Compiler Construction

Lecture 7: translation

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2025

The Slang language and compiler

Slang

® OO0

Slang
frontend

Interpreter
0

Downwards

Slang language & compiler

Slang = Simple Language.
Slang language: based on L3 (Semantics of Programming Languages, 1B).

Slang compiler: written in OCaml, available from the course web site:

Implementation: https://github.com/yallop/cc_cl_cam_ac_uk
Online explorer: https://yallop.github.io/cc_cl_cam_ac_uk

A good way to learn about compilers is to modify one.

The course website suggests several improvements (some easy, some trickier).
Contributed implementations of these suggestions are welcome!

https://github.com/yallop/cc_cl_cam_ac_uk
https://yallop.github.io/cc_cl_cam_ac_uk
https://www.cl.cam.ac.uk/teaching/2526/CompConstr/

[Slang Program Textj

Q:

A:

The Gap: Slang to Jargon VM

How to get from mathematical semantics of L3
to low-level stack machine?

1. Start with a high-level interpreter
based on semantics
Derive the stack machine
via semantics-preserving transformations

| Low-level stack-based
code for the Jargon VM

Slang Syntax (informal)

Ol@ [n]x]|?]

(simple expressions; ? reads an integer from standard input)
fun (x : t) - e | ee | ebope | uope |
(functions, applications and operators)

true | false | if e then e else e |

(booleans)

let x : t=eine | let f (x :t) :t=e ine
(local definitions)

le | refe|e :=e|

(references and assignments)

begin e; e;...e end | while e do e |

(sequencing and loops)

(e, e) | fst e | snd e |

(pairs)

inl t e | inr t e | case e of inl (x :t) —e | inr (x:t) — e
(sums; note type annotations)

Slang examples

Slang

R From slang/examples/fib.slang: From slang/examples/gcd.slang:
e let fib (m : int) : int = let gcd (p : int * int) : int =

frontend . . .

if m = @ then 1 let m : int = fst p in

else if m = 1 then 1 let n : int = snd p in

else fib (m - 1) + fib (m -2) if m = n then m
i e in . else if m < n then gcd (m, n - m)

0 fib(?) else gcd(m - n, n)
in gcd (2, ?)

Downwards

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/examples/fib.slang
https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/examples/gcd.slang

Slang front end

Slang

Slang
frontend

®O000O

Interpreter
0

Downwards

check context-sensitive rules
resolve overloading
check types

PaSt.expr

e*Q(
<%’

(with ocamlyacc)

(with ocamllex)

Z

Slang front end

remove type information
remove syntactic sugar

remove locations Ast.expr
[]

~{smplificstion
simplification
— A.

Slang
frontend

(X _NONONG)

The Slang parsed AST

In slang/past.ml:

. Locations (loc) are reported in error messages
type var = string

type loc = Lexing. position

type expr =

| Var of loc * var

| Integer of loc * int

| Op of loc % expr x oper x expr
| If of loc % expr % expr x expr
| Pair of loc x expr * expr
| Case of loc x expr * lambda % lambda
| Lambda of loc * lambda

| App of loc * expr % expr
| Let of loc % var % type_expr % expr x expr

| LetFun of loc % var % lambda % type_expr % expr

| LetRecFun of loc x var x lambda * type_expr * expr
| . (* many cases omitted x)

and lambda = var x type_expr *x expr

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/past.ml

Type checking & resolution

In slang/static.mli:

'He:r

VAN
frontend

val infer: (var x type_expr) list — expr — expr * type_expr

00000

resolve: EQ EQI
EQB

LetFun LetRecFun
LetFun

integers)
booleans)

if recursive)
if non-recursive)

(
(
(
(

Infer types, apply (context-sensitive) rules that cannot be resolved in context-free grammars

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/static.mli

Expression simplification

In slang/past_to_ast.ml:

Slang val translate_expr : Past.expr — Ast.expr
frontend

00000

translate_expr simplifies expressions to remove “syntactic sugar”:

let x : t =eline2 ~ (fun (x:t) —e2)el

The output type (Ast.expr) does not contain Let nodes.

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/past_to_ast.ml

The Slang internal AST

In slang/ast.ml:

) ~— Differences from slang/past.ml ———
type var = string

type oper = ADD | ... | EQB | EQI No locations
Slang type expr = (error reporting is finished)
| Var of var
Integer of int
Op of expr * oper * expr
If of expr * expr *x expr
Pair of expr % expr
Case of expr * lambda * lambda No EQ

Lambda of lambda (resolved to EQI or EQB)

frontend |
|
|
|
|
|
| App of expr x expr
|
|
a

No types

(not used for compilation)
00000

LetFun of var x lambda * expr
No Let
LetRecFun of var * lambda x expr . . .
(+ many cases omitted #) (removed during simplification)

nd lambda = var % expr

Some compilers (e.g. OCaml) drop types here; others (e.g. GHC) use them in the middle end

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/ast.ml
https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/past.ml

Interpreter 0

Slang

Slang
frontend

Interpreter

]

Downwards

Lectures 7-11: the derivation

interpreter 0
(simple, denotational)

Slang

Slang
frontend

Interpreter

]

Downwards

Lectures 7-11: the derivation

E

interpreter 0

(simple, denotational)
T

: cps + defunctionalize

interpreter 1
(explicit stack)

Lectures 7-11: the derivation

Slang interpreter 0

A (simple, denotational)
T

: cps + defunctionalize

interpreter 1

Slang (explicit stack)

frontend o o

N
N \split stacks + refactor
b

compiler 2 interpreter 2
P (stack-oriented machine)

Interpreter

]

Downwards

Lectures 7-11: the derivation

Slang interpreter 0

A (simple, denotational)
T

: cps + defunctionalize

/\ !
Slang A interpreter 1]

(explicit stack)

frontend o o

N
N \split stacks + refactor
b

compiler 2 interpreter 2
S— P | (stack-oriented machine)
Interpreter ‘

0 : add code pointer

4
interpreter 3
(linear code)

compiler 3

Downwards

Lectures 7-11: the derivation

Slang interpreter 0

(simple, denotational)

: cps + defunctionalize

interpreter 1

Slang (explicit stack)

frontend

A spllt stacks + refactor
N

1
1
interpreter 2 J
J
)

compiler 2
P | (stack- orlented machine)

Interpreter
0 add code pointer

|nterpreter 3
(Imear code)

compiler 3

add frame pointer

Downwards . . Jargon vm
jargon compiler
(heap + addressable stack

Interpreter

]

Operational

Approaches to Mathematical Semantics

Denotational

Axiomatic

Meaning defined via
transition relations on
abstract machine states

/ [& 1\
(e,0) — (€, 0")

Semantics
(Part 1B)

Meaning defined via
logical specifications
of behaviour

{PrH R}

Hoare Logic (Part II)
Separation Logic

Meaning defined via
mathematical objects
such as functions.

leln = v
Denotational Semantics
(Part 11)

A rough denotational semantics for L3

Slang
N = integers B = booleans A = addresses | = identifiers

E = environments =1 — V S —stores= A — V

\/ set of values
Slang A

frontend +N Set of values V solves this
LB “domain equation”
(here 4+ means disjoint union)
! ’

| +V xV
ntergreter + (V + V)

+(VxS)—=(VxS) |/

Solving such equations is not trivial

M = the meaning function Expr = L3 expressions
M : (Expr x E x S) — (V x S)
Downwards
(Aside: What is the meaning of a non-terminating expression?)

Interpreter 0: An OCaml approximation

From slang/interp_0.mli:

A = set of addresses
type address
S = set of stores = A — V type store = address — value

\/ set of values and value =
A | REF of address

INT of int
+§ BOOL of bool
+ UNIT

+VxV
Interpreter +(V+V)
0 +(VxS)=(VxS)

INL of value
INR of value
FUN of (value % store — value * store)

\
}
+ {0} | PAIR of value % value
|
\
|

E = set of environments = | — V type env = Ast.var — value
M = the meaning function
M : (Expr x E x S) — (V x S)

val interpret
Ast.expr * env % store — value x store

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/interp_0.mli

Interpreter

]

interpret: many cases are straightforward

From slang/interp_0.ml:

let rec interpret (e, env, store) =
match e with
| If(el, €2, e3) —
let (v, store’) = interpret (el, env, store) in
(match v with
| BOOL true — interpret (e2, env, store')
| BOOL false — interpret (e3, env, store’)
| v — complain "Runtime error: expecting a boolean!")
| Pair(el, e2) —
let (vl, storel) = interpret (el, env, store) in
let (v2, store2) = interpret (e2, env, storel) in
(PAIR(vl, v2), store2)
| Fst e —
(match interpret (e, env, store) with
| (PAIR (vl1, _), store’) — (vl, store’)
| (v, _) — complain "Runtime error: expecting a pair!”)
| Inl e — let (v, store') = interpret (e, env, store) in
(INL v, store’)

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/interp_0.ml

Interpreter
]

Slang functions — OCaml functions

From slang/interp_0.ml:

let rec interpret (e, env, store) =
match e with

| Lambda(x, e) — FUN (fun (v, s) —
interpret (e, update(env, (x, v)), s)), store
| App(el, e2) —

let (v2, storel) interpret(e2, env, store) in

let (vl, store2) = interpret(el, env, storel) in
(match vl with

| FUN f — f (v2, store2)

| v. — complain "Runtime error: function expected!”)
| LetRecFun(f, (x, body), e) —
let rec new_env g = (% a recursive environment! x)
if g=f then FUN (fun (v, s) —

interpret (body, update(new_env, (x, v)), s))
else env g

in interpret(e, new_env, store)

https://github.com/yallop/cc_cl_cam_ac_uk/tree/master/slang/interp_0.ml

Downwards

Slang

Slang
frontend

Interpreter
0

Downwards

From Interpreter 0 to the Jargon VM

Interpreter 0 uses OCaml's stack. How can we move toward the Jargon VM?

let f x x + 1 in

let gy f (y+2) + 2 in

let h w g (w+t1) + 3 in
h (h 17)

At run-time the call stack contains an activation record for each invocation

execution ———

Recall tail recursion: sum vs sum_tr

let rec sum = function rec sum_tr acc = function
| [1 — o [l — acc
| x :: xs — x + sum xs X :: XS — sum_tr (x + acc) xs
sum' xs = sum_tr @ xs

sum [1;2;3] sum’' [1;2;3]
1 + sum [2;3]

sum_tr @ [1;2;3]
sum_tr (1+0) [2;3]
sum_tr 1 [2;3]
sum_tr (2+1) [3]
sum_tr 3 [3]
sum_tr (3+3) []
sum_tr 6 []

6

stack
1+ (2 + sum [3])
—_
(2 + (3 + sum [1))
—
(2+ (3 +0)

(2 +3)
5

$8 888 E e

Downwards

Convert tail-recursion to iteration

Tail-recursive sum Iterative sum

let rec sum_tr a = function let sum_iter a 1 =
| [1] — a let ra = ref a in
| x::xs — sum_tr (x+a) xs let rl = ref 1 in one ref per argument
let sum’ xs = sum_tr @ xs let result = ref @ in one ref for the result
let not_done = ref true in one ref for the loop
let _ = while !not_done
do
match !rl with
. use a loop | 1 — resuét ::.ir?:;| use refs in body
in place of recursion | X::xs LOt;aor?i ;(_+ ?:: in place of variables
o rl := xs; B (e.g. !rl for 1)
done;
in !result
let sum 1 = sum_iter 0 1

We illustrate tail-recursion elimination as a source-to-source transformation.

Downwards .)
In practice, compilers compile low-level representations of tail-recursive code to loops.

We will consider all tail-recursive functions as representing iterative programs

Slang

Slang
frontend

Interpreter
0

Downwards

Transforming recursion to tail-recursion

Can transform all recursive functions into first-order tail-recursive functions.

Two steps:

—— 1. CPS transformation ———
Add an extra argument to each function

let fx= ... ~ let fxk=...

let z=fvine ~» fv (funz —e)

These continuation arguments represent
“the rest of the computation”
(.

——— 2. Defunctionalization ———
Turn function arguments into data

(fun x —e) ~» Conti(vi, ..., Vi)

fv ~» apply f v

The defunctionalized continuations
\form a stack

Result: tail-recursive functions that carry their own stacks as extra arguments

Next step: CPS-transform & defunctionalize interpreter 0

Next time: CPS & defunctionalization

	Slang
	Slang frontend
	Interpreter 0
	Downwards

