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What is the role of a parser?

lexing parsing typingif a = 3
then b else c

•

•••

••

middle/back end

L1: grab 2
acc 0
push
const 3
eqint
branchifnot L3
acc 1
return 3

L2: acc 2
...front end

}

next 4 lectures
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What are context-free grammars?
A small fragment of the C standard:

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listopt ;
static-assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt
alignment-specifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Today’s Q: how can we turn this declarative specification into a program?
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Context-Free Grammars (CFGs)

⟨N,T,P, S⟩M =

nonterminals N

terminals T

productions P ⊆ N × (N ∪ T)∗

start symbol S ∈ N

Each ⟨A, α⟩ ∈ P is written as A → α
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Example CFG

G1 = ⟨N1,T1,P1,E⟩
where

N1 = {E}
T1 = {+, ∗, (, ), id}

P1 = E → E + E
| E ∗ E
| (E)
| id

NB: P1 definition is shorthand for

P1 = {⟨E,E + E⟩, ⟨E,E ∗ E⟩, ⟨E, (E)⟩, ⟨E, id⟩}
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Derivations

Notation conventions:

α, β, γ . . . ∈ (N ∪ T)∗
A,B,C, . . . ∈ N

Given: αAβ and a production A → γ a derivation step is written as

αAβ ⇒ αγβ

⇒+ means one or more derivation steps
⇒∗ means zero or more derivation steps.
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Example derivations

A leftmost derivation

E ⇒ E∗E
⇒ (E)∗E
⇒ (E+E)∗E
⇒ (x+E)∗E
⇒ (x + y)∗E
⇒ (x + y) ∗ (E)
⇒ (x + y) ∗ (E+E)
⇒ (x + y) ∗ (z+E)
⇒ (x + y) ∗ (z + x)

A rightmost derivation

E ⇒ E∗E
⇒ E∗(E)
⇒ E∗(E+E)
⇒ E∗(E+x)
⇒ E∗(z + x)
⇒ (E) ∗ (z + x)
⇒ (E+E) ∗ (z + x)
⇒ (E+y) ∗ (z + x)
⇒ (x + y) ∗ (z + x)
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Derivation trees

The derivation tree for (x+y) * (z+x):

E

E

)E

E

x

+E

z

(

*E

)E

E

y

+E

x

(

All derivations of this expression will produce the same derivation tree.
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Concrete vs abstract syntax trees

(Terminology:
parse tree

= derivation tree
= concrete syntax tree)

An abstract syntax tree contains only
the information needed to generate an
intermediate representation

E

E

)E

E

x

+E

z

(

*E

)E

E

y

+E

x

(

Times

Plus

id

x

id

z

Plus

id

y

id

x



CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

The language generated by a grammar

L(G): the language generated by G

L(G) = {w ∈ T∗ | S ⇒+ w}

For example, if G has productions

S → aSb | ϵ

then

L(G) = {anbn | n ≥ 0}

So CFGs can capture more than regular languages.
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Pushdown automata (PDAs)
Regular languages are accepted by finite automata:

q1start q2 q3

a

ϵ

b

ϵ

a*b*

Context-free languages are accepted by pushdown automata, finite automata
augmented with stacks.

q1start q2 q3

a,s → ss
a,z → sz

ϵ

b,s → ϵ

ϵ,z → ϵ

anbn
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Pushdown automata (PDAs)

⟨Q,Σ,Γ, δ, q0,Z⟩M =

states Q

alphabet Σ

stack symbols Γ
start state q0 ∈ Q

initial stack symbol z ∈ Γ

transitions δ:
∀q ∈ Q,

a ∈ (Σ ∪ {ϵ}),
X ∈ Γ,
δ(q, a,X) ⊆ Q × Γ∗
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Pushdown automata (PDAs)

⟨q′, β⟩ ∈ δ(q, a,X) means:

in state q, and
reading a and
with X on top of the stack,{When the machine is

move to state q′ and
replace X with β.{it can

i.e. it pops X from the
stack and pushes β.
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Pushdown automata (PDAs)

For q ∈ Q,w ∈ Σ∗, α ∈ Γ∗, ⟨q,w, α⟩ is called an instantaneous description (ID).

It denotes the PDA
in state q
looking at the first symbol of w
with α on the stack

q1start q2 q3

a,s → ss
a,z → sz

ϵ

b,s → ϵ

ϵ,z → ϵ
a a a b b b z

s

s

s

ID ⟨q2, bbb, sssz⟩
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Language accepted by a PDA

For ⟨q′, β⟩ ∈ δ(q, a,X), a ∈ Σ, define the relation → on IDs as

⟨q, aw,Xα⟩ → ⟨q′,w, βα⟩

and for ⟨q′, β⟩ ∈ δ(q, ϵ,X) as

⟨q,w,Xα⟩ → ⟨q′,w, βα⟩

Then the language accepted by M, L(M), is:

L(M) = {w ∈ Σ∗ | ∃q ∈ Q, ⟨q0,w,Z⟩ →+ ⟨q, ϵ, ϵ⟩}

NB: M accepts words in any state when the stack and remaining input are empty
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PDA execution

q1start q2 q3

a,s → ss
a,z → sz

ϵ

b,s → ϵ

ϵ,z → ϵ
a a a b b b z

s

s

s

⟨q1, aaabbb, z⟩
⟨q1, aabbb, sz⟩
⟨q1, abbb, ssz⟩
⟨q2, bbb, sssz⟩
⟨q2, bb, ssz⟩
⟨q2, b, sz⟩
⟨q2, ϵ, z⟩
⟨q3, ϵ, ϵ⟩
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PDA and CFG facts (without proof)

PDA and CFG facts:

For every CFG G
there is a PDA M
such that L(G) = L(M)

For every PDA M
there is a CFG G

such that L(G) = L(M)

Is the parsing problem solved? Given a CFG G we can construct the PDA M.
No! For programming languages we want M to be deterministic
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The origin of nondeterminism is ambiguity

E

E

z

*E

E

y

+E

x

E

E

E

z

*E

y

+E

x

Both derivation trees correspond to x + y * z.
But (x + y) * z is not the same as x + (y * z).
Ambiguity causes problems going from program texts to derivation trees.
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Modifying the grammar to eliminate ambiguity

We can often modify the grammar to eliminate ambiguity.

G2 = ⟨N2,T1,P2,E⟩
where

P2 =
E → E + T | T (expressions)
T → T ∗ F | F (terms)
F → (E) | id (factors)

(Can you prove that L(G1) = L(G2)?)
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The modified grammar eliminates ambiguity

The modified grammar eliminates ambiguity. The following is now the unique
derivation tree for x + y * z:

S

E

T

F

z

*T

F

y

+E

x
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More facts

1. Some context-free languages are inherently ambiguous — every CFG for
them is ambiguous. For example

L = {anbncmdm | m ≥ 1, n ≥ 1}
∪ {anbmcmdn | m ≥ 1, n ≥ 1}

2. Checking for ambiguity in an arbitrary CFG is not decidable.

3. Given two grammars G1 and G2, checking L(G1) = L(G2) is not decidable.

(See Hopcroft & Ullman, “Introduction to Automata Theory, Languages, and Computation”)
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Two approaches to building stack-based parsing machines

Top-down: attempts a leftmost derivation. We’ll look at two techniques:
Recursive
descent

(hand coded)

Predictive
parsing

(table driven)

Bottom-up: attempts a rightmost derivation backwards. We’ll look at two
techniques:

SLR(1)
(Simple LR(1))

LR(1)

Bottom-up techniques are strictly more powerful (can parse more grammars)
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Recursive descent parsing

type token =
ADD | MUL | LPAREN | RPAREN | IDENT of string

l e t rec
e toks = e' (t toks)

and e' = f unc t i on
| ADD :: toks → e' (t toks)
| toks → toks (* ϵ *)

and t toks = t' (f toks)
and t' = f unc t i on

| MUL :: toks → t' (f toks)
| toks → toks (* ϵ *)

and f = f unc t i on
| LPAREN :: toks →

(match e toks with
| RPAREN :: toks → toks
| _ → failwith "RPAREN ")

| IDENT _ :: toks → toks
| _ → failwith "F"

E → T E′

E′ → + T E′ | ϵ
T → F T′

T′ → ∗ F T′ | ϵ
F → ( E ) | id

Parse corresponds to a leftmost derivation constructed in a top-down manner
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Left recursion & recursive-descent parsing

Recursive descent parsing is not suitable for G2.

Left-recursion E → E + T will lead to an infinite loop:

l e t rec
e toks = match e toks (* loop! *) with

| ADD :: toks → ...

E → E + T | T
T → T ∗ F | F
F → (E) | id
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Eliminating left recursion

G2 = ⟨N2,T1,P2,E⟩
where

. . .

P2 =
E → E + T | T
T → T ∗ F | F
F → (E) | id

G3 = ⟨N3,T1,P3,E⟩
where

. . .

P3 =

E → T E′

E′ → + T E′ | ϵ
T → F T′

T′ → ∗ F T′ | ϵ
F → ( E ) | id

(Can you prove that L(G2) = L(G3)?)



CFGs

Derivations

PDAs

Ambiguity

Top-down &
bottom-up

The stack machine is implicit in the call stack

l e t rec
e toks = e' (t toks)

and e' = f unc t i on
| ADD :: toks → e' (t toks)
| toks → toks (* ϵ *)

and t toks = t' (f toks)
and t' = f unc t i on

| MUL :: toks → t' (f toks)
| toks → toks (* ϵ *)

and f = f unc t i on
| LPAREN :: toks →

(match e toks with
| RPAREN :: toks → toks
| _ → failwith "RPAREN ")

| IDENT _ :: toks → toks
| _ → failwith "F"

Parsing x + y * z, i.e.
[IDENT "x";
ADD;
IDENT "y";
MUL;
IDENT "z"]

Evaluation trace:
e toks

⇝ e' (t toks)

⇝ e' (t' (f toks))

⇝ . . .



Next time: LL parsing
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