
Compiler Construction
Lecture 7: translation

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Lent 2025

The Slang language and compiler

Slang

Slang
frontend

Interpreter
0

Downwards

Slang language & compiler

Slang = Simple Language.

Slang language: based on L3 (Semantics of Programming Languages, IB).

Slang compiler: written in OCaml, available from the course web site:
Implementation: https://github.com/yallop/cc_cl_cam_ac_uk
Online explorer: https://yallop.github.io/cc_cl_cam_ac_uk

A good way to learn about compilers is to modify one.
The course website suggests several improvements (some easy, some trickier).
Contributed implementations of these suggestions are welcome!

https://github.com/yallop/cc_cl_cam_ac_uk
https://yallop.github.io/cc_cl_cam_ac_uk
https://www.cl.cam.ac.uk/teaching/2526/CompConstr/

Slang

Slang
frontend

Interpreter
0

Downwards

The Gap: Slang to Jargon VM

Slang Program Text

Low-level stack-based
code for the Jargon VM? ? ?

Q: How to get from mathematical semantics of L3
to low-level stack machine?

A: 1. Start with a high-level interpreter
based on semantics

2. Derive the stack machine
via semantics-preserving transformations

Slang

Slang
frontend

Interpreter
0

Downwards

Slang Syntax (informal)

e ::= () | (e) | n | x | ? |
(simple expressions; ? reads an integer from standard input)
fun (x : t) → e | e e | e bop e | uop e |
(functions, applications and operators)
true | false | if e then e else e |
(booleans)
let x : t = e in e | let f (x :t) :t = e in e |
(local definitions)
!e | ref e | e := e |
(references and assignments)
begin e; e;. . .e end | while e do e |
(sequencing and loops)
(e, e) | fst e | snd e |
(pairs)
inl t e | inr t e | case e of inl (x :t) → e | inr (x:t) → e
(sums; note type annotations)

Slang

Slang
frontend

Interpreter
0

Downwards

Slang examples

From slang/examples/fib.slang:
let fib (m : int) : int =

if m = 0 then 1
else if m = 1 then 1
else fib (m - 1) + fib (m -2)

in
fib(?)

From slang/examples/gcd.slang:
let gcd (p : int * int) : int =
let m : int = fst p in
let n : int = snd p in
if m = n then m
else if m < n then gcd (m, n - m)
else gcd(m - n, n)

in gcd (?, ?)

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/examples/fib.slang
https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/examples/gcd.slang

Slang front end

Slang

Slang
frontend

Interpreter
0

Downwards

Slang front end

lexing

parsing

typing
simplification

f(x,y)

•

•

••

•

Ast.expr

Pa
rs
er
.t
ok
en

Pa
st
.e
xp
r

Past.expr

(with ocamllex)

(with ocamlyacc)

check context-sensitive rules
resolve overloading

check types
remove type information
remove syntactic sugar

remove locations

Slang

Slang
frontend

Interpreter
0

Downwards

The Slang parsed AST

In slang/past.ml:

type var = s t r i n g
type l oc = Lexing . p o s i t i o n

type expr =
| Var of l o c ∗ var
| I n t e g e r of l o c ∗ i n t
| Op of l oc ∗ expr ∗ oper ∗ expr
| I f o f l o c ∗ expr ∗ expr ∗ expr
| Pa i r of l o c ∗ expr ∗ expr
| Case of l o c ∗ expr ∗ lambda ∗ lambda
| Lambda of l oc ∗ lambda
| App of l oc ∗ expr ∗ expr
| Let of l o c ∗ var ∗ type_expr ∗ expr ∗ expr
| LetFun of l oc ∗ var ∗ lambda ∗ type_expr ∗ expr
| LetRecFun of l oc ∗ var ∗ lambda ∗ type_expr ∗ expr
| . . . (∗ many cases omitted ∗)
and lambda = var ∗ type_expr ∗ expr

Locations (loc) are reported in error messages

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/past.ml

Slang

Slang
frontend

Interpreter
0

Downwards

Type checking & resolution
In slang/static.mli:

val infer : (var ∗ type_expr) list → expr → expr ∗ type_expr

Γ ` e : τ

resolve: EQ ⇝ EQI (integers)
⇝ EQB (booleans)

LetFun ⇝ LetRecFun (if recursive)
⇝ LetFun (if non-recursive)

} } }} } }} }

Infer types, apply (context-sensitive) rules that cannot be resolved in context-free grammars

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/static.mli

Slang

Slang
frontend

Interpreter
0

Downwards

Expression simplification

In slang/past_to_ast.ml:

val translate_expr : Past.expr → Ast.expr

translate_expr simplifies expressions to remove “syntactic sugar”:

let x : t = e1 in e2 ⇝ (fun (x : t) → e2) e1

The output type (Ast.expr) does not contain Let nodes.

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/past_to_ast.ml

Slang

Slang
frontend

Interpreter
0

Downwards

The Slang internal AST

In slang/ast.ml:

type var = s t r i n g
type oper = ADD | . . . | EQB | EQI
type expr =
| Var of var
| I n t e g e r of i n t
| Op of expr ∗ oper ∗ expr
| I f o f expr ∗ expr ∗ expr
| Pa i r of expr ∗ expr
| Case of expr ∗ lambda ∗ lambda
| Lambda of lambda
| App of expr ∗ expr
| LetFun of var ∗ lambda ∗ expr
| LetRecFun of var ∗ lambda ∗ expr
| . . . (∗ many cases omitted ∗)
and lambda = var ∗ expr

No locations
(error reporting is finished)

No types
(not used for compilation)

No EQ

(resolved to EQI or EQB)

No Let

(removed during simplification)

Differences from slang/past.ml

Some compilers (e.g. OCaml) drop types here; others (e.g. GHC) use them in the middle end

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/ast.ml
https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/past.ml

Interpreter 0

Slang

Slang
frontend

Interpreter
0

Downwards

Lectures 7–11: the derivation

•

•

••

•Slang front-end

interpreter 0
(simple, denotational)

interpreter 1
(explicit stack)

compiler 2 interpreter 2
(stack-oriented machine)

compiler 3 interpreter 3
(linear code)

jargon compiler jargon vm
(heap + addressable stack)

Slang

Slang
frontend

Interpreter
0

Downwards

Lectures 7–11: the derivation

•

•

••

•Slang front-end

interpreter 0
(simple, denotational)

interpreter 1
(explicit stack)

compiler 2 interpreter 2
(stack-oriented machine)

compiler 3 interpreter 3
(linear code)

jargon compiler jargon vm
(heap + addressable stack)

cps + defunctionalize

Slang

Slang
frontend

Interpreter
0

Downwards

Lectures 7–11: the derivation

•

•

••

•Slang front-end

interpreter 0
(simple, denotational)

interpreter 1
(explicit stack)

compiler 2 interpreter 2
(stack-oriented machine)

compiler 3 interpreter 3
(linear code)

jargon compiler jargon vm
(heap + addressable stack)

cps + defunctionalize

split stacks + refactor

Slang

Slang
frontend

Interpreter
0

Downwards

Lectures 7–11: the derivation

•

•

••

•Slang front-end

interpreter 0
(simple, denotational)

interpreter 1
(explicit stack)

compiler 2 interpreter 2
(stack-oriented machine)

compiler 3 interpreter 3
(linear code)

jargon compiler jargon vm
(heap + addressable stack)

cps + defunctionalize

split stacks + refactor

add code pointer

Slang

Slang
frontend

Interpreter
0

Downwards

Lectures 7–11: the derivation

•

•

••

•Slang front-end

interpreter 0
(simple, denotational)

interpreter 1
(explicit stack)

compiler 2 interpreter 2
(stack-oriented machine)

compiler 3 interpreter 3
(linear code)

jargon compiler jargon vm
(heap + addressable stack)

cps + defunctionalize

split stacks + refactor

add code pointer

add frame pointer

Slang

Slang
frontend

Interpreter
0

Downwards

Approaches to Mathematical Semantics

Meaning defined via
logical specifications

of behaviour
{P}C{Q}

Hoare Logic (Part II)
Separation Logic

Axiomatic

Meaning defined via
transition relations on

abstract machine states
〈e, σ〉 −→ 〈e′, σ′〉

Semantics
(Part 1B)

Operational

Meaning defined via
mathematical objects

such as functions.JeKη = v
Denotational Semantics

(Part II)

Denotational

Slang

Slang
frontend

Interpreter
0

Downwards

A rough denotational semantics for L3

N = integers B = booleans A = addresses I = identifiers
E = environments = I → V S = stores = A → V

V = set of values
≈ A

+ N
+ B
+ {()}
+ V × V
+ (V + V)
+ (V × S) → (V × S)

} Set of values V solves this
“domain equation”
(here + means disjoint union)

Solving such equations is not trivial

M = the meaning function Expr = L3 expressions
M : (Expr × E × S) → (V × S)

(Aside: What is the meaning of a non-terminating expression?)

Slang

Slang
frontend

Interpreter
0

Downwards

Interpreter 0: An OCaml approximation

A = set of addresses
S = set of stores = A → V

V = set of values
≈ A

+ N
+ B
+ {()}
+ V × V
+ (V + V)
+ (V × S) → (V × S)

E = set of environments = I → V
M = the meaning function
M : (Expr × E × S) → (V × S)

From slang/interp_0.mli:
type address
type s to r e = address → va lue
and va lue =
| REF of address
| INT of i n t
| BOOL of bool
| UNIT
| PAIR of va lue ∗ va lue
| INL of va lue
| INR of va lue
| FUN of (va lue ∗ s t o r e → va lue ∗ s to r e)

type env = Ast . var → va lue

va l i n t e r p r e t :
Ast . expr ∗ env ∗ s t o r e → va lue ∗ s to r e

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/interp_0.mli

Slang

Slang
frontend

Interpreter
0

Downwards

interpret: many cases are straightforward

From slang/interp_0.ml:

l e t rec i n t e r p r e t (e , env , s t o r e) =
match e with
| I f (e1 , e2 , e3) →

l e t (v , s tore ’) = i n t e r p r e t (e1 , env , s t o r e) in
(match v with

| BOOL true → i n t e r p r e t (e2 , env , s tore ’)
| BOOL f a l s e → i n t e r p r e t (e3 , env , s tore ’)
| v → complain ”Runtime e r r o r : expect ing a boolean !”)

| Pa i r (e1 , e2) →
l e t (v1 , s to re1) = i n t e r p r e t (e1 , env , s t o r e) in
l e t (v2 , s to re2) = i n t e r p r e t (e2 , env , s to re1) in

(PAIR(v1 , v2) , s to re2)
| Fst e →

(match i n t e r p r e t (e , env , s t o r e) with
| (PAIR (v1 , _) , s tore ’) → (v1 , s tore ’)
| (v , _) → complain ”Runtime e r r o r : expect ing a p a i r ! ”)

| I n l e → l e t (v , s tore ’) = i n t e r p r e t (e , env , s t o r e) in
(INL v , s tore ’)

. . .

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/interp_0.ml

Slang

Slang
frontend

Interpreter
0

Downwards

Slang functions 7→ OCaml functions

From slang/interp_0.ml:

l e t rec i n t e r p r e t (e , env , s t o r e) =
match e with

:
| Lambda(x , e) → FUN (fun (v , s) →

i n t e r p r e t (e , update (env , (x , v)) , s)) , s t o r e
| App(e1 , e2) →

l e t (v2 , s to re1) = i n t e r p r e t (e2 , env , s t o r e) in
l e t (v1 , s to re2) = i n t e r p r e t (e1 , env , s to re1) in
(match v1 with

| FUN f → f (v2 , s to re2)
| v → complain ”Runtime e r r o r : func t i on expected !”)

| LetRecFun (f , (x , body) , e) →
l e t rec new_env g = (∗ a r e c u r s i v e environment ! ∗)

i f g = f then FUN (fun (v , s) →
i n t e r p r e t (body , update (new_env , (x , v)) , s))

e l s e env g
in i n t e r p r e t (e , new_env , s t o r e)

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/interp_0.ml

Downwards

Slang

Slang
frontend

Interpreter
0

Downwards

From Interpreter 0 to the Jargon VM

Interpreter 0 uses OCaml’s stack. How can we move toward the Jargon VM?

l e t f x = x + 1 i n
l e t g y = f (y+2) + 2 i n
l e t h w = g (w+1) + 3 i n

h (h 17)

At run-time the call stack contains an activation record for each invocation

h h h h h

g g g

f

h h h h h

g g g

f

execution

Slang

Slang
frontend

Interpreter
0

Downwards

Recall tail recursion: sum vs sum_tr

l e t r e c sum = f u n c t i o n
| [] → 0
| x :: xs → x + sum xs

l e t r e c sum_tr acc = f u n c t i o n
| [] → acc
| x :: xs → sum_tr (x + acc) xs

l e t sum ' xs = sum_tr 0 xs

sum [1;2;3]
⇝ 1 + sum [2;3]

stack

⇝ 1 + (2 + sum [3])

stack

⇝ 1 + (2 + (3 + sum []))

stack

⇝ 1 + (2 + (3 + 0))
⇝ 1 + (2 + 3)
⇝ 1 + 5
⇝ 6

sum' [1;2;3]
⇝ sum_tr 0 [1;2;3]
⇝ sum_tr (1+0) [2;3]
⇝ sum_tr 1 [2;3]
⇝ sum_tr (2+1) [3]
⇝ sum_tr 3 [3]
⇝ sum_tr (3+3) []
⇝ sum_tr 6 []
⇝ 6

Slang

Slang
frontend

Interpreter
0

Downwards

Convert tail-recursion to iteration

l e t rec sum_tr a = func t i on
| [] → a
| x::xs → sum_tr (x+a) xs

l e t sum ' xs = sum_tr 0 xs

Tail-recursive sum

l e t sum_iter a l =
l e t ra = ref a i n
l e t rl = ref l i n
l e t result = ref 0 i n
l e t not_done = ref t rue in
l e t _ = whi l e !not_done
do

match !rl with
| [] → result := !ra;

not_done := f a l s e
| x::xs → ra := x + !ra;

rl := xs;
done;
i n !result

l e t sum l = sum_iter 0 l

Iterative sum

} one ref per argument
one ref for the result
one ref for the loop

} use refs in body
in place of variables
(e.g. !rl for l){use a loop

in place of recursion

We illustrate tail-recursion elimination as a source-to-source transformation.

In practice, compilers compile low-level representations of tail-recursive code to loops.

We will consider all tail-recursive functions as representing iterative programs

Slang

Slang
frontend

Interpreter
0

Downwards

Transforming recursion to tail-recursion

Can transform all recursive functions into first-order tail-recursive functions.
Two steps:

Add an extra argument to each function

let f x = ... ⇝ let f x k = ...

let z = f v in e ⇝ f v (fun z → e)

These continuation arguments represent
“the rest of the computation”

1. CPS transformation
Turn function arguments into data

(fun x → e) ⇝ Conti(v1, ..., vk)

f v ⇝ apply f v

The defunctionalized continuations
form a stack

2. Defunctionalization

Result: tail-recursive functions that carry their own stacks as extra arguments

Next step: CPS-transform & defunctionalize interpreter 0

Next time: CPS & defunctionalization

	Slang
	Slang frontend
	Interpreter 0
	Downwards

