

Compiler Construction

Lecture 3: Context-free grammars

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Lent 2026

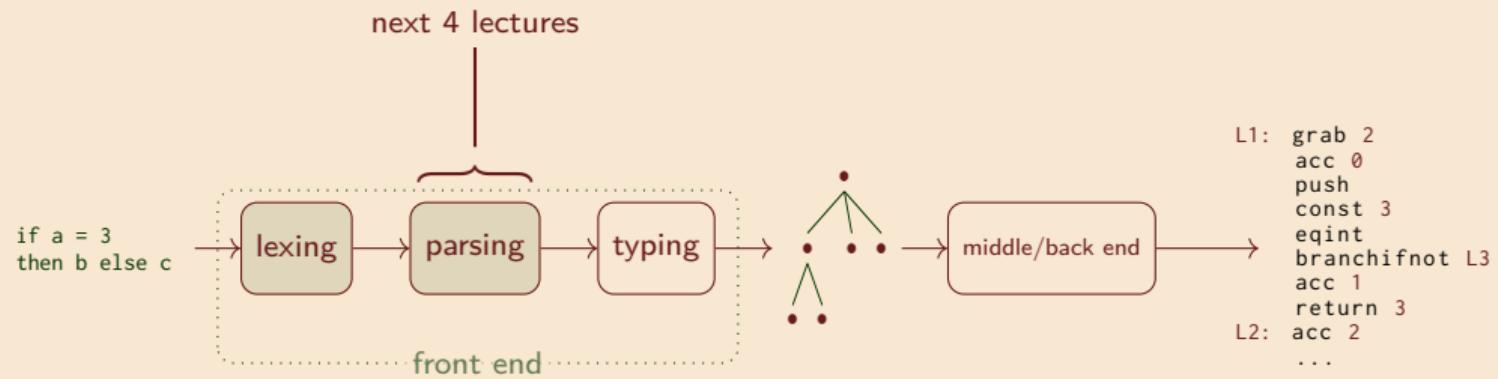
What is the role of a parser?

CFGs

Derivations

PDAs

Ambiguity



Context-free grammars

What are context-free grammars?

CFGs

● ○ ○

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

A small fragment of the C standard:

6.7 Declarations

Syntax

declaration:

declaration-specifiers init-declarator-list_{opt} ;
static-assert-declaration

declaration-specifiers:

storage-class-specifier declaration-specifiers_{opt}
type-specifier declaration-specifiers_{opt}
type-qualifier declaration-specifiers_{opt}
function-specifier declaration-specifiers_{opt}
alignment-specifier declaration-specifiers_{opt}

init-declarator-list:

init-declarator
init-declarator-list , init-declarator

init-declarator:

declarator
declarator = initializer

Today's Q: how can we turn this declarative specification into a program?

Context-Free Grammars (CFGs)

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

nonterminals N

productions $P \subseteq N \times (N \cup T)^*$

$$M = \langle N, T, P, S \rangle$$

terminals T

start symbol $S \in N$

Each $\langle A, \alpha \rangle \in P$ is written as $A \rightarrow \alpha$

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

$$G_1 = \langle N_1, T_1, P_1, E \rangle$$

where

$$N_1 = \{E\}$$

$$T_1 = \{+, *, (,), \text{id}\}$$

$$P_1 = E \rightarrow E + E$$

$$| \quad E * E$$

$$| \quad (E)$$

$$| \quad \text{id}$$

NB: P_1 definition is shorthand for

$$P_1 = \{\langle E, E + E \rangle, \langle E, E * E \rangle, \langle E, (E) \rangle, \langle E, \text{id} \rangle\}$$

Derviations

CFGs

Derivations

PDAs

Notation conventions:

$$\begin{aligned}\alpha, \beta, \gamma \dots &\in (N \cup T)^* \\ A, B, C, \dots &\in N\end{aligned}$$

Given: $\alpha A \beta$ and a production $A \rightarrow \gamma$ a derivation step is written as

$$\alpha A \beta \Rightarrow \alpha \gamma \beta$$

\Rightarrow^+ means one or more derivation steps

\Rightarrow^* means zero or more derivation steps.

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

E

A **rightmost** derivation

E

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$E \Rightarrow E * E$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x + y)*E \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x+y)*E \\ &\Rightarrow (x+y) * (E) \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x+y)*E \\ &\Rightarrow (x+y) * (E) \\ &\Rightarrow (x+y) * (E+E) \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x+y)*E \\ &\Rightarrow (x+y) * (E) \\ &\Rightarrow (x+y) * (E+E) \\ &\Rightarrow (x+y) * (z+E) \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x+y)*E \\ &\Rightarrow (x+y) * (E) \\ &\Rightarrow (x+y) * (E+E) \\ &\Rightarrow (x+y) * (z+E) \\ &\Rightarrow (x+y) * (z+x) \end{aligned}$$

A **rightmost** derivation

$$E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x+y)*E \\ &\Rightarrow (x+y) * (E) \\ &\Rightarrow (x+y) * (E+E) \\ &\Rightarrow (x+y) * (z+E) \\ &\Rightarrow (x+y) * (z+x) \end{aligned}$$

A **rightmost** derivation

$$E \Rightarrow E*E$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x+y)*E \\ &\Rightarrow (x+y) * (E) \\ &\Rightarrow (x+y) * (E+E) \\ &\Rightarrow (x+y) * (z+E) \\ &\Rightarrow (x+y) * (z+x) \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow E*(E) \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow (E)*E \\ &\Rightarrow (E+E)*E \\ &\Rightarrow (x+E)*E \\ &\Rightarrow (x + y)*E \\ &\Rightarrow (x + y) * (E) \\ &\Rightarrow (x + y) * (E+E) \\ &\Rightarrow (x + y) * (z+E) \\ &\Rightarrow (x + y) * (z + x) \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned} E &\Rightarrow E*E \\ &\Rightarrow E*(E) \\ &\Rightarrow E*(E+E) \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow (E)*E \\
 &\Rightarrow (E+E)*E \\
 &\Rightarrow (x+E)*E \\
 &\Rightarrow (x+y)*E \\
 &\Rightarrow (x+y) * (E) \\
 &\Rightarrow (x+y) * (E+E) \\
 &\Rightarrow (x+y) * (z+E) \\
 &\Rightarrow (x+y) * (z+x)
 \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow E*(E) \\
 &\Rightarrow E*(E+E) \\
 &\Rightarrow E*(E+x)
 \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow (E)*E \\
 &\Rightarrow (E+E)*E \\
 &\Rightarrow (x+E)*E \\
 &\Rightarrow (x+y)*E \\
 &\Rightarrow (x+y) * (E) \\
 &\Rightarrow (x+y) * (E+E) \\
 &\Rightarrow (x+y) * (z+E) \\
 &\Rightarrow (x+y) * (z+x)
 \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow E*(E) \\
 &\Rightarrow E*(E+E) \\
 &\Rightarrow E*(E+x) \\
 &\Rightarrow E*(z+x)
 \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow (E)*E \\
 &\Rightarrow (E+E)*E \\
 &\Rightarrow (x+E)*E \\
 &\Rightarrow (x+y)*E \\
 &\Rightarrow (x+y) * (E) \\
 &\Rightarrow (x+y) * (E+E) \\
 &\Rightarrow (x+y) * (z+E) \\
 &\Rightarrow (x+y) * (z+x)
 \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow E*(E) \\
 &\Rightarrow E*(E+E) \\
 &\Rightarrow E*(E+x) \\
 &\Rightarrow E*(z+x) \\
 &\Rightarrow (E) * (z+x)
 \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow (E)*E \\
 &\Rightarrow (E+E)*E \\
 &\Rightarrow (x+E)*E \\
 &\Rightarrow (x+y)*E \\
 &\Rightarrow (x+y) * (E) \\
 &\Rightarrow (x+y) * (E+E) \\
 &\Rightarrow (x+y) * (z+E) \\
 &\Rightarrow (x+y) * (z+x)
 \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow E*(E) \\
 &\Rightarrow E*(E+E) \\
 &\Rightarrow E*(E+x) \\
 &\Rightarrow E*(z+x) \\
 &\Rightarrow (E) * (z+x) \\
 &\Rightarrow (E+E) * (z+x)
 \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow (E)*E \\
 &\Rightarrow (E+E)*E \\
 &\Rightarrow (x+E)*E \\
 &\Rightarrow (x+y)*E \\
 &\Rightarrow (x+y)*(E) \\
 &\Rightarrow (x+y)*(E+E) \\
 &\Rightarrow (x+y)*(z+E) \\
 &\Rightarrow (x+y)*(z+x)
 \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow E*(E) \\
 &\Rightarrow E*(E+E) \\
 &\Rightarrow E*(E+x) \\
 &\Rightarrow E*(z+x) \\
 &\Rightarrow (E)*(z+x) \\
 &\Rightarrow (E+E)*(z+x) \\
 &\Rightarrow (E+y)*(z+x)
 \end{aligned}$$

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

CFGs

A **leftmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow (E)*E \\
 &\Rightarrow (E+E)*E \\
 &\Rightarrow (x+E)*E \\
 &\Rightarrow (x+y)*E \\
 &\Rightarrow (x+y) * (E) \\
 &\Rightarrow (x+y) * (E+E) \\
 &\Rightarrow (x+y) * (z+E) \\
 &\Rightarrow (x+y) * (z+x)
 \end{aligned}$$

A **rightmost** derivation

$$\begin{aligned}
 E &\Rightarrow E*E \\
 &\Rightarrow E*(E) \\
 &\Rightarrow E*(E+E) \\
 &\Rightarrow E*(E+x) \\
 &\Rightarrow E*(z+x) \\
 &\Rightarrow (E) * (z+x) \\
 &\Rightarrow (E+E) * (z+x) \\
 &\Rightarrow (E+y) * (z+x) \\
 &\Rightarrow (x+y) * (z+x)
 \end{aligned}$$

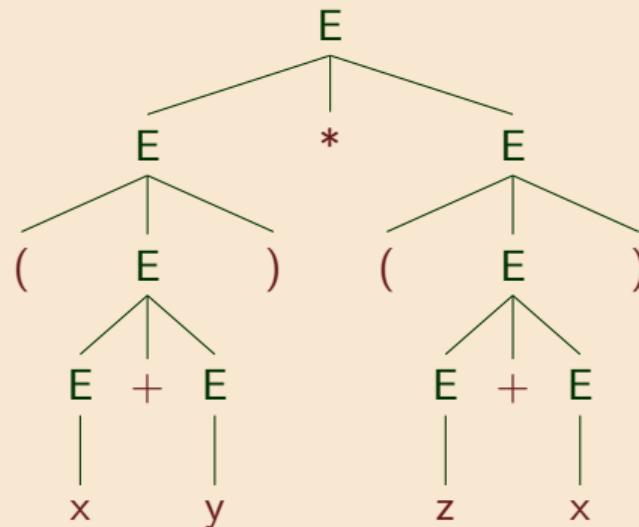
Derivations

PDAs

Ambiguity

Top-down & bottom-up

CFGs

The derivation tree for $(x+y) * (z+x)$:

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

All derivations of this expression will produce the same derivation tree.

Concrete vs abstract syntax trees

CFGs

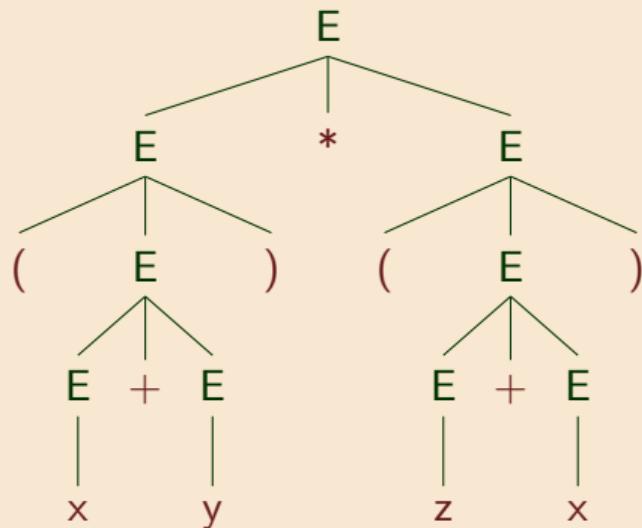
Derivations

PDAs

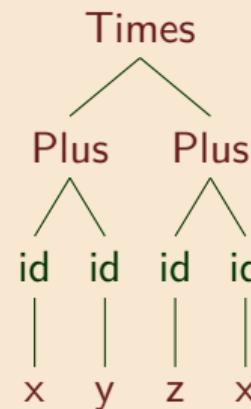
Ambiguity

Top-down &
bottom-up

(Terminology: = **parse tree**
= **derivation tree**
= **concrete syntax tree**)



An **abstract syntax** tree contains only the information needed to generate an intermediate representation



The language generated by a grammar

CFGs

$L(G)$: the **language generated by G**

$$L(G) = \{w \in T^* \mid S \Rightarrow^+ w\}$$

Derivations

PDAs

For example, if G has productions

$$S \rightarrow aSb \mid \epsilon$$

then

$$L(G) = \{a^n b^n \mid n \geq 0\}$$

Ambiguity

Top-down &
bottom-up

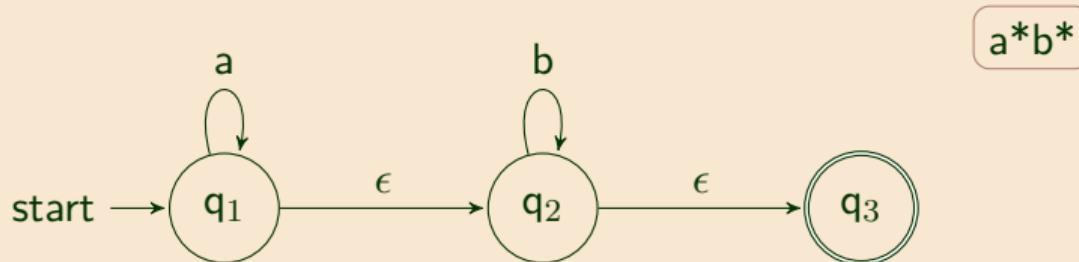
So CFGs can capture more than regular languages.

Pushdown automata

Pushdown automata (PDAs)

CFGs

Regular languages are accepted by finite automata:



Derivations

PDAs

Context-free languages are accepted by pushdown automata, finite automata augmented with stacks.

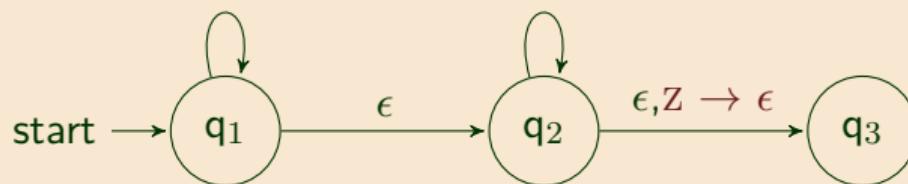
Ambiguity

$a, Z \rightarrow S, Z$

$a, S \rightarrow S, S$

$b, S \rightarrow \epsilon$

$a^n b^n$



Top-down & bottom-up

Pushdown automata (PDAs)

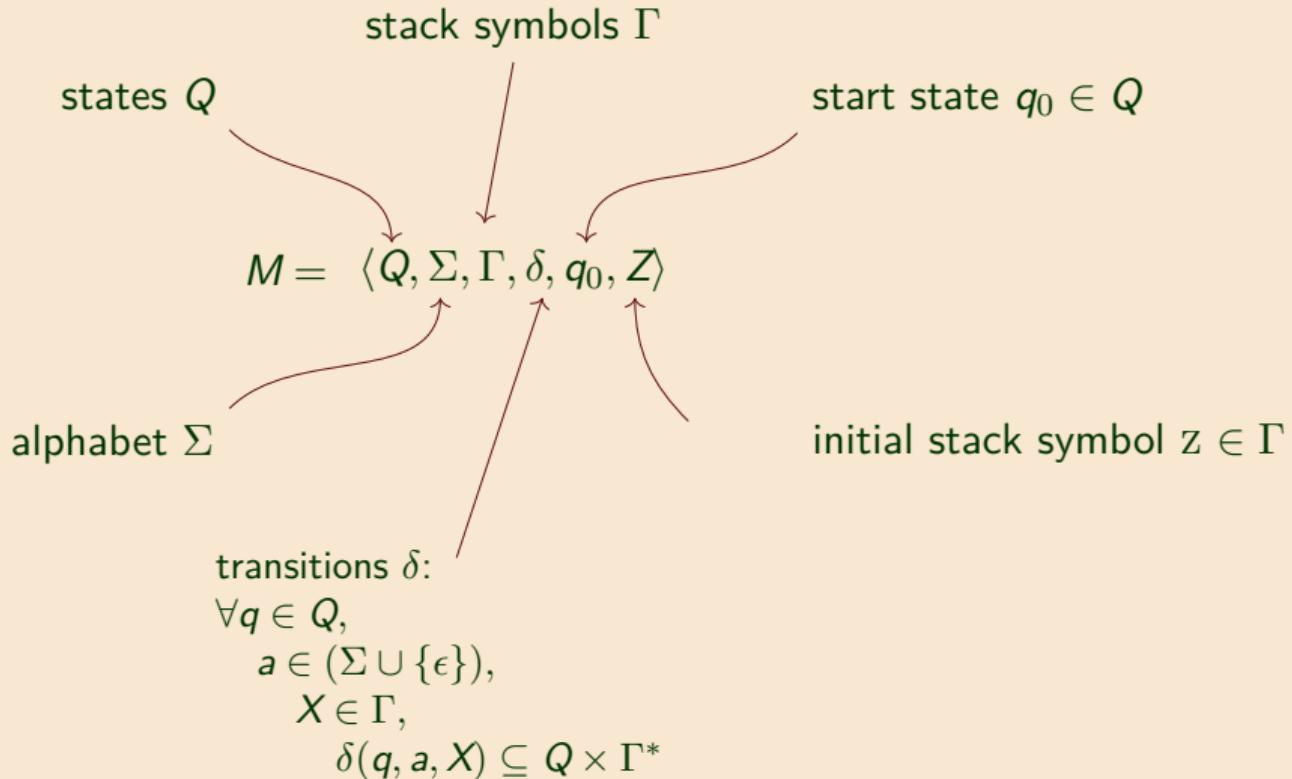
CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up



CFGs

$\langle q', \beta \rangle \in \delta(q, a, X)$ means:

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

When the machine is

$\left\{ \begin{array}{l} \text{in state } q, \text{ and} \\ \text{reading } a \text{ and} \\ \text{with } X \text{ on top of the stack,} \end{array} \right.$

it can

$\left\{ \begin{array}{l} \text{move to state } q' \text{ and} \\ \text{replace } X \text{ with } \beta. \end{array} \right.$

i.e. it *pops* X from the stack and *pushes* β .

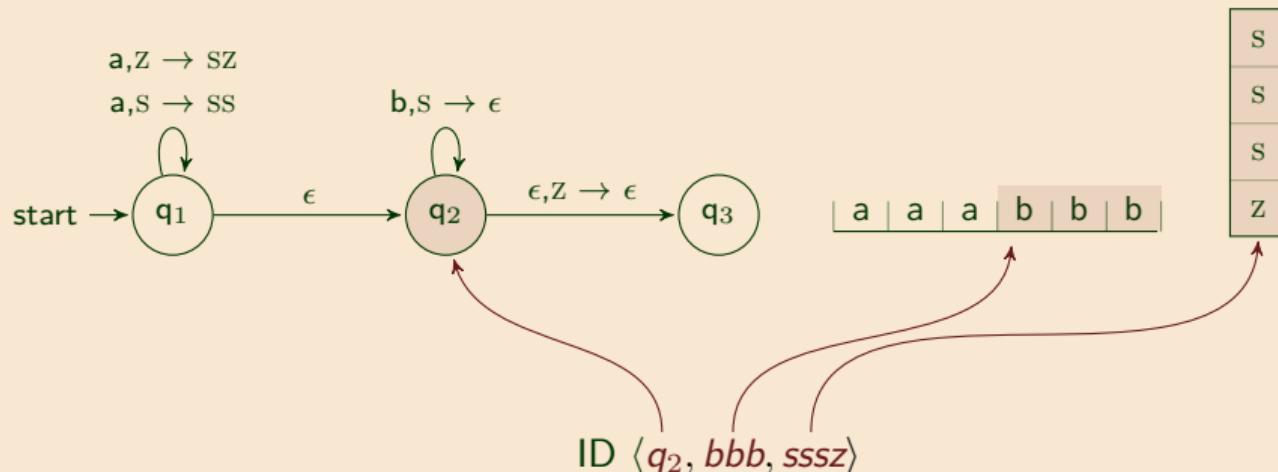
Pushdown automata (PDAs)

CFGs

For $q \in Q, w \in \Sigma^*, \alpha \in \Gamma^*$, $\langle q, w, \alpha \rangle$ is called an **instantaneous description** (ID).

in state q

It denotes the PDA looking at the first symbol of w
with α on the stack



PDAs

Ambiguity

Top-down &
bottom-up

CFGs

For $\langle q', \beta \rangle \in \delta(q, a, X)$, $a \in \Sigma$, define the relation \rightarrow on IDs as

$$\langle q, aw, X\alpha \rangle \rightarrow \langle q', w, \beta\alpha \rangle$$

and for $\langle q', \beta \rangle \in \delta(q, \epsilon, X)$ as

$$\langle q, w, X\alpha \rangle \rightarrow \langle q', w, \beta\alpha \rangle$$

Then the **language accepted by M** , $L(M)$, is:

$$L(M) = \{ w \in \Sigma^* \mid \exists q \in Q, \langle q_0, w, Z \rangle \xrightarrow{+} \langle q, \epsilon, \epsilon \rangle \}$$

PDAs

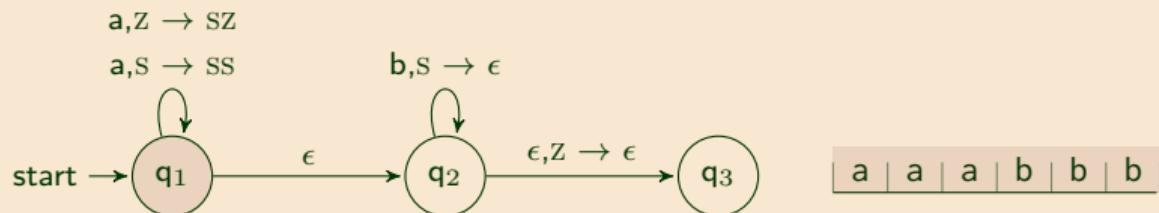
Ambiguity

Top-down &
bottom-up

CFGs

Derivations

PDAs

 $\langle q_1, aaabbb, z \rangle$

Ambiguity

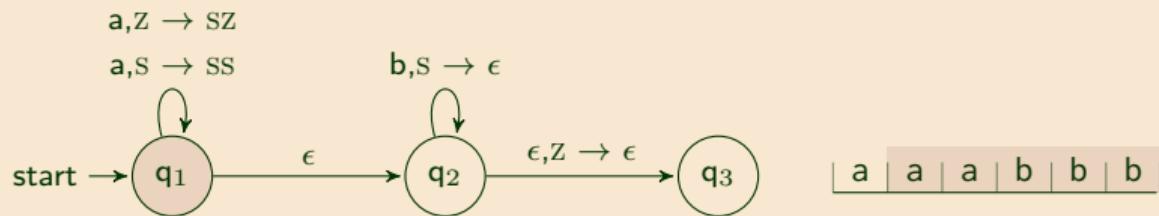
Top-down &
bottom-up

CFGs

Derivations

PDAs

Ambiguity

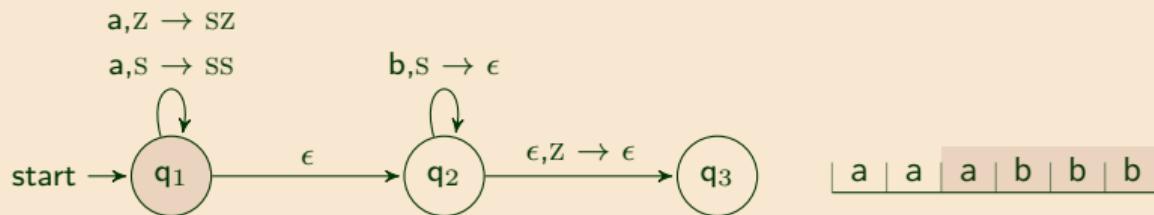
Top-down &
bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbbb, SZ \rangle$

CFGs

Derivations

PDAs

Ambiguity

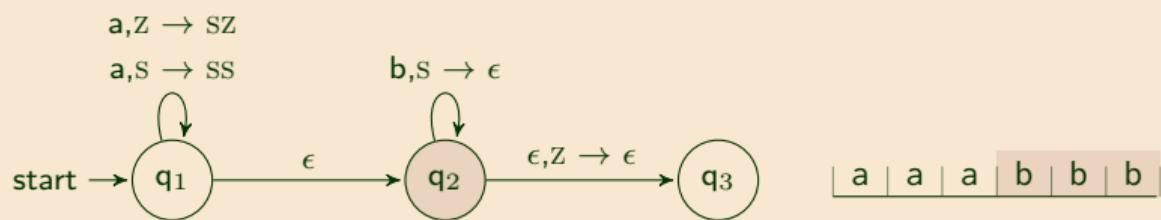
Top-down &
bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbbb, SZ \rangle$ $\langle q_1, abbb, SSZ \rangle$

CFGs

Derivations

PDAs

Ambiguity

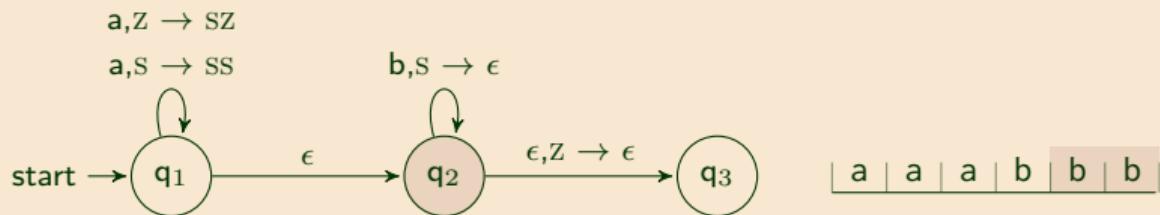
Top-down &
bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbbb, SZ \rangle$ $\langle q_1, abbb, SSZ \rangle$ $\langle q_2, bbb, SSSZ \rangle$

CFGs

Derivations

PDAs

Ambiguity

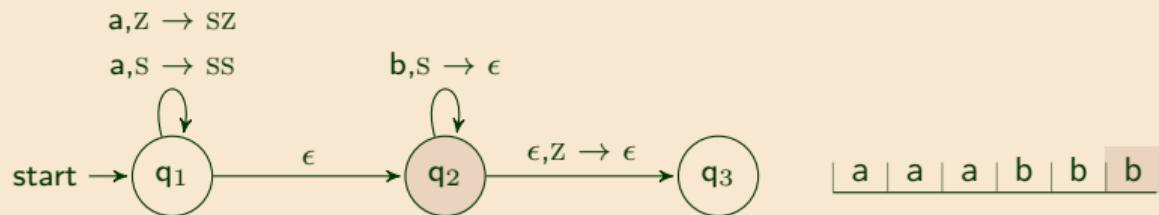
Top-down &
bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbbb, SZ \rangle$ $\langle q_1, abbb, SSZ \rangle$ $\langle q_2, bbb, SSSZ \rangle$ $\langle q_2, bb, SSZ \rangle$

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

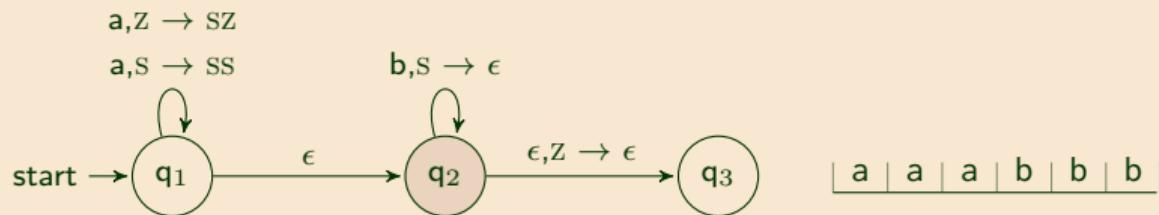
$$\begin{aligned}
 &\langle q_1, aaabbb, z \rangle \\
 &\langle q_1, aabbbb, SZ \rangle \\
 &\langle q_1, abbb, SSZ \rangle \\
 &\langle q_2, bbb, SSSZ \rangle \\
 &\langle q_2, bb, SSZ \rangle \\
 &\langle q_2, b, SZ \rangle
 \end{aligned}$$

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

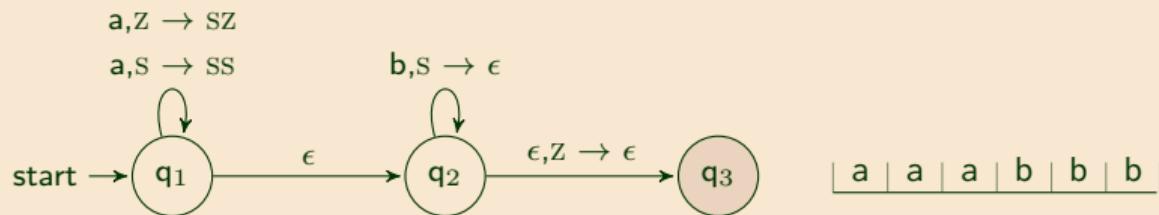
$\langle q_1, aaabbb, z \rangle$
 $\langle q_1, aabbbb, SZ \rangle$
 $\langle q_1, abbb, SSZ \rangle$
 $\langle q_2, bbb, SSSZ \rangle$
 $\langle q_2, bb, SSZ \rangle$
 $\langle q_2, b, SZ \rangle$
 $\langle q_2, \epsilon, Z \rangle$

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

$$\begin{aligned}
 &\langle q_1, aaabbb, z \rangle \\
 &\langle q_1, aabbbb, SZ \rangle \\
 &\langle q_1, abbb, SSZ \rangle \\
 &\langle q_2, bbb, SSSZ \rangle \\
 &\langle q_2, bb, SSZ \rangle \\
 &\langle q_2, b, SZ \rangle \\
 &\langle q_2, \epsilon, Z \rangle \\
 &\langle q_3, \epsilon, \epsilon \rangle
 \end{aligned}$$

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

PDA and CFG facts:

For every CFG G
there is a PDA M
such that $L(G) = L(M)$

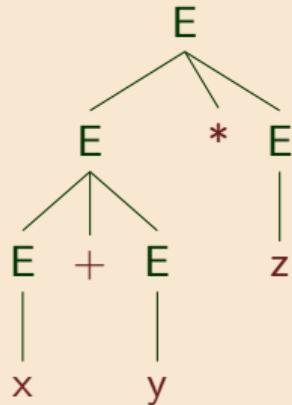
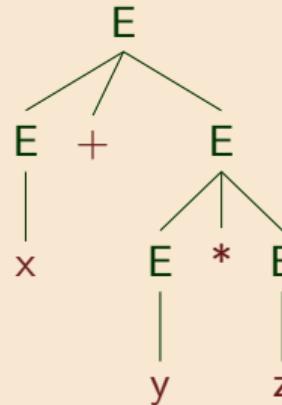
For every PDA M
there is a CFG G
such that $L(G) = L(M)$

Is the parsing problem solved? Given a CFG G we can construct the PDA M .
No! For programming languages we want M to be **deterministic**

Ambiguity

The origin of nondeterminism is ambiguity

CFGs



Derivations

PDAs

Ambiguity

Top-down &
bottom-up

Both derivation trees correspond to $x + y * z$.

But $(x + y) * z$ is not the same as $x + (y * z)$.

Ambiguity causes problems going from program texts to derivation trees.

Modifying the grammar to eliminate ambiguity

CFGs

Derivations

$$G_2 = \langle N_2, T_1, P_2, E \rangle$$

where

$$\begin{aligned} P_2 &= \begin{aligned} E &\rightarrow E + T \mid T && \text{(expressions)} \\ T &\rightarrow T * F \mid F && \text{(terms)} \\ F &\rightarrow (E) \mid id && \text{(factors)} \end{aligned} \end{aligned}$$

Ambiguity

(Can you prove that $L(G_1) = L(G_2)$?)

Top-down &
bottom-up

The modified grammar eliminates ambiguity

CFGs

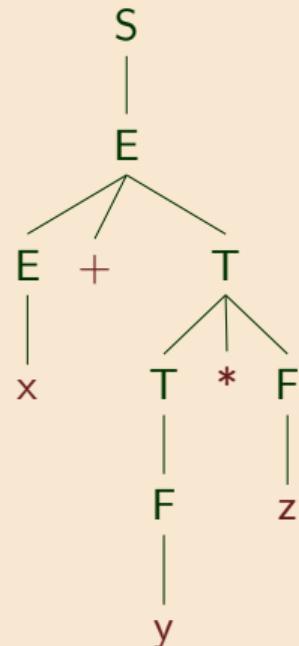
Derivations

PDAs

Ambiguity

Top-down &
bottom-up

The modified grammar eliminates ambiguity. The following is now the unique derivation tree for $x + y * z$:



CFGs

1. Some context-free languages are **inherently ambiguous** — every CFG for them is ambiguous. For example

$$\begin{aligned}L &= \{a^n b^n c^m d^m \mid m \geq 1, n \geq 1\} \\ &\cup \{a^n b^m c^m d^n \mid m \geq 1, n \geq 1\}\end{aligned}$$

Derivations

PDAs

2. Checking for **ambiguity** in an arbitrary CFG is **not decidable**.
3. Given two grammars G_1 and G_2 , checking $L(G_1) = L(G_2)$ is **not decidable**.

Ambiguity

Top-down &
bottom-up

(See Hopcroft & Ullman, "Introduction to Automata Theory, Languages, and Computation")

Top-down & bottom-up

Two approaches to building stack-based parsing machines

CFGs

Top-down: attempts a leftmost derivation. We'll look at two techniques:

	Recursive descent (hand coded)	Predictive parsing (table driven)
--	--------------------------------------	---

Derivations

PDAs

Bottom-up: attempts a rightmost derivation backwards. We'll look at two techniques:

SLR(1) (Simple LR(1))	LR(1)
--------------------------	-------

Ambiguity

Top-down &
bottom-up

Bottom-up techniques are strictly more powerful (can parse more grammars)

Recursive descent parsing

CFGs

```
type token =
  ADD | MUL | LPAREN | RPAREN | IDENT of string
```

$$\begin{array}{l} E \rightarrow TE' \\ E' \rightarrow +TE' \mid \epsilon \\ T \rightarrow FT' \\ T' \rightarrow *FT' \mid \epsilon \\ F \rightarrow (E) \mid \text{id} \end{array}$$

Derivations

```
let rec
  e toks = e' (t toks)
and e' = function
  | ADD :: toks → e' (t toks)
  | toks → toks (* ε *)
and t toks = t' (f toks)
and t' = function
  | MUL :: toks → t' (f toks)
  | toks → toks (* ε *)
and f = function
  | LPAREN :: toks →
    (match e toks with
    | RPAREN :: toks → toks
    | _ → failwith "RPAREN")
  | IDENT _ :: toks → toks
  | _ → failwith "F"
```

PDAs

Ambiguity

Top-down & bottom-up

Parse corresponds to a leftmost derivation constructed in a top-down manner

Left recursion & recursive-descent parsing

CFGs

Derivations

Recursive descent parsing is not suitable for G_2 .

Left-recursion $E \rightarrow E + T$ will lead to an infinite loop:

```
let rec
  e toks = match e toks (* loop! *) with
            | ADD :: toks → ...
```

$$\begin{aligned} E &\rightarrow E + T \mid T \\ T &\rightarrow T * F \mid F \\ F &\rightarrow (E) \mid \text{id} \end{aligned}$$

Ambiguity

Top-down &
bottom-up

Eliminating left recursion

CFGs

$$G_2 = \langle N_2, T_1, P_2, E \rangle$$

Derivations

where

...

$$P_2 = \begin{array}{l} E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow (E) \mid id \end{array}$$

PDAs

$$G_3 = \langle N_3, T_1, P_3, E \rangle$$

where

...

$$P_3 = \begin{array}{l} E \rightarrow T E' \\ E' \rightarrow + T E' \mid \epsilon \\ T \rightarrow F T' \\ T' \rightarrow * F T' \mid \epsilon \\ F \rightarrow (E) \mid id \end{array}$$

Ambiguity

Top-down &
bottom-up

(Can you prove that $L(G_2) = L(G_3)$?)

The stack machine is *implicit in the call stack*

CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

```
let rec
  e toks = e' (t toks)
and e' = function
  | ADD :: toks → e' (t toks)
  | toks           → toks (* ε *)
and t toks = t' (f toks)
and t' = function
  | MUL :: toks → t' (f toks)
  | toks         → toks (* ε *)
and f = function
  | LPAREN :: toks →
    (match e toks with
    | RPAREN :: toks → toks
    | _              → failwith "RPAREN")
  | IDENT _ :: toks → toks
  | _               → failwith "F"
```

Parsing $x + y * z$, i.e.

```
[IDENT "x";
 ADD;
 IDENT "y";
 MUL;
 IDENT "z"]
```

Evaluation trace:

```
  e toks
    ↪ e' (t toks)
      ↪ e' (t' (f toks))
        ↪ ...
          ...
```


Next time: LL parsing