substrate
... but the host doesn’t yet know any routers, or public routes
... bootstrap: routers listen to a well-known multicast address

4.host asks the network (multicast) for router information: router  
solicitation

5.responses from the routers are sent directly (unicast) to the host  
that sent the router solicitation

6.the responses may indicate that the host should do more (e.g.,  use 
DHCP to get DNS information)
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Router Advertisement
Without solicitation, regular router advertisements are generated by 
routing hardware.

Router Advertisements:
• nodes that forward traffic periodically advertise themselves to the  

network
• periodicity and expiry of the advertisement are configurable

Router Advertisement (RA), among other things, tells a host where to  
derive its network state with two flags: M(anaged) and O(ther info):
• M: “Managed Address Configuration”, which means: use  DHCPv6 

to find your host address (and ignore option O)
• O: Other information is available via DHCPv6, such as DNS  

configuration
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Uh-oh
What problem(s) arises from totally decentralised address  
configuration?

Concerns that arise from using an EUI-64:
• Privacy: SLAAC interface identifiers don’t change over 

time, so a host can be identified across networks

• Security: embedding a MAC address into an IPv6 
address will carry that vendor’s ID(s)5, a possible threat
vector
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5http://standards.ieee.org/develop/regauth/oui/public.html

Address Configuration: SLAAC Privacy 
Addresses

Privacy extensions for SLAAC6

– temporary addresses for initiating outgoing
sessions

– generate one temporary address per prefix
– when they expire, they are not used for new 

sessions, but can  continue to be used for 
existing sessions

– the addresses should appear random, such that 
they are difficult  to predict

– lifetime is configurable; this OSX machine sets an 
86,400s timer  (1 day)

1536https://tools.ietf.org/html/rfc4941

Address Configuration: SLAAC Privacy 
Addresses

The algorithm:
• Assume: a stored 64-bit input value from previous iterations, or a  pseudo-

randomly generated value

1.take that input value and append it to the EUI-64
2.compute the MD5 message digest of that value
3.set bit 6 to zero
4.compare the leftmost 64-bits against a list of reserved interface  identifiers 

and those already assigned to an address on the local  device. If the value 
is unacceptable, re-run using the rightmost 64  bits of the result instead of 
the historic input value in step 1

5.use the leftmost 64-bits as the randomised interface identifier
6.store the rightmost 64-bits as the history value to be used in the  next 

iteration of the algorithm
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IPv6: why has the transition taken so long?

IPv4 and IPv6 are not compatible:
– different packet formats
– different addressing schemes
– no flag days

as the Internet has grown bigger and 
accumulated many  IPv4-only services, 
transition has proven ... Tricky

Incentive issues 
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e.g. Virgin Media policy in 2010

….When IPV6 is rolled out across the whole of the Internet 
then a lot of the ISP's will roll out IPV6, ….

Virgin Media are only now (late 2022) “committing” to IPv6

IPv6: why has the transition taken so long?

• IPv4 has/had the momentum
... which led to CIDR
... and encouraged RFC1918 space and NAT

• IPv4 NAT was covered earlier in this topic (reminder)
– your ISP hands you only one IPv4 address
– you  share that across multiple devices in your household
– The NAT  handles all the translation between internal 

(“private”) and external  (“public”) space
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Transition tech: outline

• Tunnelling
• dual-stacked services, and happy eyeballs
• DNS64 and NAT648

• 464XLAT
• DNS behaviour

1578https://tools.ietf.org/html/rfc6146



Transition tech: outline

• Tunnelling
• dual-stacked services, and happy eyeballs
• DNS64 and NAT648

• 464XLAT
• DNS behaviour

1588https://tools.ietf.org/html/rfc6146

Think of it as an IPv6 VPN service; which is 
essentially what it is

Dual-Stack Services: Common Deployment
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It’s common for web services to play conservatively: dual-stack your edge services (e.g., 
load balancers), leaving some legacy infrastructure for later: 

Or IPv6-only
Commonly in the
hyperscalers

e.g. Facebook

-only

Dual-Stack Services: Common 
Deployment

Aim is to reduce the pain:
– You can dual-stack the edge hosts, and carry 

state in, say, HTTP  headers indicating the 
user’s IP address (common over v4 anyway)

– You can dual-stack the backend 
opportunistically, over a longer  period of time

– You use DNS to enable/disable the v6 side 
last (if there is no  AAAA record in DNS, no 
real users will connect to the IPv6  
infrastructure
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IPV6 sadness and DNS

• The introduction of IPv6 carried with it an 
obligation that applications attempt to use 
IPv6 before falling back to IPv4.

• What happens though if you try to 
connect to a host which doesn’t exist?9

• But the presence of IPv6 modifies the 
behaviour of DNS responses and 
response preference10
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9https://tools.ietf.org/html/rfc5461
10https://tools.ietf.org/html/rfc3484

Happy Eyeballs

• Happy Eyeballs11 was the proposed
solution
– the eyeballs in question are yours, or mine, or 

whoever is sitting in  front of their browser 
getting mad that things are unresponsive

• Modifies application behaviour

16211https://tools.ietf.org/html/rfc8305

• Google1: ~ 30% of clients access services via IPv6
• NIST: 1/3 of all US government domains are IPv6 capable

IPv6: adoption

1 
https://www.google.com/int
l/en/ipv6/statistics.html



Improving on IPv4 and IPv6?
• Why include unverifiable source address? 

– Would like accountability and anonymity (now neither)
– Return address can be communicated at higher layer

• Why packet header used at edge same as core?
– Edge: host tells network what service it wants
– Core: packet tells switch how to handle it

• One is local to host, one is global to network
• Some kind of payment/responsibility field?

– Who is responsible for paying for packet delivery?
– Source, destination, other?

• Other ideas?
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Summary Network Layer
• understand principles behind network layer services:

– network layer service models
– forwarding versus routing (versus switching)
– how a switch & router works
– routing (path selection)
– IPv6

• Algorithms
– Two routing approaches (LS vs DV)
– One of these in detail (LS)
– ARP

• Other Core ideas
– Caching, soft-state, broadcast
– Fate-sharing in practice….



Topic 5 – Transport
Our goals: 
• understand principles 

behind transport layer 
services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control
– congestion control
– buffers

• learn about transport layer 
protocols in the Internet:
– UDP: connectionless transport
– TCP: connection-oriented 

transport
– TCP congestion control
– TCP flow control
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Transport Layer
• Commonly a layer at end-hosts, between the 

application and network layer 

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B
Router
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Why a transport layer? 

• IP packets are addressed to a host but end-to-
end communication is between application/ 
processes/tasks at hosts
– Need a way to decide which packets go to which 

applications (more multiplexing)
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Why a transport layer? 

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host B 5

Why a transport layer? 

Transport
Network
Datalink
Physical

Application

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m

edia
ftp

brow
ser

IP

many application
 processes

Drivers
+NIC

Operating 
System
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Why a transport layer? 

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m

edia
ftp

brow
ser

IP

many application
 processes

Datalink
Physical

telnet
ftp

IP

HTTP 
server

Transport Transport

Communication 
between hosts

(128.4.5.6 162.99.7.56)

Communication
 between processes

at hosts
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Why a transport layer? 

• IP packets are addressed to a host but end-to-end 
communication is between application processes 
at  hosts
– Need a way to decide which packets go to which 

applications (mux/demux)
• IP provides a weak service model (best-effort)

– Packets can be corrupted, delayed, dropped, 
reordered, duplicated 

– No guidance on how much traffic to send and when
– Dealing with this is tedious for application developers

8

Role of the Transport Layer

• Communication between application processes
–Multiplexing between application processes
– Implemented using ports

9

Role of the Transport Layer

• Communication between application processes
• Provide common end-to-end services for app 

layer [optional]
– Reliable, in-order data delivery
– Paced data delivery: flow and congestion-control

• too fast may overwhelm the network
• too slow is not efficient

(Just Like Computer Networking Lectures….)
10

Role of the Transport Layer

• Communication between processes
• Provide common end-to-end services for app 

layer [optional]
• TCP and UDP are the common transport 

protocols
– also SCTP, MTCP, SST, RDP, DCCP, … 

11

Role of the Transport Layer

• Communication between processes
• Provide common end-to-end services for app 

layer [optional]
• TCP and UDP are the common transport 

protocols
• UDP is a minimalist, no-frills transport protocol
– only provides mux/demux capabilities

12

Role of the Transport Layer

• Communication between processes
• Provide common end-to-end services for app layer 

[optional]
• TCP and UDP are the common transport protocols
• UDP is a minimalist, no-frills transport protocol
• TCP is the totus porcus protocol

– offers apps a reliable, in-order, byte-stream abstraction
– with congestion control 
– but no performance (delay, bandwidth, ...) guarantees

13



Role of the Transport Layer

• Communication between processes
–mux/demux from and to application processes
– implemented using ports

14

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing as receiver:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing as sender:

How demultiplexing works

 host receives IP datagrams
• each datagram has source IP 

address, destination IP address
• each datagram carries one 

transport-layer segment
• each segment has source, 

destination port number 
 host uses IP addresses & port 

numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format

Connectionless demultiplexing

 when creating socket, must 
specify host-local port #:

  DatagramSocket mySocket1        
= new 
DatagramSocket(12534);

when receiving host receives 
UDP segment:
• checks destination port # in 

segment
• directs UDP segment to socket 

with that port #

 when creating datagram to 
send into UDP socket, must 
specify
• destination IP address
• destination port #

IP/UDP datagrams with same 
dest. port #, but different source 
IP addresses and/or source port 

numbers will be directed to same 
socket at receiving host

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

mySocket = 
socket(AF_INET,SOCK_STREAM)
mySocket.bind(myaddr,9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

A

B

C

D

mySocket = 
socket(AF_INET,SOCK_STREAM)
mySocket.bind(myaddr,5775);

mySocket = 
socket(AF_INET,SOCK_DGRAM)
mySocket.bind(myaddr,6428);

Connectionless demultiplexing: an example Connection-oriented demultiplexing

 TCP socket identified by 
4-tuple: 
• source IP address
• source port number
• dest IP address
• dest port number

 server may support many 
simultaneous TCP sockets:
• each socket identified by its 

own 4-tuple
• each socket associated with 

a different connecting client

 demux: receiver uses all 
four values (4-tuple) to 
direct segment to 
appropriate socket

slight lie alert…. I should say that a common 
network tuple has FIVE values

• source IP address
• source port number
• dest IP address
• dest port number AND
• protocol e.g. TCP (6) or UDP (17)



Connection-oriented demultiplexing: example

transport

application

physical
link

network

P1
transport

application

physical
link

P4

transport

application

physical
link

network

P2

host: IP 
address A

host: IP 
address 

C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP 
address B

Three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

Summary
 Multiplexing, demultiplexing: based on segment, datagram 

header field values
 UDP: demultiplexing using destination port number (only)
 TCP: demultiplexing using 4-tuple: source and destination IP 

addresses, and port numbers

 Multiplexing/demultiplexing can happen at any layer 

More on Ports

• Separate 16-bit port address space for UDP and TCP

• “Well known” ports (0-1023): everyone agrees which
services run on these ports
– e.g., ssh:22, http:80, https:443
– helps client know server’s port

• Ephemeral ports (most 1024-65535):  dynamically selected: as the 
source port for a client process

29

UDP: User Datagram Protocol 

• Lightweight communication between processes
– Avoid overhead and delays of ordered, reliable delivery

• UDP described in RFC 768 – (1980!)
– Destination IP address and port to support demultiplexing
– Optional error checking on the packet contents

• (checksum field of 0 means “don’t verify checksum”) not in IPv6!
• ((this idea of optional checksum is removed in IPv6))

SRC port DST port

checksum length

DATA 30

Why a transport layer? 

• IP packets are addressed to a host but end-to-
end communication is between application 
processes at  hosts
– Need a way to decide which packets go to which 

applications (mux/demux)
• IP provides a weak service model (best-effort)
– Packets can be corrupted, delayed, dropped, 

reordered, duplicated 
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Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

 In a perfect world, reliable 
transport is easy

  
But the Internet default is best-effort

 All the bad things best-effort can 
do
 a packet is corrupted (bit errors)
 a packet is lost 
 a packet is delayed (why?)
 packets are reordered (why?)
 a packet is duplicated (why?)
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Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

34

Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

rdt_rcv()

udt_rcv()

Complexity of reliable data 
transfer protocol  will depend 

(strongly) on characteristics of 
unreliable channel (lose, corrupt, 

reorder data?)

35

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called by rdt to 
deliver data to upper

rdt_rcv()

udt_rcv()

udt_rcv(): called when packet 
arrives on rcv-side of channel

36

Reliable data transfer: getting started
We’ll:
• incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
• consider only unidirectional data transfer

– but control info will flow on both directions!
• use finite state machines (FSM)  to specify sender, 

receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state” 
next state uniquely 

determined by next 
event

event
actions

37

KR state machines – a note.
Beware
Kurose and Ross has a confusing/confused attitude to 

state-machines.
I’ve attempted to normalise the representation.
UPSHOT: these slides have differing information to the 

KR book (from which the RDT example is taken.)
in KR “actions taken” appear wide-ranging, my 

interpretation is more specific/relevant.

State
name

State
name

Relevant event causing state transition
Relevant action taken on state transitionstate: when in this “state” 

next state uniquely 
determined by next 

event event
actions

38

Rdt1.0: reliable transfer over a reliable channel

• underlying channel perfectly reliable
– no bit errors
– no loss of packets

• separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver read data from underlying channel

IDLE udt_send(packet)
rdt_send(data)

rdt_rcv(data)IDLE
udt_rcv(packet)

sender receiver

Event

Action
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Rdt2.0: channel with bit errors

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells sender that 

packet received is OK
– negative acknowledgements (NAKs): receiver explicitly tells sender 

that packet had errors
– sender retransmits packet on receipt of NAK

• new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection
– receiver feedback: control msgs (ACK,NAK) receiver->sender

41

rdt2.0: FSM specification

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&    
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
   isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 
corrupt(packet)

Waiting
for reply

IDLE

sender

receiver
rdt_send(data)

L

Note: the sender holds a copy 
of the packet being sent until 
the delivery is acknowledged.
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rdt2.0: operation with no errors

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&    
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
   isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 
corrupt(packet)

rdt_send(data)

43

rdt2.0: error scenario

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&    
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
   isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 
corrupt(packet)

rdt_send(data)

44

rdt2.0 has a fatal flaw!
What happens if ACK/NAK 

corrupted?
• sender doesn’t know what 

happened at receiver!
• can’t just retransmit: possible 

duplicate

Handling duplicates: 
• sender retransmits current 

packet if ACK/NAK garbled
• sender adds sequence number

to each packet
• receiver discards (doesn’t  

deliver) duplicate packet

Sender sends one packet, 
then waits for receiver 
response

stop and wait

46

rdt2.1: sender, handles garbled ACK/NAKs

IDLE

sequence=0
udt_send(packet)

rdt_send(data)

Waiting
For reply udt_send(packet)

udt_rcv(reply) &&  
( corrupt(reply) ||
isNAK(reply) )

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply) 

udt_send(packet)

udt_rcv(reply) &&  
( corrupt(reply) ||
isNAK(reply) )

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply) 

IDLE
Waiting
for reply

LL



udt_rcv(packet) && corrupt(packet)

47

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 
0 from 
below

udt_send(NAK)

receive(packet) && 
   not corrupt(packet) &&
   has_seq0(packet)

udt_rcv(packet) && not corrupt(packet) 
  && has_seq1(packet) 

udt_send(ACK)
rdt_rcv(data)

Wait for 
1 from 
below

udt_rcv(packet) && not corrupt(packet) 
  && has_seq0(packet) 

udt_send(ACK)
rdt_rcv(data)

udt_send(ACK)

receive(packet) && 
   not corrupt(packet) &&
   has_seq1(packet)

receive(packet) && corrupt(packet)

udt_send(ACK)

udt_send(NAK)
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rdt2.1: discussion
Sender:
• seq # added to pkt
• two seq. #’s (0,1) will 

suffice.  Why?
• must check if received 

ACK/NAK corrupted 
• twice as many states

– state must “remember”
whether “current” pkt has a

0 or 1 sequence number

Receiver:
• must check if received 

packet is duplicate
– state indicates whether 0 or 1 

is expected pkt seq #

• note: receiver can not know 
if its last ACK/NAK received 
OK at sender
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rdt2.2: a NAK-free protocol

• same functionality as rdt2.1, using ACKs only
• instead of NAK, receiver sends ACK for last pkt received OK

– receiver must explicitly include seq # of pkt being ACKed
• duplicate ACK at sender results in same action as NAK: 

retransmit current pkt

As we will see, TCP uses this approach to be NAK-free
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rdt2.2: sender, receiver fragments

Wait for call 
0 from 
above

sequence=0
udt_send(packet)

rdt_send(data)

udt_send(packet)

rdt_rcv(reply) &&  
( corrupt(reply) ||
  isACK1(reply) )

udt_rcv(reply)   
&& not corrupt(reply) 
&& isACK0(reply) 

Wait for 
ACK

0
sender FSM

fragment

Wait for 
0 from 
below

receive(packet) && not corrupt(packet) 
  && has_seq1(packet) 
send(ACK1)
rdt_rcv(data)

udt_rcv(packet) && 
  (corrupt(packet) ||
     has_seq1(packet))

udt_send(ACK1)
receiver FSM

fragment

L

rdt3.0: channels with errors and loss
New channel assumption: underlying channel can also lose 
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help … 

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

rdt3.0: channels with errors and loss
Approach: sender waits “reasonable” amount of time for ACK 
 retransmits if no ACK received in this time
 if pkt (or ACK) just delayed (not lost):
• retransmission will be  duplicate, but seq #s already handles this!
• receiver must specify seq # of packet being ACKed

timeout

 use countdown timer to interrupt after “reasonable” amount 
of time



udt_rcv(reply) &&  
( corrupt(reply) ||
isACK(reply,1) )
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rdt3.0 sender
sequence=0
udt_send(packet)
start_timer

rdt_send(data)

Wait 
for 

ACK0

IDLE
state 1

sequence=1
udt_send(packet)
start_timer

rdt_send(data)

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply,0) 

udt_rcv(packet) &&  
( corrupt(packet) ||
isACK(reply,0) )

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply,1) 

stop_timer
stop_timer

udt_send(packet)
timeout

udt_send(packet)
timeout

udt_rcv(reply)

IDLE
state 0

Wait 
for 

ACK1

L
udt_rcv(reply)

L
L

L

rdt3.0 in action
sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack
0

ack0

no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt
1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack
0

ack0

ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt
1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0pkt0

ack
0

premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

ack1
send ack1send pkt0

rcv ack1
pkt0

rcv pkt0
send ack0ack0

pkt
1

(ignore)
rcv ack1
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT 

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

 

U 
sender = .008 

30.008 
= 0.00027 

microsec
onds 

L / R 
RTT + L / R 

= 

Inefficient if
t << RTT
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Performance of rdt3.0 (stop-and-wait)

• rdt3.0 works, but performance stinks
• ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

• U sender: utilization – fraction of time sender busy sending

• 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link

• The network protocol limits use of physical resources!

 

U 
sender = .008 

30.008 
= 0.00027 

microsec
onds 

L / R 
RTT + L / R 

= 

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans
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Pipelined (Packet-Window) protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver



Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

 

U 
sender = 

.0024 
30.008 

= 0.00081  3L / R 
RTT + L / R 

= 

A Sliding Packet Window

• window = set of adjacent sequence numbers
– The size of the set is the window size; assume window size is n

• General idea: send up to n packets at a time 
– Sender can send packets in its window
– Receiver can accept packets in its window
– Window of acceptable packets “slides” on successful 

reception/acknowledgement
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Acknowledgements (1)

• At receiver
n

B
Received and ACK’d
Acceptable but not
yet received

Cannot be received

 After receiving B+1, B+2
nBnew= B+2

 Receiver sends ACK(Bnew+1)
67

Acknowledgements (2)

• At receiver
n

B
Received and ACK’d
Acceptable but not
yet received

Cannot be received

 After receiving B+4, B+5
nB

 Receiver sends ACK(B+???)
68

Oh….
how do we 
recover?

Acknowledgements w/ Sliding Window

Dealing with loss….

• Two common options
– Go-Back-N (GBN)
– Selective Repeat (SR)

Also called Selective Acknowledgement (SACK)

69

Go-Back-N (GBN)

• Sender transmits up to n unacknowledged packets

• Receiver only accepts packets in order
– discards out-of-order packets (i.e., packets other than B+1)

• Receiver uses cumulative acknowledgements
– i.e., sequence# in ACK = next expected in-order sequence# 

• Sender sets timer for 1st outstanding ack (A+1)
• If timeout, retransmit A+1, … , A+n

70



Go-Back-N: sender
 sender: “window” of up to N, consecutive transmitted but unACKed pkts 

• k-bit seq # in pkt header

 cumulative ACK: ACK(n): ACKs all packets up to, including seq # n 
• on receiving ACK(n): move window forward to begin at n+1

 timer for oldest in-flight packet
 timeout(n): retransmit packet n and all higher seq # packets in window

Go-Back-N: receiver
 ACK-only: always send ACK for correctly-received packet so far, with 

highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

 on receipt of out-of-order packet: 
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not  ACKed

Not received

Receiver view of sequence number space:

… …

Go-Back-N in action
send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, discard, 
           (re)send ack1

send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

pkt 2 timeout

receive pkt4, discard, 
           (re)send ack1
receive pkt5, discard, 
           (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

rcv ack0, send 
pkt4

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send 
pkt5

83

GBN: sender extended FSM

Wait udt_send(packet[base])
udt_send(packet[base+1])
…
udt_send(packet[nextseqnum-1])

timeout

rdt_send(data) 

if (nextseqnum < base+N) {
    udt_send(packet[nextseqnum])
    nextseqnum++
    }
else
  refuse_data(data)   Block?

base = getacknum(reply)+1

udt_rcv(reply) && 
   notcorrupt(reply) 

base=1
nextseqnum=1

udt_rcv(reply) 
   && corrupt(reply) 

L

L
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GBN: receiver extended FSM

ACK-only: always send an ACK for correctly-received packet with 
the highest in-order seq #
– may generate duplicate ACKs
– need only remember expectedseqnum

• out-of-order packet: 
– discard (don’t buffer) -> no receiver buffering!
– Re-ACK packet with highest in-order seq #

Wait

udt_send(reply)
L

udt_rcv(packet)
  && notcurrupt(packet)
  && hasseqnum(rcvpkt,expectedseqnum) 

rdt_rcv(data)
udt_send(ACK)
expectedseqnum++

expectedseqnum=1
L

Selective repeat
receiver individually acknowledges all correctly received packets
• buffers packets, as needed, for eventual in-order delivery to upper 

layer
sender times-out/retransmits individually for unACKed packets
• sender maintains timer for each unACKed pkt

sender window
• N consecutive seq #s
• limits seq #s of sent, unACKed packets

This is also known as Selective Acknowledgement or simply SACK



Selective repeat: sender, receiver windows Selective repeat: sender and receiver

data from above:
 if next available seq # in 

window, send packet

timeout(n):
 resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

 mark packet n as received
 if n smallest unACKed packet, 

advance window base to next 
unACKed seq # 

sender
packet n in [rcvbase, rcvbase+N-1]
 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also deliver 

buffered, in-order packets), 
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]
 ACK(n)

otherwise: 
 ignore 

receiver

Selective Repeat in action
send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

send  pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

rcv ack0, send 
pkt4

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send 
pkt5

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, buffer, 
           send ack3

record ack3 arrived
receive pkt4, buffer, 
           send ack4
receive pkt5, buffer, 
           send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Selective repeat: 
a dilemma!

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 
 seq #s: 0, 1, 2, 3 (base 4 counting)
 window size=3

Selective repeat: 
a dilemma!

Q: what relationship is needed 
between sequence # size and 
window size to avoid problem 
in scenario (b)?

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 
 seq #s: 0, 1, 2, 3 (base 4 counting)
 window size=3

 receiver can’t 
see sender side

 receiver 
behavior 
identical in both 
cases!

 something’s 
(very) wrong!

Solution:

maximum allowable window size = 
half the sequence number space.

Observations

• With sliding windows, it is possible to fully utilize a 
link, provided the window size (n) is large enough.  
Throughput is ~ (n/RTT)
– Stop & Wait is like n = 1.

• Sender has to buffer all unacknowledged packets, 
because they may require retransmission

• Receiver may be able to accept out-of-order 
packets, but only up to its buffer limits

• Implementation complexity depends on protocol 
details (GBN vs. SR)
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Recap: components of a solution
• Checksums (for error detection) 
• Timers (for loss detection) 
• Acknowledgments 

– cumulative 
– selective

• Sequence numbers (duplicates, windows)
• Sliding Windows (for efficiency) 

• Reliability protocols use the above to decide 
when and what to retransmit or acknowledge
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What does TCP do?

Most of our previous tricks + a few more beside
• Sequence numbers are byte offsets 
• Sender and receiver maintain a sliding window
• Receiver sends cumulative acknowledgements (like GBN)
• Sender maintains a single retx. timer 
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit : optimization that uses duplicate

ACKs to trigger early retx
• Introduces timeout estimation algorithms

TCP: overview  RFCs: 793,1122, 2018, 5681, 7323

 cumulative ACKs
 pipelining:
• TCP congestion and flow control 

set window size
 connection-oriented: 
• handshaking (exchange of control 

messages) initializes sender, 
receiver state before data 
exchange

 flow controlled:
• sender will not overwhelm receiver

 point-to-point:
• one sender, one receiver 

 reliable, in-order byte 
steam:
• no “message boundaries"

 full duplex data:
• bi-directional data flow in 

same connection
• MSS: maximum segment size
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux 
and demux 

What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 

98 99

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed 
over header 
and data



What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 
• Sequence numbers are byte offsets 

TCP: Segments and 
Sequence Numbers
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TCP “Stream of Bytes” Service…

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Application @ Host A

Application @ Host B
Byte 80

Byte 80
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… Provided Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Host A

Host B

Byte 80

TCP Data

TCP Data

Byte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out
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TCP Segment

• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes with Ethernet

• TCP packet
– IP packet with a TCP header and data inside
– TCP header ³ 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream
– MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP HdrTCP Data (segment)
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Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k bytes
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Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte 
offset of data
carried in this
segment
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Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

Host A
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Sequence number
Acknowledgment

Data
Sequence number

Acknowledgment

Sequence number  
= 1st byte in segment = 

ISN + k

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A- > B
DATA

Host B - > A
ACK

TCP Sequences and ACKS
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TCP is full duplex by default
•  two independently flows of sequence numbers

Sequence acknowledgement is given in terms of BYTES 
(not packets); the window is in terms of bytes.

number of packets = window size (bytes) / Segment Size

Servers and Clients are not Source and Destination

Piggybacking increases efficiency but many flows may 
only have data moving in one direction
 

What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)

ACKing and Sequence Numbers

• Sender sends packet 
– Data starts with sequence number X
– Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK
– If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)
– If highest in-order byte received is Y s.t. (Y+1) < X

• ACK acknowledges Y+1
• Even if this has been ACKed before
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Normal Pattern
• Sender: seqno=X, length=B
• Receiver: ACK=X+B
• Sender: seqno=X+B, length=B
• Receiver: ACK=X+2B
• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field

112 113

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives seqno just 
beyond highest 
seqno received in 
order
(“What Byte 
    is Next”)

What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers can buffer out-of-sequence packets (like SR)
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Loss with cumulative ACKs

• Sender sends packets with 100B and seqnos.:
– 100, 200, 300, 400, 500, 600, 700, 800, 900, …

• Assume the fifth packet (seqno 500) is lost, 
but no others

• Stream of ACKs will be:
– 200, 300, 400, 500, 500, 500, 500,…
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What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers may not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
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Loss with cumulative ACKs

• “Duplicate ACKs” are a sign of an isolated loss
– The lack of ACK progress means 500 hasn’t been delivered
– Stream of ACKs means some packets are being delivered

• Therefore, could trigger resend upon receiving k 
duplicate ACKs

• TCP uses k=3

• But response to loss is trickier….
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Loss with cumulative ACKs

• Two choices:
– Send missing packet and increase W by the number 

of dup ACKs
– Send missing packet, and wait for ACK to increase W

• Which should TCP do?
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What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and 

retransmits on timeout
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Retransmission Timeout

• If the sender hasn’t received an ACK by 
timeout, retransmit the first packet in the 
window

• How do we pick a timeout value?
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Timing Illustration

1

1

Timeout too long  inefficient

1

1

Timeout too short  
duplicate packets 

RTT

Timeout

Timeout

RTT

121

Retransmission Timeout

• If haven’t received ack by timeout, retransmit 
the first packet in the window

• How to set timeout?
– Too long: connection has low throughput
– Too short: retransmit packet that was just delayed

• Solution: make timeout proportional to RTT
• But how do we measure RTT?
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RTT Estimation
• Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime− SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)× SampleRTT
0 <α ≤1

Es
tim

at
ed

RT
T

Time

SampleRTT

123



Exponential Averaging Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant  SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)
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Problem: Ambiguous Measurements

• How do we differentiate between the real ACK, and ACK of 
the retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

ACK
Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver
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Karn/Partridge Algorithm 
Discard junk measures

• Measure SampleRTT only for original transmissions
– Once a segment has been retransmitted, do not use it for any 

further measurements
• Computes EstimatedRTT using α = 0.875

• Timeout value (RTO)  = 2 × EstimatedRTT
• Employs exponential backoff

– Every time RTO timer expires, set RTO ¬ 2·RTO
– (Up  to maximum ³ 60 sec)
– Every time new measurement comes in (= successful original 

transmission), collapse RTO back to 2 × EstimatedRTT
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Jacobson/Karels Algorithm
Add a safety margin

• Problem: need to better capture variability in RTT
–Directly measure deviation

• Deviation = | SampleRTT – EstimatedRTT |
• EstimatedDeviation: exponential average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation
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What does TCP do?

Most of our previous ideas, but some key 
differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and 

retransmits on timeout
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TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
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TCP Connection Establishment and 
Initial Sequence Numbers

134

Initial Sequence Number (ISN)
• Sequence number for the very first byte
• Why not just use ISN = 0?
• Practical issue

– IP addresses and port #s uniquely identify a connection
– Eventually, though, these port #s do get used again
– … small chance an old packet is still in flight

• TCP therefore requires changing ISN
• Hosts exchange ISNs when they establish a connection
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Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open; “synchronize sequence numbers”) to 

host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells 
its ISN to the 
other host.
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG
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Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…
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Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags
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Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data 140

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()
listen()
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What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
– Packet is lost inside the network, or:
– Server discards the packet (e.g., it’s too busy)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and waits for the SYN-ACK
– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is
– Hard to guess a reasonable length of time to wait
– SHOULD (RFCs 1122 & 2988) use default of 3 seconds

• Some implementations instead use 6 seconds
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Tearing Down the Connection
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Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one byte in the sequence space

• Other host acks the byte to confirm
• Closes A’s side of the connection, but not B’s

– Until B likewise sends a FIN
– Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

TIME_WAIT:

Avoid reincarnation
B will retransmit FIN 
if ACK is lost

Connection
now half-closed

Connection
now closed
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Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection
now closed

TIME_WAIT:
Avoid reincarnation
Can retransmit
FIN ACK if ACK lost
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Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because application process on A crashed

• That’s it
– B does not ack the RST
– Thus, RST is not delivered reliably
– And: any data in flight is lost
– But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T
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TCP State Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK 
exchanges 
are in here
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An Simpler View of the Client Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

SYN (Send)

Rcv. SYN+ACK,
 Send ACK

Send FINRcv. ACK,
 Send Nothing

Rcv. FIN, 
Send ACK
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
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• What does TCP do?
– ARQ windowing, set-up, tear-down

• Flow Control in TCP

150

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

Network layer 
delivering IP 

datagram payload 
into TCP socket 

buffers

from sender

Application removing 
data from TCP socket 

buffers



TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

Network layer 
delivering IP 

datagram payload 
into TCP socket 

buffers

from sender

Application removing 
data from TCP socket 

buffers

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

from sender

Application removing 
data from TCP socket 

buffers

receive window flow control: # bytes 
receiver willing to accept

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

receiver controls sender, so 
sender won’t overflow receiver’s 
buffer by transmitting too much, 
too fast

flow control

from sender

Application removing 
data from TCP socket 

buffers

TCP flow control
 TCP receiver “advertises” free buffer 

space in rwnd field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)
• many operating systems autoadjust 
RcvBuffer

 sender limits amount of unACKed 
(“in-flight”) data to received rwnd

 guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

TCP flow control
 TCP receiver “advertises” free buffer 

space in rwnd field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)
• many operating systems autoadjust 
RcvBuffer

 sender limits amount of unACKed 
(“in-flight”) data to received rwnd

 guarantees receive buffer will not 
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Advertised Window Limits Rate
• Sender can send no faster than W/RTT 

bytes/sec

• Receiver only advertises more space when it 
has consumed old arriving data

• In original TCP design, that was the sole
protocol mechanism controlling sender’s rate

• What’s missing?
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• What does TCP do?
– ARQ windowing, set-up, tear-down

• Flow Control in TCP
• Congestion Control in TCP

168

We have seen:
– Flow control: adjusting the sending rate to 

keep from overwhelming a slow receiver

Now lets attend…
– Congestion control: adjusting the sending rate 

to keep from overloading the network
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Congestion:
 informally: “too many sources sending too much data too fast for 

network to handle”
manifestations:
• long delays (queueing in router buffers)
• packet loss (buffer overflow at routers)

 different from flow control!

Principles of congestion control

congestion 
control: too many 

senders, sending too fast

flow control: one sender 
too fast for one receiver

 a top-10 problem!

Causes/costs of congestion: scenario 1 
Simplest scenario:

maximum per-connection 
throughput: R/2

Host A

Host 
B

throughput: 
lout

large delays as arrival 
rate lin approaches 
capacity

Q: What happens as 
arrival rate lin 
approaches R/2? 

original data: lin 

R two flows

 one router, infinite buffers 
 input, output link capacity: R infinite shared 

output link 
buffers

R no retransmissions needed

R/2

de
la

y

lin

R/2

R/2

R/2

l o
ut

lin

th
ro

ug
hp

ut
: 

Causes/costs of congestion: scenario 2
 one router, finite buffers 

Host A

Host B

lin : original data
l'in: original data, plus 

retransmitted data

finite shared output 
link buffers

 sender retransmits lost, timed-out packet
• application-layer input = application-layer output: lin = lout
• transport-layer input includes retransmissions : l’in lin

lout

RR

Host A

Host B

lin : original data
l'in: original data, plus 

retransmitted data

finite shared output 
link buffers

Causes/costs of congestion: scenario 2

copy

free buffer space!

Idealization: perfect knowledge
 sender sends only when router buffers available 

lou
t

RR

R/2lin

R/2

l o
ut

th
ro

ug
hp

ut
: 



Host A

Host B

lin : original data
l'in: original data, plus 

retransmitted data

finite shared output 
link buffers

RR

Causes/costs of congestion: scenario 2

copy

no buffer space!

Idealization: some perfect knowledge
 packets can be lost (dropped at router) due  

to full buffers
 sender knows when packet has been 

dropped: only resends if packet known to be 
lost

Host A

Host B

lin : original data
l'in: original data, plus 

retransmitted data

finite shared output 
link buffers

RR

Causes/costs of congestion: scenario 2

free buffer space!

Idealization: some perfect knowledge
 packets can be lost (dropped at router) due  

to full buffers
 sender knows when packet has been 

dropped: only resends if packet known to be 
lost

when sending at 
R/2, some 
packets are 
needed 
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

“wasted” capacity 
due to 
retransmissions

Host A

Host B

lin : original data
l'in: original data, plus 

retransmitted data

finite shared output 
link buffers

RR

Causes/costs of congestion: scenario 2

copytimeou
t

Realistic scenario: un-needed 
duplicates

 packets can be lost, dropped at router due  to 
full buffers – requiring retransmissions

 but sender times can time out prematurely, 
sending two copies, both of which are 
delivered

free buffer space!

when sending at 
R/2, some packets 
are 
retransmissions, 
including needed 
and un-needed 
duplicates, that are 
delivered!

“wasted” capacity 
due to un-needed 
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

Causes/costs of congestion: scenario 2

“costs” of congestion: 
 more work (retransmission) for given receiver throughput
 unneeded retransmissions: link carries multiple copies of a packet

• decreasing maximum achievable throughput

Realistic scenario: un-needed 
duplicates

 packets can be lost, dropped at router due  to 
full buffers – requiring retransmissions

 but sender times can time out prematurely, 
sending two copies, both of which are 
delivered

when sending at 
R/2, some packets 
are 
retransmissions, 
including needed 
and un-needed 
duplicates, that are 
delivered!

“wasted” capacity 
due to un-needed 
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

Causes/costs of congestion: scenario 3
 four senders
 multi-hop paths
 timeout/retransmit

Q: what happens as lin and lin’ increase ?

A: as red  lin’ increases, all arriving blue pkts at upper 
queue are dropped, blue throughput g 0

finite shared 
output link 

buffers

Host 
A

lout

Host 
B

Host 
C

Host 
D

lin : original data
l'in: original data, plus 

retransmitted data

Causes/costs of congestion: scenario 3

another “cost” of congestion: 
 when packet dropped, any upstream transmission capacity 

and buffering used for that packet was wasted!

R/2

R/2

l o
ut

lin
’



Causes/costs of congestion: insights

 upstream transmission capacity / 
buffering wasted for packets lost 
downstream

R/2

R/2

l o
ut

lin’

 delay increases as capacity approached 
R/2

de
la
y

lin

 un-needed duplicates further decreases 
effective throughput

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

 loss/retransmission decreases effective 
throughput

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

 throughput can never exceed capacity 

R/2lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

End-end congestion control:
• no explicit feedback from 

network
• congestion inferred from 

observed loss, delay

Approaches towards congestion control

datadataACKs ACKs

 approach taken by TCP

• TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadataACKs ACKs

explicit congestion info

Network-assisted congestion 
control:

 routers provide direct feedback 
to sending/receiving hosts with 
flows passing through congested 
router

 may indicate congestion level or 
explicitly set sending rate

Three Issues to Consider

• Discovering the available (bottleneck) 
bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows

185

Abstract View

• Ignore internal structure of router and model it as 
having a single queue for a particular input-
output pair

Sending Host Buffer in Router Receiving Host

A B
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Discovering available bandwidth

• Pick sending rate to match bottleneck bandwidth
– Without any a priori knowledge
– Could be gigabit link, could be a modem

A B100 Mbps

187



Adjusting to variations in bandwidth

• Adjust rate to match instantaneous bandwidth
– Assuming you have rough idea of bandwidth

A B
BW(t)
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Multiple flows and sharing bandwidth

Two Issues:
• Adjust total sending rate to match bandwidth
• Allocation of bandwidth between flows

A2 B2BW(t)

A1

A3 B3

B1
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Reality

Congestion control is a resource allocation problem involving many flows, 
many links, and complicated global dynamics
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View from a single flow 

• Knee – point after which 
– Throughput increases slowly
– Delay increases fast

• Cliff – point after which
– Throughput starts to drop to zero 

(congestion collapse)
– Delay approaches infinity

Load

Load
Th

ro
ug

hp
ut

De
la

y

knee cliff

congestion
collapse

packet
loss
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General Approaches

(0) Send without care
– Many packet drops
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General Approaches

(0) Send without care
(1) Reservations

– Pre-arrange bandwidth allocations
– Requires negotiation before sending packets
– Low utilization
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General Approaches

(0) Send without care
(1) Reservations
(2) Pricing

– Don’t drop packets for the high-bidders
– Requires payment model
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General Approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

– Hosts probe network; infer level of congestion; adjust 
– Network reports congestion level to hosts; hosts adjust
– Combinations of the above
– Simple to implement but suboptimal, messy dynamics
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General Approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

All three techniques have their place
• Generality of dynamic adjustment has proven powerful
• Doesn’t presume business model, traffic characteristics, 

application requirements; does assume good citizenship
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Who Takes Care of Congestion?

• Network?  End hosts? Both?

• TCP’s approach:
– End hosts adjust sending rate
– Based on implicit feedback from network

• Not the only approach
– A consequence of history rather than planning
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Some History: TCP in the 1980s

• Sending rate only limited by flow control
– Packet drops  senders (repeatedly!) retransmit a full 

window’s worth of packets 

• Led to “congestion collapse” starting Oct. 1986
– Throughput on the NSF network dropped from 

32Kbits/s to 40bits/sec

• “Fixed” by Van Jacobson’s development of TCP’s 
congestion control (CC) algorithms
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Jacobson’s Approach
• Extend TCP’s existing window-based protocol but adapt the 

window size in response to congestion
– required no upgrades to routers or applications!
– patch of a few lines of code to TCP implementations

• A pragmatic and effective solution 
– but many other approaches exist

• Extensively improved on since 
– topic now sees less activity in ISP contexts 
– but is making a comeback in datacenter environments
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TCP’s Approach in a Nutshell

• TCP connection has window
– Controls number of packets in flight 

• Sending rate: ~Window/RTT

• Vary window size to control sending rate

200

Windows, Buffers, and TCP

201

Windows, Buffers, and TCP

• TCP connection has a window
– Controls number of packets in flight; 

filling a channel to improve throughput, and
vary window size to control sending rate

• Buffers adapt mis-matched channels 
– Buffers smooth bursts
– Adapt (re-time) arrivals  for multiplexing

202

Windows, Buffers, and TCP

Buffers & TCP can make link utilization 100%

but

Buffers add delay, variable delay
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Sizing Buffers in Routers

204

– Packet loss
• Queue overload, and subsequent packet loss

– End-to-end delay
• Transmission, propagation, and queueing delay
• The only variable part is queueing delay

– Router architecture
• Board space, power consumption, and cost
• On chip buffers: higher density, higher capacity

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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206 207

Rule-of-thumb – Intuition 
Rule for adjusting W
 If an ACK is received: W ← W+1/W
 If a packet is lost:  W ← W/2

Only W packets 
may be outstanding

Source Dest

t

Window size
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Buffers in Routers
So how large should the buffers be? 

209

Buffer size matters

•
– End-to-end delay

• Transmission, propagation, and queueing delay
• The only variable part is queueing delay

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )

210

Buffers in Routers
So how large should the buffers be? 

211

Buffer size matters

•

•
•

– Router architecture
• Board space, power consumption, and cost
• On chip buffers: higher density, higher capacity



Synchronized Flows Many TCP Flows
• Aggregate window has same 

dynamics
• Therefore buffer occupancy has 

same dynamics
• Rule-of-thumb still holds.

• Independent, desynchronized
• Central limit theorem says the 

aggregate becomes Gaussian
• Variance (buffer size) 

decreases as N increases

Small Buffers – Intuition 

Probability
Distribution

t

Buffer Size

t
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Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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What size do we make the buffer?

Well it depends…

One TCP connection?

 Many Synchronized TCP connections?

  Just TCP – what about other applications?

   Small BDP link?

    Large BDP link?

     How many devices?

      W of flows?

       How many flows?

How much do you know about your traffic?

    What is best for your traffic?

TCP’s Approach in a Nutshell

• TCP connection has window
– Controls number of packets in flight 

• Sending rate: ~Window/RTT

• Vary window size to control sending rate
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All These Windows…

• Congestion Window: CWND
– How many bytes can be sent without overflowing routers
– Computed by the sender using congestion control algorithm

• Flow control window: AdvertisedWindow (RWND)
– How many bytes can be sent without overflowing receiver’s buffers
– Determined by the receiver and reported to the sender

• Sender-side window = minimum{CWND,RWND}
• Assume for this material that RWND >> CWND
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Note

• This lecture will talk about CWND in units of 
MSS 
– (Recall MSS: Maximum Segment Size, the amount of 

payload data in a TCP packet)
– This is only for pedagogical purposes

• In reality this is a SIMPLICATION:
Real implementations maintain CWND in bytes
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Two Basic Questions

• How does the sender detect congestion?

• How does the sender adjust its sending rate?
– To address three issues

• Finding available bottleneck bandwidth
• Adjusting to bandwidth variations
• Sharing bandwidth
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(Recall) Detecting Congestion
• Packet delays 

– Tricky: noisy signal (delay often varies considerably)

• Router tell end-hosts they’re congested

• Packet loss
– Fail-safe signal that TCP already has to detect
– Complication: non-congestive loss (checksum errors)

• Two indicators of packet loss
– No ACK after certain time interval: timeout
– Multiple duplicate ACKs
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Not All Losses the Same

• Duplicate ACKs: isolated loss
– Still getting ACKs

• Timeout: much more serious
– Not enough packets in progress to trigger 

duplicate-acks, OR
– Suffered several losses

• We will adjust rate differently for each case
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Rate Adjustment

• Basic structure:
– Upon receipt of ACK (of new data): increase rate
– Upon detection of loss: decrease rate

• How we increase/decrease the rate depends on 
the phase of congestion control we’re in: 
– Discovering available bottleneck bandwidth vs.
– Adjusting to bandwidth variations
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Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth 
– start slow (for safety) 
– but ramp up quickly (for efficiency) 

• Consider
– RTT = 100ms, MSS=1000bytes
– Window size to fill 1Mbps of BW = 12.5 packets
– Window size to fill 1Gbps = 12,500 packets
– Either is possible! 
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“Slow Start” Phase
• Sender starts at a slow rate but increases 
exponentially until first loss

• Start with a small congestion window
– Initially, CWND = 1
– So, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss 
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Slow Start in Action

• For each RTT: double CWND

• Simpler implementation: for each ACK, CWND += 1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8
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Adjusting to Varying Bandwidth

• Slow start gave an estimate of available bandwidth 

• Now, want to track variations in this available 
bandwidth, oscillating around its current value
– Repeated probing (rate increase) and backoff (rate 

decrease)

• TCP uses: “Additive Increase Multiplicative 
Decrease” (AIMD)
– We’ll see why shortly…
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AIMD

• Additive increase
– Window grows by one MSS for every RTT with no 

loss
– For each successful RTT, CWND = CWND + 1
– Simple implementation: 

• for each ACK, CWND = CWND+ 1/CWND

• Multiplicative decrease
– On loss of packet, divide congestion window in half
– On loss, CWND = CWND/2
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Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Window
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Slow-Start vs. AIMD

• When does a sender stop Slow-Start and start 
Additive Increase?

• Introduce a “slow start threshold” (ssthresh)
– Initialized to a large value
– On timeout, ssthresh = CWND/2

• When CWND = ssthresh, sender switches from 
slow-start to AIMD-style increase

227
227

• What does TCP do?
– ARQ windowing, set-up, tear-down

• Flow Control in TCP
• Congestion Control in TCP

– AIMD (slow-start, congestion avoidance)
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• What does TCP do?
– ARQ windowing, set-up, tear-down

• Flow Control in TCP
• Congestion Control in TCP

– AIMD (slow-start, congestion avoidance)
and Fast-Recovery
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One Final Phase: Fast Recovery

• The problem: congestion avoidance too slow 
in recovering from an isolated loss 
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Example (in units of MSS, not bytes)

• Consider a TCP connection with:
– CWND=10 packets
– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight
– Packet 101 is dropped
– What ACKs do they generate?
– And how does the sender respond?
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The problem – A timeline
• ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
• ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
• ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
• RETRANSMIT 101 ssthresh=5  cwnd= 5
• ACK 101 (due to 105)  cwnd=5 + 1/5 (no xmit)
• ACK 101 (due to 106)  cwnd=5 + 2/5 (no xmit)
• ACK 101 (due to 107)  cwnd=5 + 3/5 (no xmit)
• ACK 101 (due to 108)  cwnd=5 + 4/5 (no xmit)
• ACK 101 (due to 109)  cwnd=5 + 5/5 (no xmit)
• ACK 101 (due to 110)  cwnd=6 + 1/5 (no xmit)
• ACK 111 (due to 101)   only now can we transmit new packets
• Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for 

another RTT
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Solution: Fast Recovery
Idea: Grant the sender temporary “credit” for each dupACK so as 
to keep packets in flight

• If dupACKcount = 3 
– ssthresh = cwnd/2
– cwnd = ssthresh + 3

• While in fast recovery
– cwnd = cwnd + 1 for each additional duplicate ACK

• Exit fast recovery after receiving new ACK
– set cwnd = ssthresh
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Example

• Consider a TCP connection with:
– CWND=10 packets
– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight
– Packet 101 is dropped
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Timeline
• ACK 101 (due to 102)  cwnd=10  dup#1
• ACK 101 (due to 103)  cwnd=10  dup#2
• ACK 101 (due to 104)  cwnd=10  dup#3
• REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
• ACK 101 (due to 105)  cwnd= 9 (no xmit)
• ACK 101 (due to 106)  cwnd=10 (no xmit)
• ACK 101 (due to 107)  cwnd=11 (xmit 111)
• ACK 101 (due to 108)  cwnd=12 (xmit 112)
• ACK 101 (due to 109)  cwnd=13 (xmit 113)
• ACK 101 (due to 110)  cwnd=14 (xmit 114)
• ACK 111 (due to 101) cwnd = 5 (xmit 115)   exiting fast recovery
• Packets 111-114 already in flight
• ACK 112 (due to 111) cwnd = 5 + 1/5   back in congestion avoidance



Summary: TCP congestion control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment 

L
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment 

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment 

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK! • What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP
• Congestion Control in TCP

– AIMD (slow-start, congestion avoidance)
and Fast-Recovery

Congestion avoidance algorithm has been a fertile
field…. 
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TCP Flavors 

• TCP-Tahoe
– cwnd =1 on triple dupACK

• TCP-Reno
– cwnd =1 on timeout
– cwnd = cwnd/2 on triple dupack

• TCP-newReno
– TCP-Reno + improved fast recovery

• TCP-SACK
– incorporates selective acknowledgements 

TCP Throughput Equation
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A

A Simple Model for TCP Throughput

Loss

t

cwnd

1

RTT

maxW

2
maxW

½ Wmax RTTs between drops
 

Avg. ¾ Wmax packets per RTTs
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A

A Simple Model for TCP Throughput

Loss

t

cwnd

maxW

2
maxW

Packet drop rate, p =1/ A,  where A = 3
8
Wmax

2

Throughput, B = A
Wmax

2
!

"
#

$

%
&RTT

=
3
2

1
RTT p
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Implications (1): Different RTTs

• Flows get throughput inversely proportional to RTT
• TCP unfair in the face of heterogeneous RTTs!

Throughput = 3
2

1
RTT p

A1

A2 B2

B1

bottleneck
link

100ms

200ms
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Implications (2): High Speed TCP

• Assume RTT = 100ms, MSS=1500bytes

• What value of p is required to reach 100Gbps throughput
– ~ 2 x 10-12

• How long between drops?
– ~ 16.6 hours

• How much data has been sent in this time?
– ~ 6 petabits

• These are not practical numbers!

Throughput = 3
2

1
RTT p
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Adapting TCP to High Speed

– Once past a threshold speed, increase CWND faster 
– A proposed standard [Floyd’03]: once speed is past some threshold, 

change equation to p-.8 rather than p-.5 

– Let the additive constant in AIMD depend on CWND

• Other approaches?
– Multiple simultaneous connections (hacky but works 

today)
– Router-assisted approaches (will see shortly)
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Implications (3): Rate-based CC

• TCP throughput is “choppy” 
– repeated swings between W/2 to W

• Some apps would prefer sending at a steady rate 
– e.g., streaming apps

• A solution: “Equation-Based Congestion Control” 
– ditch TCP’s increase/decrease rules and just follow the equation
– measure drop percentage p, and set rate accordingly

• Following the TCP equation ensures we’re “TCP friendly”
– i.e., use no more than TCP does in similar setting

Throughput = 3
2

1
RTT p
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TCP CUBIC
 Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher 
throughput in this 
example

 Insight/intuition: 
• Wmax: sending rate at which congestion loss was detected
• congestion state of bottleneck link probably (?) hasn’t changed much
• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then 

approach Wmax more slowly

TCP CUBIC
 K: point in time when TCP window size will reach Wmax

• K itself is tuneable

• larger increases when further away from K
• smaller increases (cautious) when nearer K

TCP
sending 

rate

time

TCP Reno
TCP CUBIC

Wmax

t0 t1 t2 t3 t4 

 TCP CUBIC default 
in Linux, most 
popular TCP for 
popular Web 
servers

 increase W as a function of the cube of the distance between current 
time  and K



TCP and the congested “bottleneck link”
 TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 

at some router’s output: the bottleneck link

source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

bottleneck link (almost always busy)

packet queue almost 
never empty, sometimes 

overflows packet (loss)

TCP and the congested “bottleneck link”
 TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 

at some router’s output: the bottleneck link

source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will 
not increase end-end throughout 
with congested bottleneck

insight: increasing TCP 
sending rate will 

increase measured 
RTT

RTT
Goal: “keep the end-end pipe just full, but not fuller”

Delay-based TCP congestion control
Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep 
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:
 RTTmin - minimum observed RTT (uncongested path)
 uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to  uncongested throughput
        increase cwnd linearly                /* since path not congested */ 
else if measured throughput “far below” uncongested throughout
      decrease cwnd linearly /* since path is congested */

RTTmeasured

measured 
throughput =

# bytes sent in 
last RTT interval

Delay-based TCP congestion control

 congestion control without inducing/forcing loss
 maximizing throughout (“keeping the just pipe full… ”) while keeping 

delay low (“…but not fuller”)
 a number of deployed TCPs take a delay-based approach
 BBR deployed on Google’s (internal) backbone network

Recap: TCP problems

• Misled by non-congestion losses
• Fills up queues leading to high delays
• Short flows complete before discovering available capacity
• AIMD impractical for high speed links 
• Sawtooth discovery too choppy for some apps
• Unfair under heterogeneous RTTs
• Tight coupling with reliability mechanisms
• Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endpoints 
  if they’re congested

Routers tell
 endpoints what 
rate to send at

Routers enforce
fair sharing
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Router-Assisted Congestion Control

• Three tasks for CC:
– Isolation/fairness
– Adjustment*
– Detecting congestion

* This may be automatic eg loss-response of TCP
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How can routers ensure each flow gets its “fair 
share”?
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Fairness: General Approach

• Routers classify packets into “flows”
– (For now) flows are packets between same source/destination

• Each flow has its own FIFO queue in router

• Router services flows in a fair fashion
– When line becomes free, take packet from next flow in a fair order

• What does “fair” mean exactly?
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Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth 

C, max-min bandwidth allocations are:
ai = min(f, ri) 

where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s
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Example
• C = 10;    r1 = 8, r2 = 6, r3 = 2;    N = 3
• C/3 = 3.33 ®

– Can service all of r3

– Remove r3 from the accounting: C = C – r3 = 8; N = 2
• C/2 = 4 ®

– Can’t service all of r1 or r2

– So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:  
min(8, 4) = 4 
min(6, 4) = 4 
min(2, 4) = 2 

10
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Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth 

C, max-min bandwidth allocations are:
ai = min(f, ri) 

• where f is the unique value such that Sum(ai) = C

• Property:
– If you don’t get full demand, no one gets more than you

• This is what round-robin service gives if all packets are 
the same size
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How do we deal with packets of 
different sizes?

• Mental model: Bit-by-bit round robin (“fluid 
flow”) 

• Can you do this in practice?

• No, packets cannot be preempted

• But we can approximate it 
– This is what “fair queuing” routers do
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Fair Queuing (FQ) 

• For each packet, compute the time at which 
the last bit of a packet would have left the 
router if flows are served bit-by-bit

• Then serve packets in the increasing order of 
their deadlines
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Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow 

system

FQ
Packet
system

time

time

time

time
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Fair Queuing (FQ)

• Think of it as an implementation of round-robin generalized 
to the case where not all packets are equal sized

• Weighted fair queuing (WFQ): assign different flows 
different shares

• Today, some form of WFQ implemented in almost all routers
– Not the case in the 1980-90s, when CC was being developed
– Mostly used to isolate traffic at larger granularities (e.g., per-prefix) 

269

FQ vs. FIFO

• FQ advantages: 
– Isolation: cheating flows don’t benefit
– Bandwidth share does not depend on RTT
– Flows can pick any rate adjustment scheme they 

want

• Disadvantages:
– More complex than FIFO: per flow queue/state, 

additional per-packet book-keeping 

FQ in the big picture

• FQ does not eliminate congestion  it just 
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
 0.5Gbps; any excess 

will be dropped

Will drop an additional
400Mbps from 
the green flow 

If the green flow doesn’t drop its sending rate to 
100Mbps, we’re wasting 400Mbps that could be 

usefully given to the blue flow

FQ in the big picture
• FQ does not eliminate congestion  it just 

manages the congestion
– robust to cheating, variations in RTT, details of delay, 

reordering, retransmission, etc.

• But congestion (and packet drops) still occurs

• And we still want end-hosts to discover/adapt to 
their fair share!

• What would the end-to-end argument say w.r.t. 
congestion control?



Fairness is a controversial goal
• What if you have 8 flows, and I have 4?

– Why should you get twice the bandwidth

• What if your flow goes over 4 congested hops, and mine only 
goes over 1?
– Why shouldn’t you be penalized for using more scarce bandwidth?

• And what is a flow anyway?
– TCP connection
– Source-Destination pair?
– Source?

Explicit Congestion Notification (ECN)

• Single bit in packet header; set by congested routers
– If data packet has bit set, then ACK has ECN bit set

• Many options for when routers set the bit
– tradeoff between (link) utilization and (packet) delay

• Congestion semantics can be exactly like that of drop
– I.e., endhost reacts as though it saw a drop

• Advantages:
– Don’t confuse corruption with congestion; recovery w/ rate adjustment
– Can serve as an early indicator of congestion to avoid delays
– Easy (easier) to incrementally deploy 

• defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)
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source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

Explicit congestion notification (ECN)
TCP deployments often implement network-assisted congestion control:
 two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator
 congestion indication carried to destination
 destination sets ECE bit on ACK segment to notify sender of congestion
 involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Securing TCP
Vanilla TCP & UDP sockets:
 no encryption
 cleartext passwords sent into socket 

traverse Internet  in cleartext (!)
Transport Layer Security (TLS) 
 provides encrypted TCP connections
 data integrity
 end-point authentication

TLS implemented in 
application layer
 apps use TLS libraries, that 

use TCP in turn
 cleartext sent into “socket”  

traverse Internet  encrypted

SSL vs. TLS
Simple: SSL is deprecated

TLS refers to secure socket 
layers in actual use. Application Layer: 2-281

Transport Recap
A “big bag”:

Multiplexing, reliability, error-detection, error-recovery,
flow and congestion control, ….

• UDP:
– Minimalist - multiplexing and error detection

• TCP: 
– somewhat hacky
– but practical/deployable
– good enough to have raised the bar for the deployment of new approaches 
– though the needs of datacenters change the status quos

• Beyond TCP (discussed in Topic 6):
– QUIC / application-aware transport layers
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Topic 6 – Applications

• Infrastructure Services (DNS)
– Now with added security…

• Traditional Applications (web)
– Now with added QUIC

• P2P Networks
– Every device serves

2

Some network apps

 social networking
 Web
 text messaging
 e-mail
 multi-user network games
 streaming stored video 

(YouTube, Hulu, Netflix) 
 P2P file sharing

 voice over IP (e.g., Skype)
 real-time video 

conferencing (e.g., Zoom)
 Internet search
 remote login
 …

Q: your favorites?

mobile network

home network

enterprise
          network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

Creating a network app
write programs that:
 run on (different) end systems
 communicate over network
 e.g., web server software 

communicates with browser software

no need to write software for 
network-core devices
 network-core devices do not run user 

applications 
 applications on end systems  allows 

for rapid app development, 
propagation

mobile network

home network

enterprise
          network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

Client-server paradigm
server: 
 always-on host
 permanent IP address
 often in data centers, for scaling

clients:
 contact, communicate with server
 may be intermittently connected
 may have dynamic IP addresses
 do not communicate directly with 

each other
 examples: HTTP, IMAP, FTP

mobile network

home network

enterprise
          network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

Peer-peer architecture
 no always-on server
 arbitrary end systems directly 

communicate
 peers request service from other 

peers, provide service in return to 
other peers
• self scalability – new peers bring new 

service capacity, as well as new service 
demands

 peers are intermittently connected 
and change IP addresses
• complex management

 example: P2P file sharing

An application-layer protocol defines:

 types of messages exchanged, 
• e.g., request, response 

message syntax:
• what fields in messages & 

how fields are delineated
message semantics 
• meaning of information in 

fields
 rules for when and how 

processes send & respond to 
messages

open protocols:
 defined in RFCs, everyone 

has access to protocol 
definition

 allows for interoperability
 e.g., HTTP, SMTP
proprietary protocols:
 e.g., Skype, Zoom
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Relationship Between 
Names&Addresses

• Addresses can change underneath
– Move www.bbc.co.uk to 212.58.246.92
– Humans/Apps should be unaffected

• Name could map to multiple IP addresses
– www.bbc.co.uk to multiple replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers

• Multiple names for the same address
– E.g., aliases like www.bbc.co.uk and bbc.co.uk
– Mnemonic stable name, and dynamic canonical name

• Canonical name = actual name of host

DNS: Domain Name System
people: many identifiers:
• NI #, name, passport #

Internet hosts, routers:
• IP address (32 bit or 128bit) - 

used for addressing datagrams
• “name”, e.g., cam.ac.uk- used 

by humans

Q: how to map between IP 
address and name, and vice 
versa ?

Domain Name System (DNS):
 distributed database implemented in 

hierarchy of many name servers
 application-layer protocol: hosts, DNS 

servers communicate to resolve 
names (address/name translation)
• note: core Internet function, 

implemented as application-layer 
protocol
• complexity at network’s “edge”

DNS: services, structure
Q: Why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

DNS services:
hostname-to-IP-address translation
host aliasing
• canonical, alias names

 mail server aliasing
 load distribution
• replicated Web servers: many IP 

addresses correspond to one 
name

A: doesn‘t scale!
 Comcast DNS servers alone: 

770B DNS queries/day
 Akamai DNS servers alone: 

2.6T DNS queries/day

Thinking about the DNS
humongous distributed database:
 ~ billion records, each simple

handles many trillions of queries/day:
many more reads than writes
 performance matters:  almost every 

Internet transaction interacts with 
DNS - msecs count!

organizationally, physically decentralized:
millions of different organizations 

responsible for their records

“bulletproof”: reliability, security

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com; 1st approximation:
 client queries root server to find .com DNS server
 client queries .com DNS server to get amazon.com DNS server
 client queries amazon.com DNS server to get  IP address for www.amazon.com

.com DNS servers .org DNS servers .edu DNS servers

… …

Top Level Domain

Root DNS Servers Root

nyu.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers Authoritative

…… … …

DNS: root name servers
 official, contact-of-last-resort by 

name servers that can not 
resolve name



DNS: root name servers
 official, contact-of-last-resort by 

name servers that can not resolve 
name

 incredibly important Internet 
function

• Internet couldn’t function without it!
• DNSSEC – provides security 

(authentication, message integrity)

 ICANN (Internet Corporation for Assigned 
Names and Numbers) manages root 
DNS domain

13 logical root name “servers” 
worldwide each “server” replicated 

many times (~200 servers in US)

Top-Level Domain, and authoritative servers
Top-Level Domain (TLD) servers:
 responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all top-level 

country domains, e.g.: .cn, .uk, .fr, .ca, .jp
 Network Solutions: authoritative registry for .com, .net TLD
 Educause: .edu TLD

authoritative DNS servers: 
 organization’s own DNS server(s), providing authoritative hostname to IP 

mappings for organization’s named hosts 
 can be maintained by organization or service provider
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Using DNS
• Two components

– DNS servers
– Resolver software on each hosts

• Local DNS server (“default name server”)
– Usually near the endhosts that use it
– each ISP has local DNS name server; to find yours: 

• MacOS: % scutil --dns
• Windows: >ipconfig /all

• Client application
– Extract server name (e.g., from the URL)
– Do gethostbyname() to trigger resolver code

Local DNS name servers

 when host makes DNS query, it is sent to its local DNS server
• Local DNS server returns reply, answering:

• from its local cache of recent name-to-address translation pairs (possibly out 
of date!)

• forwarding request into DNS hierarchy for resolution
• each ISP has local DNS name server; to find yours: 

• MacOS: % scutil --dns
• Windows: >ipconfig /all

 local DNS server doesn’t strictly belong to hierarchy, acting as 
they do on behalf of other hosts.

local DNS server
dns.cam.ac.uk
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requesting host
cl.cam.ac.uk www.stanford.edu

root DNS server

1

2
3

4

5

6

authoritative DNS server
dns.stanford.edu

78

TLD DNS server

How Does Resolution Happen?
(Iterative example)

Host at cl.cam.ac.uk
wants IP address for 
www.stanford.edu

iterated query:
• Host enquiry is delegated 

to local DNS server
• Consider
 transactions 2 – 7 only
• contacted server replies 

with name of next server 
to contact

• “I don’t know this name, 
but ask this server”

19

requesting host
cl.cam.ac.uk

www.stanford.edu

root DNS server

local DNS server
dns.cam.ac.uk

1

2

45

6

authoritative DNS server
dns.stanford.edu

7

8

TLD DNS server

3recursive query:
• puts burden of name 

resolution on contacted 
name server

• heavy load? 

DNS name resolution recursive example



20

Recursive and Iterative Queries - Hybrid case
recursive query:
• Ask server to get 

answer for you
• E.g., requests 1,2 

and responses 9,10

Interative query:
• Ask server who 

to ask next
• E.g., all other 

request-response 
pairs

requesting host
my-host.cl.cam.ac.uk

root DNS server

3
4

5

6

7

authoritative DNS server
dns.stanford.edu

8

TLD DNS server

Site DNS server
dns.cam.ac.uk

2 9

1 10

Site DNS server
dns0.cl.cam.ac.uk
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DNS Caching
• Performing all these queries takes time

– And all this before actual communication takes place
– E.g., 1-second latency before starting Web download

• Caching greatly reduces overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.bbc.co.uk) visited often
– Local DNS servers have regularly used information cached

• How DNS caching works
– DNS servers will cache responses to queries
– Responses include a “time to live” (TTL) field
– Server deletes cached entry after TTL expires
– Cached entries may be out-of-date

• if named host changes IP address, may not be known Internet-wide until all TTLs expire!
• best-effort name-to-address translation!
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Reliability
• DNS servers are replicated 

– Name service available if at least one replica is up
– Queries can be load-balanced between replicas

• Anycast provides reliability for ROOT servers
• Usually, UDP is used for queries

– Need reliability: must implement this on top of UDP
– DNS spec. supports TCP too, but not always available

• Try alternate servers on timeout
– Exponential backoff when retrying same server

• Same identifier for all queries
– Don’t care which server responds

DNS records
DNS: distributed database storing resource records (RR)

type=NS
 name is domain (e.g., foo.com)
 value is hostname of 

authoritative name server for 
this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname
 value is IP address

type=CNAME
 name is alias name for some “canonical” 

(the real) name
 www.ibm.com is really 

servereast.backup2.ibm.com
 value is canonical name
type=MX

 value is name of SMTP mail 
server associated with name

identification flags

# questions

questions (variable # of questions)

# additional RRs# authority RRs

# answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol messages
DNS query and reply messages, both have same  format:

message header:
 identification: 16 bit # for query, 

reply to query uses same #
 flags:

• query or reply
• recursion desired 
• recursion available
• reply is authoritative

identification flags

# questions

questions (variable # of questions)

# additional RRs# authority RRs

# answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS query and reply messages, both have same  format:

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may 
be used

DNS protocol messages



Getting your info into the DNS
example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar (e.g., Network 

Solutions)
• provide names, IP addresses of authoritative name server (primary and 

secondary)
• registrar inserts NS, A RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)

 (dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com
• type MX record for networkutopia.com

Most popular TLD
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At least WORKGROUP is no
longer here!

It was the top invalid TLD for years…

7 of top 10
invalid!

Secondary
DNS

primary
DNS

Registrars
& Registrants

Registry

Secondary
DNS

Data flow through the DNS
Where are the vulnerable
points?

Server vulnerability

Man in the Middle

spoofing
&

Man in the Middle

DNS attack surface

DDoS attacks
 bombard root servers with 

traffic
• not successful to date
• traffic filtering
• local DNS servers cache IPs of TLD 

servers, allowing root server 
bypass

 bombard TLD servers
• potentially more dangerous

Spoofing  attacks
 intercept DNS queries, 

returning bogus replies
 DNS cache poisoning
 RFC 4033: DNSSEC 

authentication services

DNS Security
• No way to verify answers

– Opens up DNS to many potential attacks
– DNSSEC fixes this

• Most obvious vulnerability: recursive resolution
– Using recursive resolution, host must trust DNS server
– When at Starbucks, server is under their control

And can return whatever values it wants

• More subtle attack: Cache poisoning
– Those “additional” records can be anything!
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DNSSEC protects all these end-to-end

• provides message authentication and integrity verification through 
cryptographic signatures
– You know who provided the signature
– No modifications between signing and validation

• It does not provide authorization
• It does not provide confidentiality
• It does not provide protection against DDOS



DNSSEC in practice

Problem: Scaling the key signing and key distribution
Solution: Using the DNS to Distribute Keys

• Distribute keys through the DNS hierarchy
– Use one trusted key to establish authenticity of other keys
– Building chains of trust from the root down
– Parents need to sign the keys of their children

• Only the root key needed in ideal world
– Parents always delegate security to child
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On osx “host –av www.cl.cam.ac.uk
% host -va www.cl.cam.ac.uk

Trying "www.cl.cam.ac.uk"
Trying "www.cl.cam.ac.uk"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25214
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 23, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.cl.cam.ac.uk. IN ANY

;; ANSWER SECTION:
www.cl.cam.ac.uk. 1200 IN RRSIG NSEC 5 5 1200 20230317214336 20230215204336 31575 cl.cam.ac.uk. 
h2JCZHfF9m+jqvHQR6z67LDC3g1xKoCRDmrss+LVrAXJqWsi+d8+/Gio /U07C2SXKGa3NXj5ByNvqH2HJs6Loc1emEEeiPlSYqkOUSGTLRQhlEqy 
bHEfeCPV4hJy/NSuRvcxZCqpgEDSbF5K0JzqI6dnPCoOoMFdSrA4n9OT kDQ=
www.cl.cam.ac.uk. 1200 IN NSEC www-443-120.cl.cam.ac.uk. A PTR TXT AAAA SSHFP RRSIG NSEC CAA
www.cl.cam.ac.uk. 21600 IN RRSIG SSHFP 5 5 21600 20230306104604 20230204102237 31575 cl.cam.ac.uk. 
kfCKxAD9cyLJDj/UEJl7Sr8b55yH8dxfYc+BF9tgcqbReo2GNLQelOZN rB5JAhoewZ9HxlASO5rzCX1BR9AP0H+Rk7BNbDp8rvnO9G8PWGQcpKHm 
BJWb9nj2a/zi360WCUGH/u8GlPxw0L7b2P460DYxE4wDmL3jNjvw61Ca Y3g=
www.cl.cam.ac.uk. 21600 IN SSHFP 3 2 B7E1DF5B943C481A263307EDEE23F0719858CDF516F2482B54A4B248 0118CAE9
www.cl.cam.ac.uk. 21600 IN SSHFP 2 1 6FB539DBE0E273B56327E619BB1814DB4CE810D8
www.cl.cam.ac.uk. 21600 IN SSHFP 4 2 293F122F4D4970C42B767898C5505C3EB838E0C5BB432EF36AF33C03 1FA792FA
www.cl.cam.ac.uk. 21600 IN SSHFP 4 1 5E0CBE0730922925C446DF1B2DCE336AA7565122
www.cl.cam.ac.uk. 21600 IN SSHFP 1 1 FF45237DF493102CF7478AE0A96DE773FB4877C4
www.cl.cam.ac.uk. 21600 IN SSHFP 1 2 2953D9172EC850D2A46FA0245DFFAE978EE31B3BED233DED77BC937B 115952D7
www.cl.cam.ac.uk. 21600 IN SSHFP 3 1 FD276CF12A0B909533ABFA5931622950308AF099
www.cl.cam.ac.uk. 21600 IN SSHFP 2 2 403A5EE7B8ADD3E16B5973874E54CDFAC82268CC63B4CFD90E74DDC6 4E2EDF6F
www.cl.cam.ac.uk. 21600 IN RRSIG AAAA 5 5 21600 20230316213444 20230214203939 31575 cl.cam.ac.uk. 
eVJM0NwnGPVC9y+96IJq48feYCDxTlEZ66fcH83aO2VFXoCblJkLUCoK e0TeobR+mnLad0XJFUocfjKorIV6s1CNzG90nmV1+dxQD1VBxQzBrV9A 
k+JqokUQbkvb0UsV4UIWUvRav0M1GccXS5Nxzl/HDITMyVXMZx/Citlr lgU=
www.cl.cam.ac.uk. 21600 IN AAAA 2a05:b400:110::80:14
www.cl.cam.ac.uk. 21600 IN RRSIG TXT 5 5 21600 20230321232700 20230219230148 31575 cl.cam.ac.uk. 
Tjlztn2dsdjr5wGAkuPVTy/0V/BBTDEC3K8x7nNnml9dRoy/ncRLWEyA 9XsxENQ2Oei7evt6pelFstpVwny6F9nMs+xAFYDiX0PpcJ4pZMNADOgs 
BNXhR2XS0IknnuqUuWPlH1WTFZqBd27gIsQ0F+79Atj3MHQ5hBZlCS0n EoE=
www.cl.cam.ac.uk. 21600 IN TXT "pseudo IP address for cl.cam.ac.uk departmental WWW server (IPv4 and IPv6)"
www.cl.cam.ac.uk. 21600 IN RRSIG PTR 5 5 21600 20230314163841 20230212160205 31575 cl.cam.ac.uk. 
gceJom14zzcCsdYuU2ymxuMABhlZO6VDIp8J4seDqDt09924Avcpl2P9 5wlDds02a0JGTqbnnDiydKFgOA6fJHNMCEbAQr6GVjl/Fg+YLWH8YwLx 
Uu9q7FgmZyXLk67wC9ji17VZ3V9Co5Kd2kWuDOvp7Xb5OeyPKAll//tL BDk=
www.cl.cam.ac.uk. 21600 IN PTR svr-www-00.cl.cam.ac.uk.
www.cl.cam.ac.uk. 21600 IN RRSIG A 5 5 21600 20230314163841 20230212160205 31575 cl.cam.ac.uk. 
j8k+Q8L2C7zzHSvpWpg+1t5WPk9IeTZ9GOvw/0v1pbYVXJfeHuNm9ERM Ff/hEkZm21ooFIBtrbTe/m5b+kBBm2OETDbbGP+na3/DEQyWFp0sHe6j 
S2ZS9KeOXENJk92eA+/dBAWe0vFvTpXrZ/thp61ctqm9b3mR8AbnuNgu uHs=
www.cl.cam.ac.uk. 21600 IN A 128.232.0.20
www.cl.cam.ac.uk. 600 IN CAA 0 issuewild ";"
www.cl.cam.ac.uk. 600 IN CAA 0 issue "quovadisglobal.com"
www.cl.cam.ac.uk. 600 IN CAA 0 issue "letsencrypt.org"
www.cl.cam.ac.uk. 600 IN RRSIG CAA 5 5 600 20230324004125 20230222002906 31575 cl.cam.ac.uk. 
A930aBg5uKP2l2aYxJ1gbCSnbR/o8n8oOs54fBOSUOkE55YmQWRNkNEW AGuuJltIz0I/lJ9eH4Jf+VL7KO1AimzS2ae6GXnXogP3shaz16jh+psX 
rRQhKa2S0LcfRJM2j3ltct88AewpLk4nrv5rlvCS2yumGQlvKaMuEaga R14=

Received 1858 bytes from 2a05:b400:110::d:0#53 in 2 ms
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Why is the web so 
successful?

• What do the web, youtube, facebook, twitter, instagram, …..  
have in common?
– The ability to self-publish

• Self-publishing that is easy, independent, free

• No interest in collaborative and idealistic endeavors
– People aren’t looking for Nirvana (or even Xanadu)
– People also aren’t looking for technical perfection

• Want to make their mark, and find something neat
– Two sides of the same coin, creates synergy 
– “Performance” more important than dialogue….
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Web and HTTP
First, a quick review…
 web page consists of objects, each of which can be stored on 

different Web servers
 object can be HTML file, JPEG image, Java applet, audio 

file,…
 web page consists of base HTML-file which includes several 

referenced objects, each addressable by a URL, e.g.,

www.university.ac.uk/someDept/pic.gif

host name path name

HTTP overview
HTTP: hypertext transfer protocol
 Web’s application-layer protocol
 client/server model:
• client: browser that requests, 

receives, (using HTTP protocol) and 
“displays” Web objects 
• server: Web server sends (using 

HTTP protocol) objects in response 
to requests

HTTP requestHTTP response

HTTP request

HTTP response

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

HTTP overview (continued)
HTTP uses TCP:
 client initiates TCP connection 

(creates socket) to server,  port 80
 server accepts TCP connection 

from client
 HTTP messages (application-layer 

protocol messages) exchanged 
between browser (HTTP client) and 
Web server (HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no 

information about past client 
requests

protocols that maintain “state” 
are complex!

 past history (state) must be 
maintained

 if server/client crashes, their views 
of “state” may be inconsistent, 
must be reconciled

Reminder: Distributed Systems are Hard!



HTTP connections: two types
Non-persistent HTTP
1. TCP connection opened
2. at most one object sent 

over TCP connection
3. TCP connection closed

downloading multiple 
objects required multiple 
connections

Persistent HTTP
TCP connection opened to 

a server
multiple objects can be 

sent over single TCP 
connection between 
client, and that server

TCP connection closed

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates TCP 
connection to HTTP server 
(process) at www.university.ac.uk on 
port 80

2. HTTP client sends HTTP 
request message (containing 
URL) into TCP connection 
socket. Message indicates 
that client wants object 
someDepartment/home.index

1b. HTTP server at host www.university.ac.uk 
waiting for TCP connection at port 80  
“accepts” connection, notifying client

3. HTTP server receives request message, 
forms response message containing 
requested object, and sends message 
into its socket

time

(containing text, references to 10 jpeg images)
www.university.ac.uk/someDepartment/home.index

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.university.ac.uk/someDepartment/home.index

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html file, 
finds 10 referenced jpeg  objects

6. Steps 1-5 repeated for 
each of 10 jpeg objects

4. HTTP server closes TCP 
connection. 

time

Non-persistent HTTP: response time

RTT (definition): time for a small 
packet to travel from client to 
server and back

HTTP response time (per object):
 one RTT to initiate TCP connection
 one RTT for HTTP request and first few 

bytes of HTTP response to return
 object/file transmission time

time to 
transmit 
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time =  2RTT+ file transmission  time

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:
 requires 2 RTTs per object
OS overhead for each TCP 

connection
 browsers often open multiple 

parallel TCP connections to 
fetch referenced objects in 
parallel

Persistent  HTTP (HTTP1.1):

 server leaves connection open 
after sending response

 subsequent HTTP messages  
between same client/server sent 
over open connection

 client sends requests as soon as it 
encounters a referenced object

 as little as one RTT for all the 
referenced objects (cutting 
response time in half)

HTTP request message
 two types of HTTP messages: request, response
 HTTP request message:

• ASCII (human-readable format)

header
 lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed characterrequest line (GET, 

POST, 
HEAD commands)

carriage return, line 
feed at start of line 
indicates end of header 
lines

* Check out the online interactive exercises for more 
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/



HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Other HTTP request messages

POST method:
 web page often includes form 

input
 user input sent from client to 

server in entity body of HTTP 
POST request message

GET method (for sending data to 
server):
 include user data in URL field of HTTP 

GET request message (following a ‘?’):

www.somesite.com/animalsearch?monkeys&banana

HEAD method:
 requests headers (only) that 

would be returned if specified 
URL were requested  with an 
HTTP GET method. 

PUT method:
 uploads new file (object) to 

server
 completely replaces file that 

exists at specified URL with 
content in entity body of POST 
HTTP request message

HTTP response message
status line (protocol
status code status phrase)

header
 lines

data, e.g.,  requested
HTML file

HTTP/1.1 200 OK
Date: Tue, 08 Sep 2020 00:53:20 GMT
Server: Apache/2.4.6 (CentOS) 

OpenSSL/1.0.2k-fips PHP/7.4.9 
mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT
ETag: "a5b-52d015789ee9e"
Accept-Ranges: bytes
Content-Length: 2651
Content-Type: text/html; charset=UTF-8
\r\n
data data data data data ... 

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in 

Location: field)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

 status code appears in 1st line in server-to-client response message.
 some sample codes:

Trying out HTTP (client side) for yourself
1. Netcat (telnet will also work) to your favorite Web server:

 opens TCP connection to port 80 (default HTTP server 
port)  at www.cl.cam.ac.uk anything typed in will 
be sent  to port 80 at www.cl.cam.ac.uk 

% nc -c -v www.cl.cam.ac.uk 80

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

2. type in a GET HTTP request:
GET /~awm22/index.php HTTP/1.1
Host: www.cl.cam.ac.uk  by typing this in (hit carriage return twice), you send a 

minimal (but complete)  GET request to HTTP server

Although in readable asciii – you will notice this is not the webpage but a redirect
Automatically moving to an https secure connection

Maintaining user/server state: cookies
Recall:  HTTP GET/response 

interaction is stateless
 no notion of multi-step exchanges 

of HTTP messages to complete a 
Web “transaction” 
• no need for client/server to track 

“state” of multi-step exchange
• all HTTP requests are independent of 

each other
• no need for client/server to “recover” 

from a partial-but-never-entirely-
completed transaction

a stateful protocol: client makes 
two changes to X, or none at all

time time

OK

OK
unlock X

OK

update X      X’

update X         X’’

lock data record X

OK
X

X

X
’

X
’’

X’’

t’

Q: what happens if network connection or 
client crashes at t’ ?



Maintaining user/server state: cookies
Web sites and client browser  use 

cookies to maintain some state 
between transactions

four components:
1) cookie header line of HTTP response 

message
2) cookie header line in next HTTP 

request message
3) cookie file kept on user’s host, 

managed by user’s browser
4) back-end database at Web site

Example:
 Susan uses browser on laptop, 

visits specific e-commerce site 
for first time

 when initial HTTP requests 
arrives at site, site creates: 

• unique ID (aka “cookie”)
• entry in backend database 

for ID
• subsequent HTTP requests 

from Susan to this site will 
contain cookie ID value, 
allowing site to “identify” 
Susan

Maintaining user/server state: cookies
client

server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
    entry

usual HTTP response 
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time

HTTP cookies: comments
What cookies can be used for:
 authorization
 shopping carts
 recommendations
 user session state (Web e-mail)

cookies and privacy:
 cookies permit sites to 

learn a lot about you on 
their site.

 third party persistent 
cookies (tracking cookies) 
allow common identity 
(cookie value) to be 
tracked across multiple 
web sites

aside

Challenge: How to keep state?
 at protocol endpoints: maintain state at 

sender/receiver over multiple 
transactions

 in messages: cookies in HTTP messages 
carry state

Example:  displaying a NY Times web page

nytimes.com

AdX.com

1HTTP 
GET 2 HTTP 

reply
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NY times page with 
embedded ad 

displayed

GET base html file 
from nytimes.com

1
2

fetch ad from 
AdX.com

4
5

display composed 
page

7

nytimes.com (sports)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

HTTP 
reply
Set cookie: 1634

4

HTTP GET
Referer: NY Times Sports

5
HTTP reply
Set cookie: 7493

HTTP 
GET

AdX: 7493

Cookies: tracking a user’s browsing behavior

“first party” cookie – 
from website you chose 
to visit (provides base 
html file)

“third party” cookie – 
from website you did 
not choose to visit

Cookies: tracking a user’s browsing behavior

nytimes.com

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

1HTTP 
GET

2

HTTP 
reply

4

HTTP GET
Referer: socks.com, cookie: 7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

AdX:
 tracks my web browsing 

over sites with AdX ads
 can return targeted ads 

based on browsing history



Cookies: tracking a user’s browsing behavior (one day later)

nytimes.com (arts)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

4

HTTP GET
Referer:nytimes.com, cookie: 

7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

cookie: 1634

HTTP 
reply

HTTP 
GET

Set cookie: 1634

1634: arts, 2/17/22

7493: NY Times arts, 2/15/22

Returned ad for socks!

Cookies: tracking a user’s browsing behavior
Cookies can be used to: 
 track user behavior on a given website (first party cookies)
 track user behavior across multiple websites (third party 

cookies) without user ever choosing to visit tracker site (!)
 tracking may be invisible to user:

–rather than displayed ad triggering HTTP GET to tracker, could be an 
invisible link

third party tracking via cookies:
 disabled by default in Firefox, Safari browsers
 to be disabled in Chrome browser in 2023

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online 
identifiers […] such as internet protocol addresses, 
cookie identifiers or other identifiers […].
This may leave traces which, in particular when
combined with unique identifiers and other 
information received by the servers, may be used to 
create profiles of the natural persons and identify 
them.”

GDPR, recital 30 (May 2018)

User has explicit control 
over whether or not cookies 

are allowed
when cookies can identify an individual, cookies 
are considered personal data, subject to GDPR 

personal data regulations

Web caches

 user configures browser to 
point to a (local) Web cache

 browser sends all HTTP 
requests to cache
• if object in cache: cache 

returns object to client
• else cache requests object 

from origin server, caches 
received object, then 
returns object to client

Goal: satisfy client requests without involving origin server

client

Web 
cache

client

HTTP request

HTTP response

HTTP request HTTP request

origin 
server

HTTP response HTTP response

Web caches (aka proxy servers)
 Web cache acts as both 

client and server
• server for original 

requesting client
• client to origin server

Why Web caching?
 reduce response time for client 

request 
• cache is closer to client

 reduce traffic on an institution’s 
access link

 Internet is dense with caches 
• enables “poor” content providers 

to more effectively deliver content

 server tells cache about 
object’s allowable caching 
in response header:

Caching example

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access linkPerformance:

 access link utilization = .97
 LAN utilization: .0015
 end-end delay  =  Internet delay +
                                     access link delay + LAN delay 
                                 =  2 sec + minutes + usecs

Scenario:
 access link rate: 1.54 Mbps
 RTT from institutional router to server: 2 sec
 web object size: 100K bits
 average request rate from browsers to origin 

servers: 15/sec
 avg data rate to browsers: 1.50 Mbps

problem: large 
queueing delays 
at high 
utilization!



Performance:
 access link utilization = .97
 LAN utilization: .0015
 end-end delay  =  Internet delay +
                                     access link delay + LAN delay 
                                 =  2 sec + minutes + usecs

Option 1: buy a faster access link

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access link

Scenario:
 access link rate: 1.54 Mbps
 RTT from institutional router to server: 2 sec
 web object size: 100K bits
 average request rate from browsers to origin 

servers: 15/sec
 avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)

Performance:
 LAN utilization: .?
 access link utilization = ?
 average end-end delay  = ? 

Option 2: install a web cache

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access link

Scenario:
 access link rate: 1.54 Mbps
 RTT from institutional router to server: 2 sec
 web object size: 100K bits
 average request rate from browsers to origin 

servers: 15/sec
 avg data rate to browsers: 1.50 Mbps

How to compute link 
utilization, delay?

Cost: web cache (cheap!)

local web cache

Calculating access link utilization, 
end-end delay with cache:

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access link

local web cache

suppose cache hit rate is 0.4:  
 40% requests served by cache, with low 

(msec) delay 
   60% requests satisfied at origin 

•  rate to browsers over access link 
       = 0.6 * 1.50 Mbps  =  .9 Mbps 

• access link utilization = 0.9/1.54 = .58 
means low (msec) queueing delay at access 
link

 average end-end delay:
= 0.6 * (delay from origin servers)
           + 0.4 * (delay when satisfied at cache)
= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

  lower average end-end delay than with 154 Mbps link (and cheaper too!)

Browser caching: Conditional GET

Goal: don’t send object if browser 
has up-to-date cached version

• no object transmission delay (or use 
of network resources)

 client: specify date of browser-
cached copy in HTTP request
If-modified-since: <date>

 server: response contains no 
object if browser-cached copy is 
up-to-date: 
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 

304 Not Modified

object 
not 

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object 
modified

after 
<date>

client server
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Improving HTTP Performance:

Caching with Forward Proxies
Cache documents close to clients

 reduce network traffic and decrease latency
• Typically done by ISPs or corporate LANs to reduce link usage

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies
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Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server
 decrease server load

• Typically done by content providers (e.g. scaling capacity for news site)

• Only works for static(*) content
(*) static can also be snapshots
of dynamic content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies
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Improving HTTP Performance:

Caching w/ Content Distribution Networks

• Integrate forward and reverse caching functionality
– One overlay network (usually) administered by one entity
– e.g., Akamai

• Provide document caching
– Pull: Direct result of clients’ requests 
– Push:  Expectation of high access rate

• Also do some processing
– Handle dynamic web pages
– Transcoding
– Maybe do some security function – watermark IP

75

Improving HTTP Performance:

Caching with CDNs (cont.)

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN
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Improving HTTP Performance:

CDN Example – Akamai

• Akamai creates new domain names for each client 
content provider.
– e.g., a128.g.akamai.net

• The CDN’s DNS servers are authoritative for the new 
domains

• The client content provider modifies its content so 
that embedded URLs reference the new domains.
– “Akamaize” content
– e.g.: http://www.bbc.co.uk/popular-image.jpg becomes 

http://a128.g.akamai.net/popular-image.jpg

• Requests now sent to CDN’s infrastructure…
77

Hosting:  Multiple Sites Per 
Machine

• Multiple Web sites on a single machine
– Hosting company runs the Web server on behalf of 

multiple sites (e.g., www.foo.com and www.bar.com)
• Problem: GET /index.html

– www.foo.com/index.html or www.bar.com/index.html?
• Solutions:

– Multiple server processes on the same machine
• Have a separate IP address (or port) for each server

– Include site name in HTTP request
• Single Web server process with a single IP address
• Client includes “Host” header (e.g., Host: www.foo.com)
• Required header with HTTP/1.1
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Hosting: Multiple Machines Per Site

• Replicate popular Web site across many machines
– Helps to handle the load
– Places content closer to clients

• Helps when content isn’t cacheable

• Problem:  Want to direct client to particular replica
– Balance load across server replicas
– Pair clients with nearby servers

79

Multi-Hosting at Single Location
• Single IP address, multiple machines

– Run multiple machines behind a single IP address

– Ensure all packets from a single 
TCP connection go to the same replica

Load Balancer
64.236.16.20
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Multi-Hosting at Several Locations

• Multiple addresses, multiple machines
– Same name but different addresses for all of the replicas
– Configure DNS server to return closest address

Internet
64.236.16.20

173.72.54.131

12.1.1.1

CDN examples round-up

• CDN using DNS
DNS has information on loading/distribution/location 
(akami uses this one)

• CDN using anycast
same address from DNS name but local routes
(ROOT DNS servers and 8.8.8.8 use this one)

• CDN based on rewriting HTML URLs
(akami example in previous slides)
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
• Multiplexing
• Priority control over Frames
• Header Compression
• Server Push
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
• Multiplexing
• Priority control over Frames
• Header Compression
• Server Push

– Proactively push stuff to client that it will need
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol

– More efficient to parse 
– More compact on the wire 
– Much less error prone as compared 
– to textual protocols 
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Wireshark decoders for the win

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP 
connection
 server responds in-order (FCFS: first-come-first-served scheduling) to 

GET requests
with FCFS, small object may have to wait for transmission  (head-of-

line (HOL) blocking) behind large object(s)
 loss recovery (retransmitting lost TCP segments) stalls object 

transmission



HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending 
objects to client:
 methods, status codes, most header fields unchanged from HTTP 1.1
 transmission order of requested objects based on client-specified 

object priority (not necessarily FCFS)

 push unrequested objects to client
 divide objects into frames, schedule frames to mitigate HOL blocking

Key goal: decreased delay in multi-object HTTP requests
HTTP/2: mitigating HOL blocking

HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller 
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1 O2
O3O4

object data requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:
 recovery from packet loss still stalls all object transmissions

• as in HTTP 1.1, browsers have incentive to open multiple parallel 
TCP connections to reduce stalling, increase overall throughput

 no security over vanilla TCP connection
 HTTP/3: adds security, per object error- and congestion-

control (more pipelining) over UDP

As at 2021 when I last looked
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Other ongoing work includes QUIC for datagrams
  Seriously!      It adds QUIC crypto to “UDP” so isn’t totally silly. 

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with TCP’s reliability

Problem: Very hard to make changes to TCP
• Faster  to implement new protocol on top of UDP
• (Roll out features in TCP if they prove theory)

QUIC (First presented to IETF in ~2013):
• Reliable transport over UDP 
• Uses FEC
• Default crypto
• Restartable connections

92



3-Way Handshake

Without TLS With TLS

UDP

• Fire and forget
– Less time spent to 

validate packets
– Downside - no reliability, 

this has to be added on 
top of UDP

QUIC

• UDP does NOT depend on order of arriving packets
• Lost packets will only impact an individual resource, 

e.g., CSS or JS file.
• QUIC combined the best parts of HTTP/2 over UDP:

– Multiplexing on top of non-blocking transport protocol

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this topic for connection 
establishment, error control, congestion control

• multiple application-level “streams” multiplexed over single QUIC 
connection
– separate reliable data transfer, security
– common congestion control

• error and congestion control: “Readers familiar with TCP’s loss 
detection and congestion control will find algorithms here that parallel 
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control, 
authentication, encryption, state established in one RTT

QUIC: streams – parallelism
no HOL blocking in transport or application

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. 
Contr.

tr
an

sp
or

t
ap

pl
ica

tio
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. 
Contr.

TLS encryption

error
!

HTTP 
GET 

HTTP 
GET 

HTTP 
GET 

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
encrypt

error
!

HTTP 
GET HTTP 

GET HTTP 
GET 

QUIC – more than just UDP

• QUIC outshines TCP under poor network 
conditions, shaving a full second off the 
Google Search page load time for the slowest 
1% of connections.

• These benefits are even more apparent for 
video services like YouTube
– Users report 30% fewer rebuffers with QUIC.
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Why QUIC over UDP and not a new 
proto

• IP proto value for new transport layer
• Change the protocol – risk the wraith of 

– Legacy code
– Firewalls
– Load-balancer
– NATs (the high-priest of middlebox)

• Same problem faces any significant TCP change

100Honda  M. et al. “Is it still possible to extend TCP?”, IMC’11
https://dl.acm.org/doi/abs/10.1145/2068816.2068834

Every host is a server:
Peer-2-Peer

153

mobile network

home network

enterprise
          network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

Peer-to-peer (P2P) architecture
 no always-on server
 arbitrary end systems directly 

communicate
 peers request service from other 

peers, provide service in return to 
other peers
• self scalability – new peers bring new 

service capacity, and new service 
demands

 peers are intermittently connected 
and change IP addresses
• complex management

 examples: P2P file sharing (BitTorrent), 
streaming (KanKan), VoIP (Skype)

File distribution: client-server vs P2P
Q: how much time to distribute file (size F) from one server to  

N  peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
 bandwidth)

file, size F

us: server upload 
capacity

ui: peer i upload 
capacity

di: peer i download 
capacityu2 d2

u1 d1

di

ui

File distribution time: client-server
 server transmission: must 

sequentially send (upload) N file 
copies:
• time to send one copy: F/us 
• time to send N copies: NF/us

 client: each client must download 
file copy
• dmin = min client download rate
• min client download time: F/dmin 

us

network
di

ui

F

increases linearly in N

time to  distribute F 
to N clients using 

client-server approach Dc-s > max{NF/us,,F/dmin} 

File distribution time: P2P
 server transmission: must upload at 

least one copy:
• time to send one copy: F/us 

 client: each client must download 
file copy
• min client download time: F/dmin 

us

network
di

ui

F

 clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

time to  distribute F 
to N clients using 

P2P approach DP2P > max{F/us,,F/dmin,,NF/(us + Sui)} 

… but so does this, as each peer brings service capacity
increases linearly in N …



Client-server vs. P2P: example
client upload rate = u,  F/u = 1 hour,  us = 10u,  dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um
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is

tri
bu

tio
n 

Ti
m

e P2P
Client-Server

P2P file distribution: BitTorrent 
 file divided into 256Kb chunks
 peers in torrent send/receive file chunks

tracker: tracks peers 
participating in torrent

torrent: group of peers 
exchanging  chunks of a file

Alice arrives  …
… obtains list
of peers from tracker
… and begins exchanging 
file chunks with peers in torrent

P2P file distribution: BitTorrent 
 peer joining torrent: 

• has no chunks, but will accumulate them 
over time from other peers
• registers with tracker to get list of peers, 

connects to subset of peers 
(“neighbors”)

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 peer exchanges prioritize rarer blocks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or (altruistically) 

remain in torrent

BitTorrent: requesting, sending file chunks
Requesting chunks:
 at any given time, different 

peers have different 
subsets of file chunks

 periodically, Alice asks 
each peer for list of chunks 
that they have

 Alice requests missing 
chunks from peers, rarest 
first

Sending chunks: tit-for-tat
 Alice sends chunks to those four 

peers currently sending her chunks 
at highest rate 
• other peers are choked by Alice (do 

not receive chunks from her)
• re-evaluate top 4 every10 secs

 every 30 secs: randomly select 
another peer, starts sending 
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better 
trading partners, get file faster !

Rare blocks have priority
Making each host a 
better network partner

Internet
(current data is $$$ or hard to get)

This info taken from an annual Sandvine report for 2022 https://www.sandvine.com



Video Streaming and CDNs: context

 stream video traffic: major 
consumer of Internet bandwidth
• Netflix, YouTube, Amazon Prime: 80% of 

residential ISP traffic (2020)

 challenge:  scale - how to reach 
~1B users?

 challenge: heterogeneity
 different users have different capabilities (e.g., wired 

versus mobile; bandwidth rich versus bandwidth poor)
 solution: distributed, application-level infrastructure

Multimedia: video
 video: sequence of images 

displayed at constant rate
• e.g., 24 images/sec

 digital image: array of pixels
• each pixel represented by bits

 coding: use redundancy within and 
between images to decrease # bits 
used to encode image
• spatial (within image)
• temporal (from one image to 

next)

……………………..

spatial coding example: instead 
of sending N values of same 
color (all purple), send only two 
values: color  value (purple)  
and number of repeated values 
(N)

……………….…….

frame i

frame i+1

temporal coding 
example: instead of 
sending complete frame 
at i+1, send only 
differences from frame i

Multimedia: video

……………………..

spatial coding example: instead 
of sending N values of same 
color (all purple), send only two 
values: color  value (purple)  
and number of repeated values 
(N)

……………….…….

frame i

frame i+1

temporal coding 
example: instead of 
sending complete frame 
at i+1, send only 
differences from frame i

 CBR: (constant bit rate): video 
encoding rate fixed

 VBR:  (variable bit rate): video 
encoding rate changes as 
amount of spatial, temporal 
coding changes 

 examples:
• MPEG 1 (CD-ROM) 1.5 Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in 

Internet,  64Kbps – 12 Mbps)

Main challenges: 
• server-to-client bandwidth will vary over time, with changing 

network congestion levels (in house, access network, network core, 
video server)

• packet loss, delay due to congestion will delay playout, or result in 
poor video quality

Streaming stored video

simple scenario:

video server
(stored video)

client

Internet

Streaming stored video

1. video
recorded 
(e.g., 30 
frames/sec)

2. video
sentC

um
ul

at
iv

e 
da

ta

streaming: at this time, client  playing out 
early part of video, while server still sending 
later part of video

time

3. video received, played out at 
client
(30 frames/sec)network delay

(fixed in this 
example)

Streaming stored video: challenges
 continuous playout constraint: during client 

video playout, playout timing must match 
original timing 
• … but network delays are variable (jitter), so will 

need client-side buffer to match continuous playout 
constraint

 other challenges:
• client interactivity: pause, fast-forward, rewind, 

jump through video
• video packets may be lost, retransmitted



Streaming stored video: playout buffering

constant bit 
      rate video
transmission

Cu
m

ul
at

ive
 d

at
a

time

variable
network

delay

client video
reception

constant bit 
     rate video
 playout at client

client playout
delay

bu
ffe

re
d

vid
eo

client-side buffering and playout delay: compensate for 
network-added delay, delay jitter

Streaming multimedia: DASH

server:
 divides video file into multiple chunks
 each chunk encoded at multiple different rates
 different rate encodings stored in different files
 files replicated in various CDN nodes
 manifest file: provides URLs for different chunks client

?

client:
 periodically estimates server-to-client bandwidth
 consulting manifest, requests one chunk at a time 
• chooses maximum coding rate sustainable given current bandwidth
• can choose different coding rates at different points in time (depending 

on available bandwidth at time), and from different servers

...
...

...

Dynamic, Adaptive 
Streaming over HTTP

...
...

...

Streaming multimedia: DASH

“intelligence” at client: client 
determines
• when to request chunk (so that buffer 

starvation, or overflow does not occur)
• what encoding rate to request (higher 

quality when more bandwidth 
available) 

• where to request chunk (can request 
from URL server that is “close” to 
client or has high available 
bandwidth) 

Streaming video = encoding + DASH + playout buffering

client

?

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of 
videos) to hundreds of thousands of simultaneous users?

 option 1: single, large “mega-
server”
• single point of failure
• point of network congestion
• long (and possibly congested) 

path to distant clients

….quite simply: this solution doesn’t scale

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of 
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many access networks 
• close to users
• Akamai: 240,000 servers deployed 
   in > 120 countries (2015)

 option 2: store/serve multiple copies of videos at multiple 
geographically distributed sites (CDN)

• bring home: smaller number (10’s) of 
larger clusters in POPs near access nets
• used by Limelight

…

…
……

…

…

 subscriber requests content, service provider returns manifest

Content distribution networks (CDNs)
 CDN: stores copies of content (e.g. MADMEN) at CDN nodes 

where’s Madmen?
manifest file

• using manifest, client retrieves content at highest supportable rate
• may choose different rate or copy if network path congested



…

…

……

…

…
Internet host-host communication as a service

OTT challenges: coping with a congested Internet from the “edge”
 what content to place in which CDN node?
 from which CDN node to retrieve content? At which rate?

OTT: “over the top”

Content distribution networks (CDNs)
Summary

• Applications have protocols too

• We covered examples from
– Traditional Applications (web)
– Scaling and Speeding the web (CDN/Cache tricks)

• Infrastructure Services (DNS)
– Cache and Hierarchy

• P2P Network examples

• Evolving standards (Email)

• Video CDN Stream challenges
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Email

Still the best/worst most useful/useless service

Email was the exemplar of the Electronic Office

Because every business thought in memo
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E-mail
Three major components: 
user agents 
mail servers 
 simple mail transfer protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading mail messages
 e.g., Outlook, iPhone mail client
outgoing, incoming messages stored on 

server user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server
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E-mail: mail servers

user mailbox

outgoing 
message queue

mail
server
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mail servers:
mailbox contains incoming 

messages for user
message queue of outgoing (to be 

sent) mail messages
SMTP protocol between mail 
servers to send email messages
 client: sending mail server
 “server”: receiving mail server

SMTP RFC (5321)

 uses TCP to reliably transfer email message 
from client (mail server initiating 
connection) to server, port 25
 direct transfer: sending server (acting like 

client) to receiving server
 three phases of transfer
• SMTP handshaking (greeting)
• SMTP transfer of messages
• SMTP closure

 command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

initiate TCP
connection

RTT

time

220

250 Hello

HELOSMTP 
handshaking

TCP connection
initiated

“client”
 SMTP server

“server”
 SMTP server

SMTP 
transfers



Scenario: Alice sends e-mail to Bob
1) Alice uses UA to compose e-mail 

message “to” 
bob@someschool.edu

4) SMTP client sends Alice’s message 
over the TCP connection

user
agent

mail
server

mail
server
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Alice’s mail server Bob’s mail server

user
agent

2) Alice’s UA sends message to her 
mail server using SMTP; message 
placed in message queue

3) client side of SMTP at mail server 
opens TCP connection with Bob’s mail 
server

5) Bob’s mail server places 
the message in Bob’s 
mailbox

6) Bob invokes his user 
agent to read message

Sample SMTP interaction
S: 220 hamburger.edu 

     C: HELO crepes.fr 
     S: 250  Hello crepes.fr, pleased to meet you 
     C: MAIL FROM: <alice@crepes.fr> 
     S: 250 alice@crepes.fr... Sender ok 
     C: RCPT TO: <bob@hamburger.edu> 
     S: 250 bob@hamburger.edu ... Recipient ok 
     C: DATA 
     S: 354 Enter mail, end with "." on a line by itself 
     C: Do you like ketchup? 
     C: How about pickles? 
     C: . 
     S: 250 Message accepted for delivery 
     C: QUIT 
     S: 221 hamburger.edu closing connection

SMTP: observations
 SMTP uses persistent 

connections
 SMTP requires message 

(header & body) to be in 
7-bit ASCII

 SMTP server uses 
CRLF.CRLF to determine 
end of message

comparison with HTTP:
 HTTP: client pull
 SMTP: client push

 both have ASCII command/response 
interaction, status codes

 HTTP: each object encapsulated in 
its own response message

 SMTP: multiple objects sent in 
multipart message

Mail message format
SMTP: protocol for exchanging e-mail messages, defined in RFC 5321 
(like RFC 7231 defines HTTP)
RFC 2822 defines syntax for e-mail message itself (like HTML defines 
syntax for web documents)

header

body

blank
line

 header lines, e.g.,
• To:
• From:
• Subject:
these lines, within the body of the email 
message area different from SMTP MAIL 
FROM:, RCPT TO: commands!

 Body: the “message” , ASCII characters only

Retrieving email: mail access protocols

sender’s e-mail 
server

SMTP SMTP

receiver’s e-mail 
server

e-mail 
access
protocol
(e.g., IMAP, 

HTTP)

user
agent

user
agent

 SMTP: delivery/storage of e-mail messages to receiver’s server
mail access protocol: retrieval from server
• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP 

provides retrieval, deletion, folders of stored messages on server

 HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on 
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages


