Compiler Construction

Lecture 3: Context-free grammars

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2026

What is the role of a parser?

next 4 lectures

: grab 2
—

acc 0
. ° push

' const 3
if a=3 f . . . eqgint
e *){ lexing 'H[parsmg 'Hﬂtypmg »—% /-\) middle/back end P

acc 1
o 0 return 3

: acc 2
front end .

Context-free grammars

What are context-free grammars?

A small fragment of the C standard:

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listopt ;
static-assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt
alignment-specifier declaration-specifiersopt

init-declarator-list:

init-declarator

init-declarator-list , init-declarator
init-declarator:

declarator

declarator = initializer

Today’'s Q: how can we turn this declarative specification into a program?

Context-Free Grammars (CFGs)

nonterminals productions P C N x (NU T)x

/

M= (N, T,P,S)

AN

terminals T start symbol S€ N

Each (A, «) € P is written as A — «

Example CFG

(Ny, T1, P1,E)

{E}
{+,%,(,),id}

E—- E+E
| ExE

| (E)
| id

NB: P; definition is shorthand for

= {<E’ E+ E>v <Ev E x E>v <Ev (E)>’ <E’ 'd>}

Derviations

Derivations

Notation conventions:
Derivations
a,B,v... € (NUT)x
@000O0 ABC,...e N

Given: aAB and a production A — ~ a derivation step is written as

aAB = avp

=T means one or more derivation steps

=" means zero or more derivation steps.

Example derivations

A leftmost derivation A rightmost derivation

Derivations E E

(N _NONONG)

Example derivations

A leftmost derivation A rightmost derivation
Derivations E = ExE E

(N _NONONG)

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = ExE E

= (E)*xE
[X NONONG®)

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = ExE E
= (E)*xE
[N NONONO®) = (E+E)>I<E

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = ExE E
= (E)*xE

A = (E+E)«E
= (x+E)*xE

A leftmost derivation

Derivations E = ExE
= (E)*xE
= (E+E)xE
= (x+E)*xE
=

(N _NONONG)

x4+ y)*E

Example derivations

A rightmost derivation

E

Derivations

(N _NONONG)

A leftmost derivation

E =

ExE
(E)xE
(E+E)xE
(x+E)*E
(
(

x4+ y)*E
x+y) * (E)

Example derivations

A rightmost derivation

E

Derivations

(N _NONONG)

A leftmost derivation

E =

ExE

E)xE

E+E)xE
x+E)xE

x4+ y)*E
x+y) * (E)
x+) * (E+E)

(
(
(
(
(
(

Example derivations

A rightmost derivation

E

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = FExE E
©0000 E?jg*E
(x+E)*E
(x+y)*E
(x+y) = (E)
(x+y) * (E+E)
(x+y) * (z+E)

=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E

(N _NONONG)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation
Derivations E = E = ExE

(N _NONONG)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE

= Ex(E)
[X NONONG®)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE
= Ex(E)

A = Ex(E+E)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE
= Ex(E)
Ex(E+E)
Ex(E+x)

[N NONONG® =
=

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation
Derivations E = E =

(N _NONONG)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE

Ex(E)
Ex(E+E)
Ex(E+x)
Ex(z+ x)
(B) % (24 %

(N _NONONG)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE

Ex(E)
Ex(E+E)
Ex(E+x)
Ex(z+ x)
(B) % (24
(E+E)» (2 %)

(N _NONONG)

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE

Ex(E)
Ex(E+E)
Ex(E+x)
Ex(z+ x)
(B) % (24
(E+E)» (2 %)
(E)+ (24

(N _NONONG)

R R R

=
=
=
=
=
=
=
=

Example derivations

A leftmost derivation A rightmost derivation

Derivations E = E = ExE

Ex(E)
Ex(E+E)
Ex(E+x)
Ex(z+ x)
(B) % (24
(E+E)» (2 %)
(E)+ (24
(xt 5) (24

(N _NONONG)

= =
= =
= =
= =
= =
= =
= =
= =

Derivation trees

The derivation tree for (x+y) * (z+x):

Derivations

00000

All derivations of this expression will produce the same derivation tree.

Concrete vs abstract syntax trees

parse tree An abstract syntax tree contains only
(Terminology: = derivation tree the information needed to generate an

L concrete syntax tree) intermediate representation
Derivations

00000

The language generated by a grammar

L(G): the language generated by G

LG = {weTx|S=Tw}

Derivations

POPYPIPIPNl For example, if G has productions

S—aSb|e

L(G) = {a"b"|n>0}

So CFGs can capture more than regular languages.

Pushdown automata

Pushdown automata (PDAs)

Regular languages are accepted by finite automata:

€ €
start —

Context-free languages are accepted by pushdown automata, finite automata
augmented with stacks.

a,Z — Sz
a,Ss — SS b,s — ¢

€ €,Z — €
start —

Pushdown automata (PDAs)

stack symbols T'
states @ start state qp € Q

!

o

alphabet ¥ initial stack symbol z € T’

transitions ¢:
Vg e Q,
a€ (SUfe)),
Xel,
6(g,a,X) C QxT*

Pushdown automata (PDAs)

(d,B) € d(q,a, X) means:

in state g, and

When the machine is < reading a and
with X on top of the stack,

, move to state g’ and
It can .
replace X with .

i.e. it pops X from the
stack and pushes (3.

Pushdown automata (PDAs)

Forge Q,we X*, a € I'*, (g, w,) is called an instantaneous description (ID).

in state g
It denotes the PDA looking at the first symbol of w
with « on the stack

a,Z — SZ
a,s — Ss b,s — €

startﬁé < éaZHE lajaja|b|b|b]

ID (g, bbb, sssz)

Language accepted by a PDA

For (¢, 8) € 4(q, a,X), a € X, define the relation — on IDs as
(q,aw, X)) — (d, w, Bar)

and for (¢, 3) € §(q, ¢, X) as
(q, w, X)) = (q, w, Bar)

Then the language accepted by M, L(M), is:

L(M)={we x| 3q € Q(qo,w, 2) =T (g,¢,€)}

NB: M accepts words in any state when the stack and remaining input are empty

PDA execution

a,Zz — Sz
a,s — SS b,s — €

startﬁé € é “re lalalalblb‘b‘

(g1, aaabbb, 7))

PDA execution

a,Zz — Sz
a,s — SS b,s — €

startﬁé € é “re \alalalblb‘b‘

(g1, aaabbb, 7)
(q1, aabbb, s7)

PDA execution

a,Zz — Sz
a,s — SS b,s — €

startﬁé éQZHE \a\alalblb‘b‘

(g1, aaabbb, 7)
(g1, aabbb, S7)
(g1, abbb, ss7)

PDA execution

a,z — SZ
a,s — SS b,s — €

g1, aaabbb, 7)
q1, aabbb, sz)
q1, abbb, ssz)
G2, bbb, SSSZ)

PDA execution

a,z — SZ
a,s — SS b,s — €

g1, aaabbb, 7)
g1, aabbb, sz

g2, bbb, SSS7Z

(

()
(g1, abbb, ssz)
()
(g2, bb, s57)

PDA execution

a,z — SZ
a,s — SS b,s — €

€7 — €
Startﬁé € é lajaja|b|b|b|

g1, aaabbb, 7)
q1, aabbb, sz)
q1, abbb, ssz)
G2, bbb, SSSZ)
G2, bb, $S7)
g2, b, S7>

(
(
(
(
(g2
(

PDA execution

a,z — SZ
a,s — SS b,s — €

€7 — €
Startﬁé € é lajaja|b|b|b|

g1, aaabbb, 7)
q1, aabbb, sz)
q1, abbb, ssz)

)

G2, bb, $S7)
g2, b, Sz)

(

(

(

(g2, bbb, $s5%
(q2

(

(q2,€,2)

PDA execution

a,z — SZ
a,s — SS b,s — €

€,Z — €
startﬁé € é \a\a\a\b\b‘b‘

g1, aaabbb, 7)
q1, aabbb, sz)
q1, abbb, ssz)
G2, bbb, SSSZ)

g2, b, sz)
92, €, Z)
qs, €, F>

(
(
(
(
(g2, bb, S57)
(
(
(

PDA and CFG facts (without proof)

PDA and CFG facts:

For every CFG G For every PDA M
there is a PDA M there is a CFG G
such that L(G) = L(M) such that L(G) = L(M)

Is the parsing problem solved? Given a CFG G we can construct the PDA M.
No! For programming languages we want M to be deterministic

Ambiguity

The origin of nondeterminism is ambiguity

Ambiguity L
Both derivation trees correspond to x + y * z.

| YoJoXeo) But (x + y) * zis not the same as x + (y * Zz).

Ambiguity causes problems going from program texts to derivation trees.

Modifying the grammar to eliminate ambiguity

We can often modify the grammar to eliminate ambiguity.

Gy (Na, Ty, Py, E)

(expressions)
P> (terms)
(factors)

Ambiguity

0000 (Can you prove that L(Gy) = L(G2)?)

The modified grammar eliminates ambiguity

The modified grammar eliminates ambiguity. The following is now the unique
derivation tree for x + y * z:

Ambiguity

0000

More facts

Some context-free languages are inherently ambiguous — every CFG for
them is ambiguous. For example

L = {a"b"c"d™ |m>1,n>1}
U {a"b"cmd" |m>1,n>1}

Checking for ambiguity in an arbitrary CFG is not decidable.

Given two grammars G; and Gg, checking L(G;) = L(Gz) is not decidable.

Ambiguity

(See Hopcroft & Ullman, “Introduction to Automata Theory, Languages, and Computation”)

Top-down & bottom-up

Two approaches to building stack-based parsing machines

Top-down: attempts a leftmost derivation. We'll look at two techniques:

Recursive Predictive
descent parsing
(hand coded) (table driven)

Bottom-up: attempts a rightmost derivation backwards. We'll look at two
techniques:

SLR(1) LR(1)
(Simple LR(1))

Top-down & Bottom-up techniques are strictly more powerful (can parse more grammars)
bottom-up

(| NONORONG)

Recursive descent parsing

type token
ADD | MUL LPAREN | RPAREN | IDENT of string

let rec
e toks = e’ (t toks)
and e' = function
ADD :: toks — e' (t toks)
toks — toks (* € %)
t toks = t' (f toks)
= function
toks — t' (f toks)
— toks (x € *)
= function
LPAREN :: toks —
(match e toks with
| RPAREN :: toks — toks
| _ — failwith "RPAREN")
| IDENT _ :: toks — toks
| _ — failwith "F”"
Top-down &
bottom-up
Parse corresponds to a leftmost derivation constructed in a top-down manner

(X _NONONG)

Left recursion & recursive-descent parsing

Recursive descent parsing is not suitable for Gs.
Left-recursion E — E+ T will lead to an infinite loop:

let rec
e toks = match e toks (x loop! *) with
| ADD :: toks — ...

Top-down &
bottom-up

00000

Eliminating left recursion

Top-down &

bottom-
oromup (Can you prove that L(Gz) = L(Gs)?)

00000

The stack machine is implicit in the call stack

Parsing x + y * z, i.e.

rec [IDENT
e toks = e’ (t toks) ADD :
e' = function IDENT
ADD :: toks — e’ (t toks) MUL ;
toks — toks (* € *) IDENT
t toks = t' (f toks)

t' = function

MUL :: toks — t' (f toks)
toks — toks (x € *) e toks

f = function

LPAREN :: toks — ~> e’ (t toks)
(match e toks with

| RPAREN :: toks — toks ~> e’ (t' (f toks))
| _ — failwith "RPAREN")

IDENT _ :: toks — toks "

_ — failwith "F"

Evaluation trace:

Top-down &
bottom-up

Next time: LL parsing

	CFGs
	Derivations
	PDAs
	Ambiguity
	Top-down & bottom-up

