

Compiler Construction

Lecture 2: Lexing

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Lent 2026

What is the role of a lexer?

Lexing

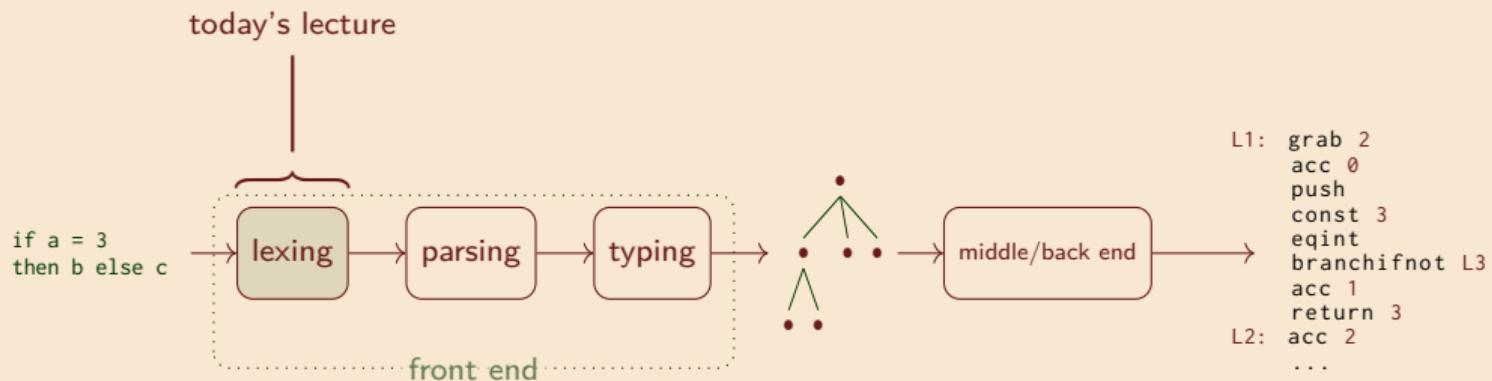
Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)



What is lexing?

Lexing

Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

0

Lexing converts a sequence of characters into a sequence of tokens.

What do lexers look like?

Lexing

• • •

Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

A **lexer** is typically specified as a sequence mapping regexes to tokens:

regular expressions

if	\Rightarrow	IF
then	\Rightarrow	THEN
else	\Rightarrow	ELSE
=	\Rightarrow	EQUAL
$[a-zA-Z]^+$ as s	\Rightarrow	IDENT s
$[0-9]^+$ as i	\Rightarrow	INT i
$[\backslash t\backslash n]$	\Rightarrow	skip

tokens

Token data type:

```
type token =  
  INT of int  
  | IDENT of string  
  | EQUAL  
  | IF  
  | THEN  
  | ELSE  
  | ...
```

Regular expressions

(“regexes”)

Lexing

Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂

Regular expressions e over alphabet Σ are written:

$$e \rightarrow \emptyset \mid \epsilon \mid a \mid e \vee e \mid ee \mid e^* \quad (a \in \Sigma)$$

A regular expression e denotes a **language** (set of strings) $L(e)$. For example,

$$L((a \vee b)^* abb) = \{abb, aabb, babb, aaabb, ababb, baabb, bbabb, aaaabb, \dots\}$$

The regular language problem

Lexing

The $L(-)$ function can be defined inductively:

Regexes

NFA, DFA

RE \rightarrow NFA

$$L(e) \subseteq \Sigma^*$$

$$L(\emptyset) = \{\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(a) = \{a\}$$

$$L(e_1 \vee e_2) = L(e_1) \cup L(e_2)$$

$$L(e_1 e_2) = \{w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\}$$

Lexing
(reprise)

$$L(e^0) = \{\epsilon\}$$

$$L(e^{n+1}) = L(ee^n)$$

$$L(e^*) = \cup_{n \geq 0} L(e^n)$$

∂

The **regular language problem**: is $w \in L(e)$? This is **insufficient for lexing**.

Finite-state automata

Lexing

Regexes

NFA, DFA
● ○ ○

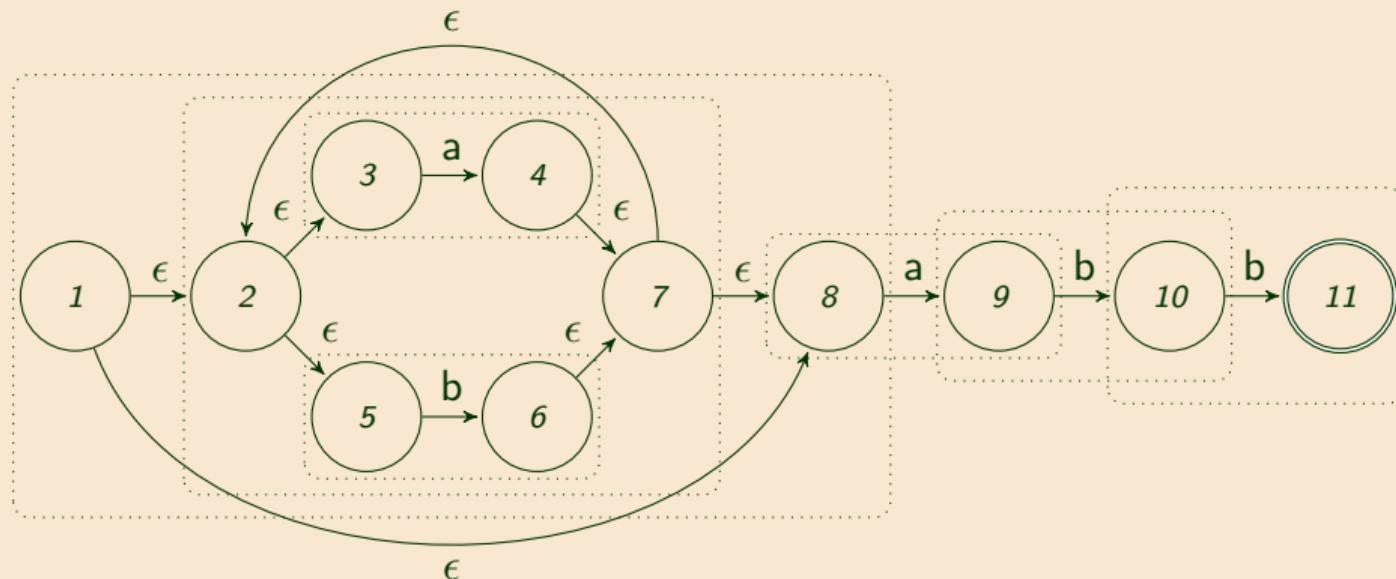
RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂

A nondeterministic finite-state automaton for recognising $L((a \vee b) * abb)$:



Review of Finite Automata (FA)

Lexing

Regexes

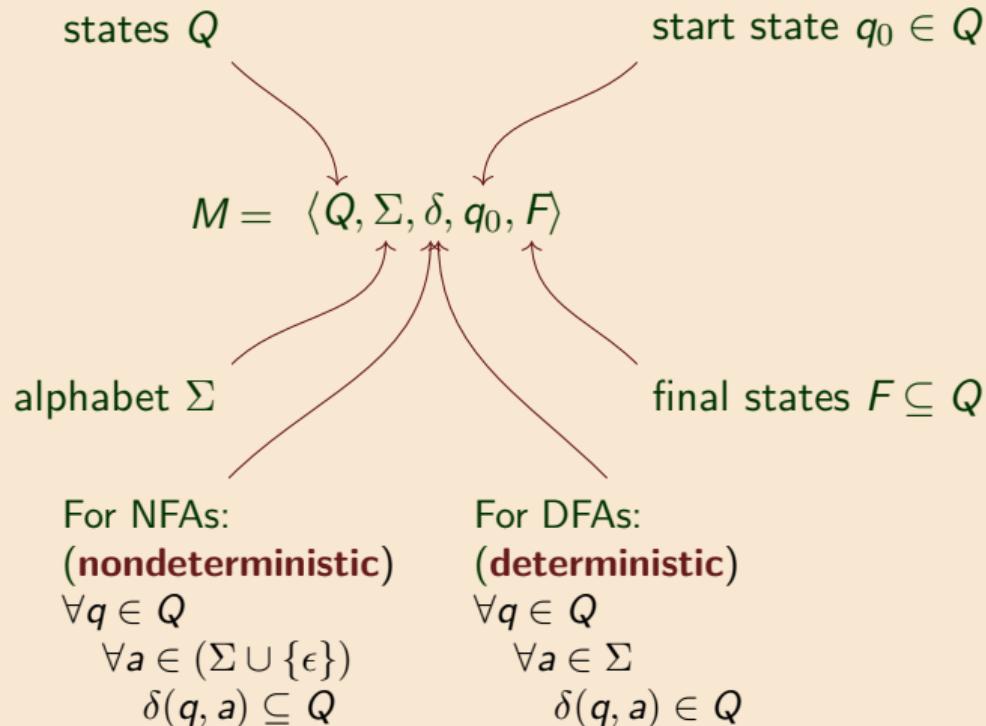
NFA, DFA
● ● ○

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



Transition notation

Lexing

Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂

DFA

$q_1 \xrightarrow{aw} q_3$
if $\delta(q_1, a) = q_2$ and $q_2 \xrightarrow{w} q_3$

$L(M) = \{w \mid \exists q \in F, q_0 \xrightarrow{w} q\}$

Null transition
on empty string

Including
 ϵ transitions

Transition
on non-empty string

Language of
an automaton

NFA

$q \xrightarrow{\epsilon} q$

$q_1 \xrightarrow{w} q_3$

if $\delta(q_1, \epsilon) \ni q_2$ and $q_2 \xrightarrow{w} q_3$

$q_1 \xrightarrow{aw} q_3$

if $\delta(q_1, a) \ni q_2$ and $q_2 \xrightarrow{w} q_3$

$L(M) = \{w \mid \exists q \in F, q_0 \xrightarrow{w} q\}$

Regular expressions \longrightarrow NFAs

Lexing

 $N(-)$ takes a regex e to an NFA $N(e)$ accepting $L(e)$ with a single final state.

Regexes

NFA, DFA

 $N(-)$ is defined by induction on e .

RE \rightarrow NFA
● ○ ○

NFA \rightarrow DFALexing
(reprise) ∂ 

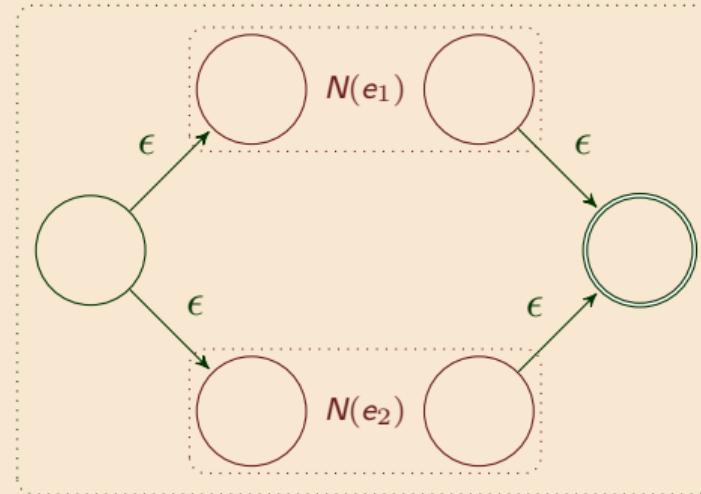
Lexing

Regexes

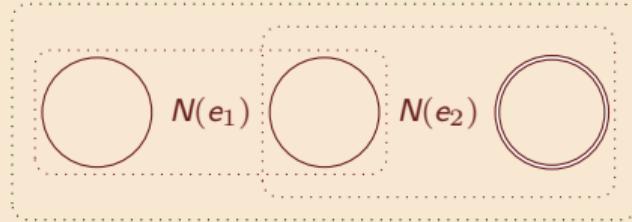
NFA, DFA

RE \rightarrow NFANFA \rightarrow DFALexing
(reprise) ∂

$$N(e_1 \vee e_2) =$$



$$N(e_1 e_2) =$$



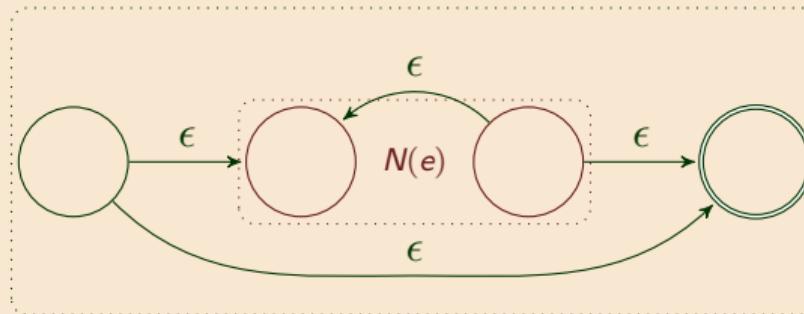
Lexing

Regexes

NFA, DFA

RE \rightarrow NFANFA \rightarrow DFALexing
(reprise) ∂

$$N(e^*) =$$



Note: an *alternative* to this simple construction is *Glushkov's algorithm* (1961), which produces an equivalent automaton without the ϵ transitions.

NFAs → DFAs

Lexing

Regexes

NFA, DFA

RE → NFA

NFA → DFA

Lexing
(reprise) ∂

The **powerset construction** takes a NFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$

and constructs a DFA

$$M' = \langle Q', \Sigma', \delta', q'_0, F' \rangle$$

where the components of M' are calculated as follows:

$$Q' = \{S \mid S \subseteq Q\}$$

$$\delta'(S, a) = \epsilon\text{-closure}(\{q' \in \delta(q, a) \mid q \in S\})$$

$$q'_0 = \epsilon\text{-closure}\{q_0\}$$

$$F' = \{S \subseteq Q \mid S \cap F \neq \emptyset\}$$

and the ϵ -closure is:

$$\epsilon\text{-closure}(S) = \{q' \in Q \mid \exists q \in S, q \xrightarrow{\epsilon} q'\}$$

How do we compute ϵ -closure(S)?

Lexing

Regexes

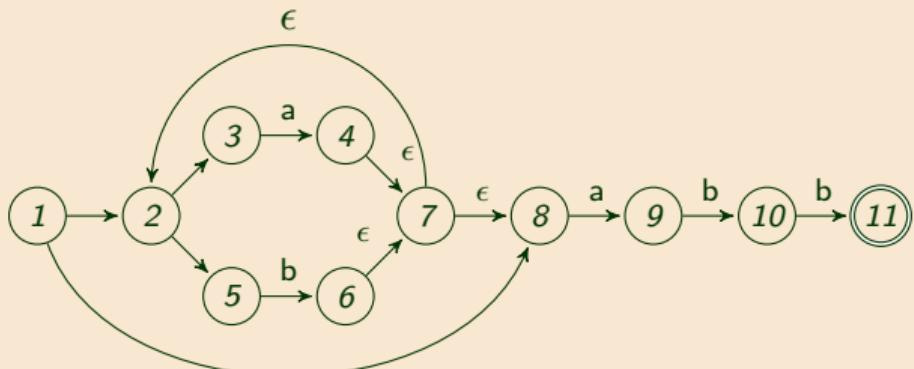
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	
result	

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

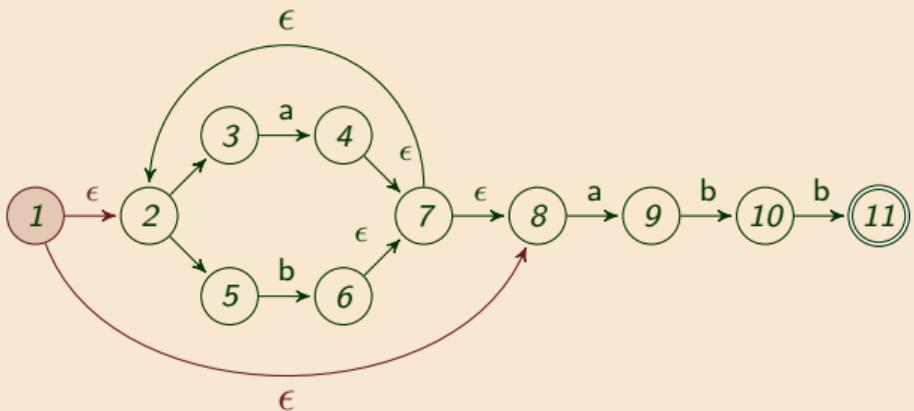
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	1
result	1

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

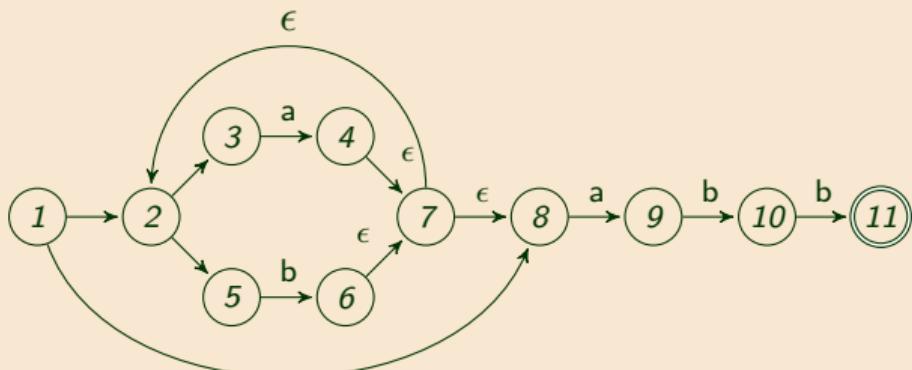
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	result
	1 2 8

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

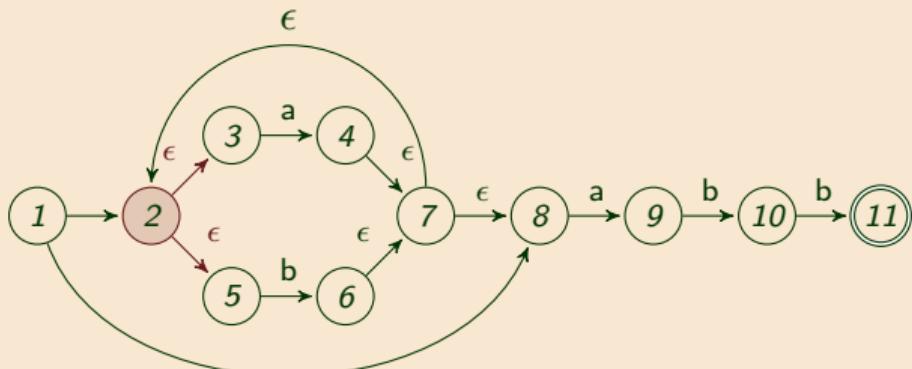
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	2 8
result	1 2 8

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

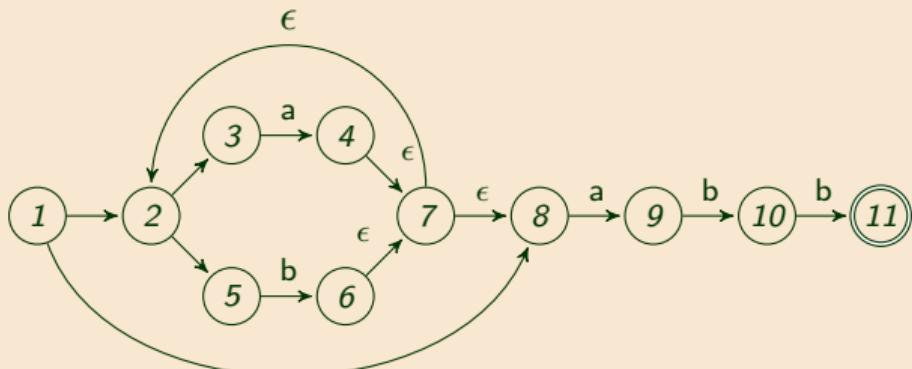
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	8
result	1 2 8 3 5

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

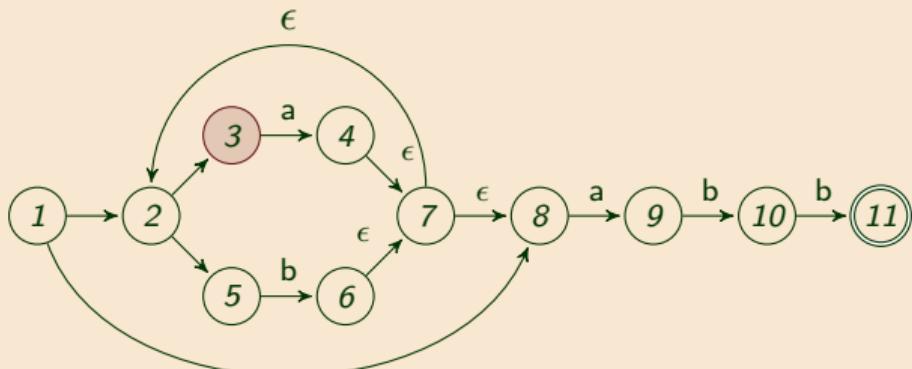
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	3 5 8
result	1 2 8 3 5

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

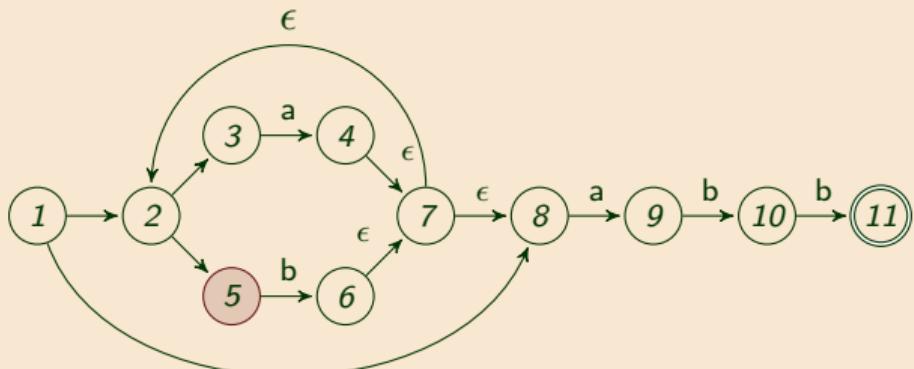
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each  $u \in \delta(q, \epsilon)$ 
    if  $u \notin$  result
      then result :=  $\{u\} \cup$  result
      push  $u$  on stack
return result
```

stack	5 8
result	1 2 8 3 5

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

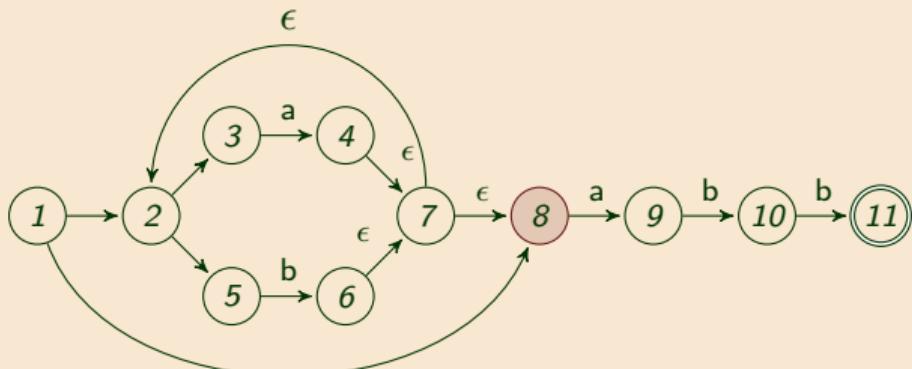
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	8
result	1 2 8 3 5

(NB: just an instance of **transitive closure**)

How do we compute ϵ -closure(S)?

Lexing

Regexes

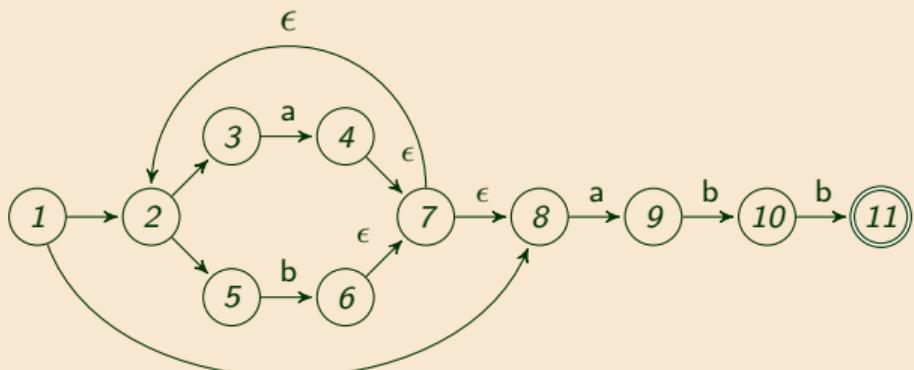
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



ϵ -closure

```
push elements of S onto stack
result := S
while stack not empty
  pop q off stack
  for each u  $\in \delta(q, \epsilon)$ 
    if u  $\notin$  result
      then result := {u}  $\cup$  result
      push u on stack
return result
```

stack	result
	1 2 8 3 5

(NB: just an instance of **transitive closure**)

Lexing

Regexes

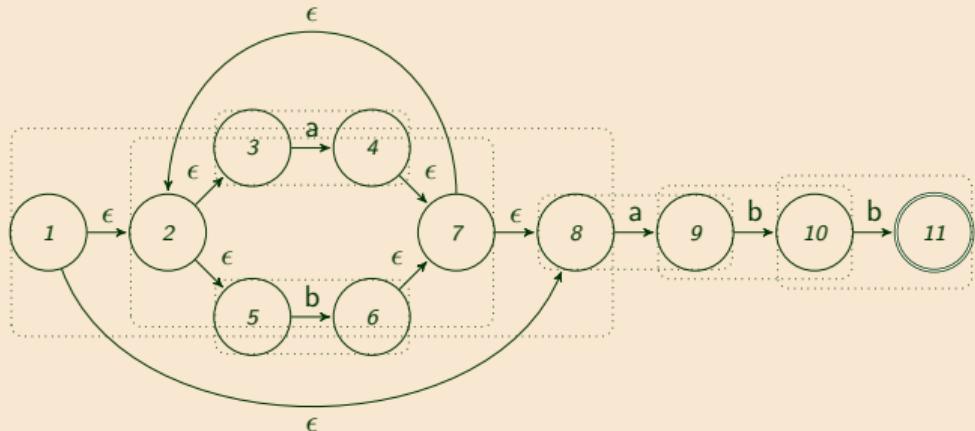
NFA, DFA

RE \rightarrow NFA

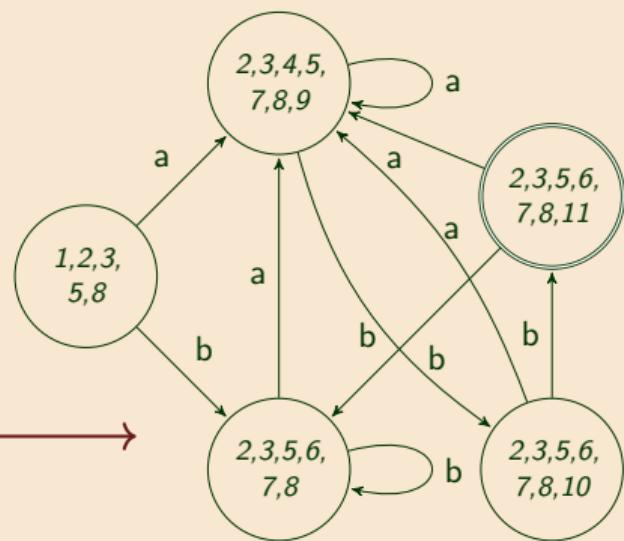
NFA \rightarrow DFA

Lexing
(reprise)

∂



powerset construction



The lexing problem

Lexing

Regexes

NFA, DFA

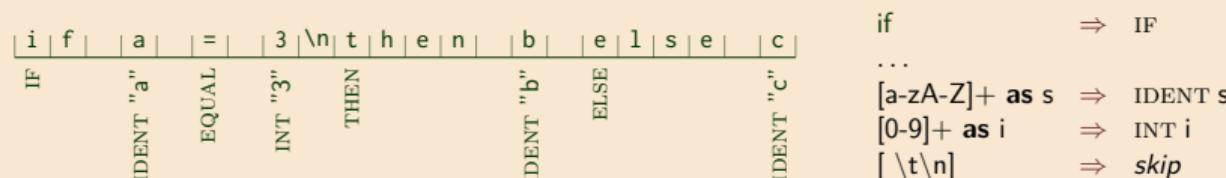
RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

0

The regular language problem (i.e. “is $w \in L(e)$?”) is insufficient for lexing.
We need to tokenize a string using a lexer specification



taking into account that

We should skip whitespace
(because whitespace is irrelevant to the parser)

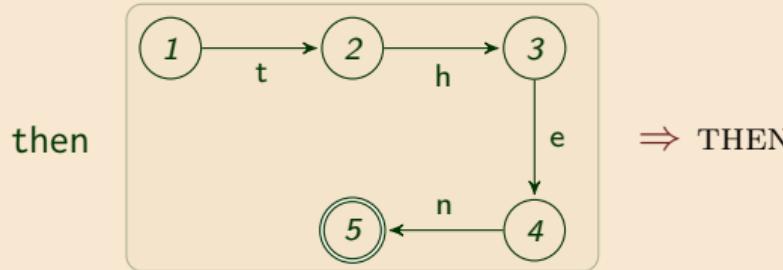
We should find the longest match accepted by the lexer
(treat if if as a variable, not two keywords)

We should pick the first rule that matches the longest matched substring
(treat if as a keyword because the IF rule comes before the IDENT rule)

Define tokens with regexes (automata)

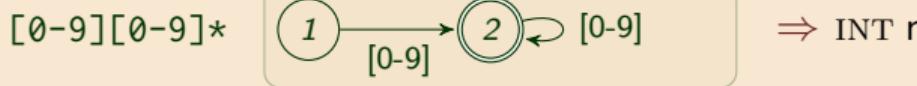
Lexing

Regexes



RE → NFA

NFA → DFA



Lexing
(reprise)

∅

Constructing a Lexer

Lexing

Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

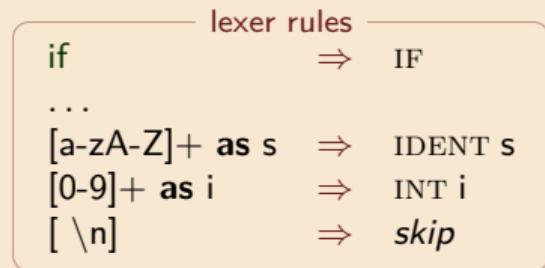
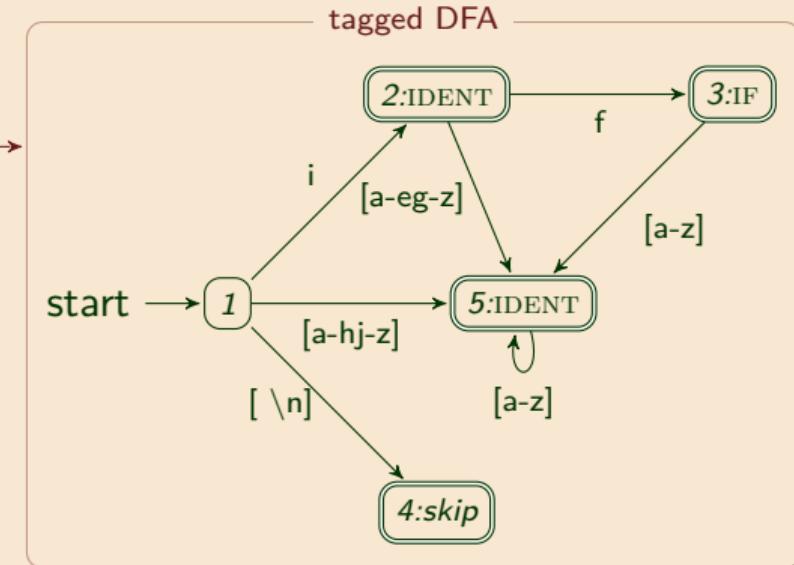
Lexing
(reprise)

∂

Start from ordered lexer rules $e_1 \Rightarrow t_1, e_2 \Rightarrow t_2, \dots, e_k \Rightarrow t_k$.

Construct *tagged NFA* for $e_1 \vee e_2 \vee \dots \vee e_k$.

Convert to *tagged DFA*: each accepting state is tagged for highest priority e_i .



State 3 could be either an IDENT or the keyword IF.

Priority eliminates the ambiguity, associating state 3 with the keyword.

What about longest match?

Lexing

Regexes

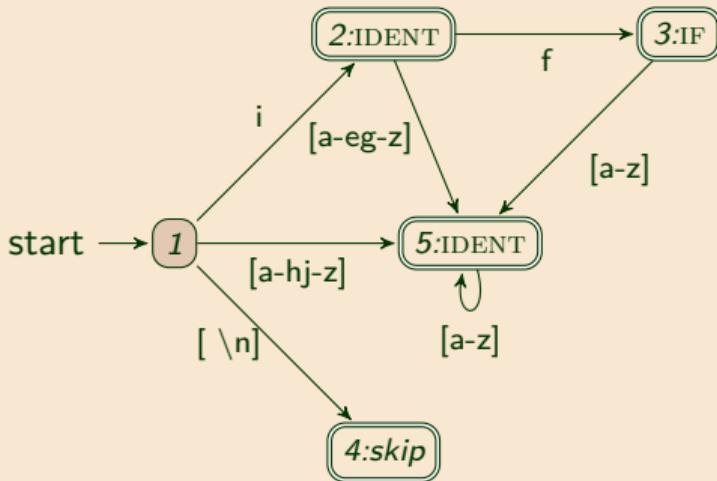
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

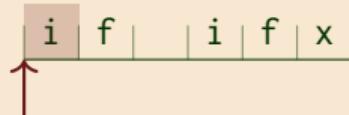
∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position



tokens:

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

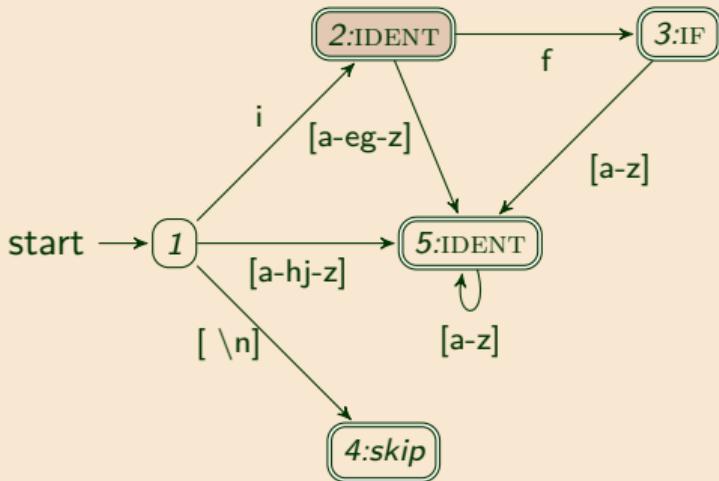
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

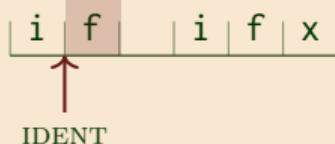
∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position



tokens:

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

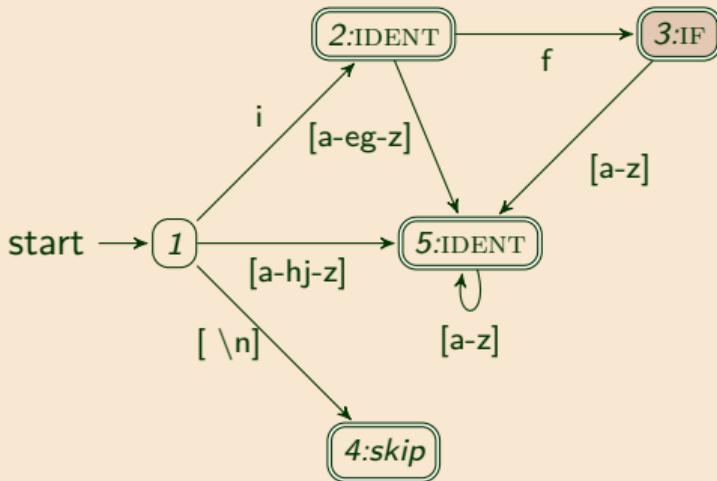
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

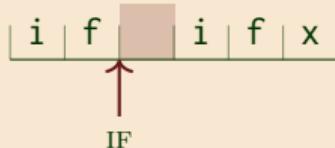
∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position



tokens:

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

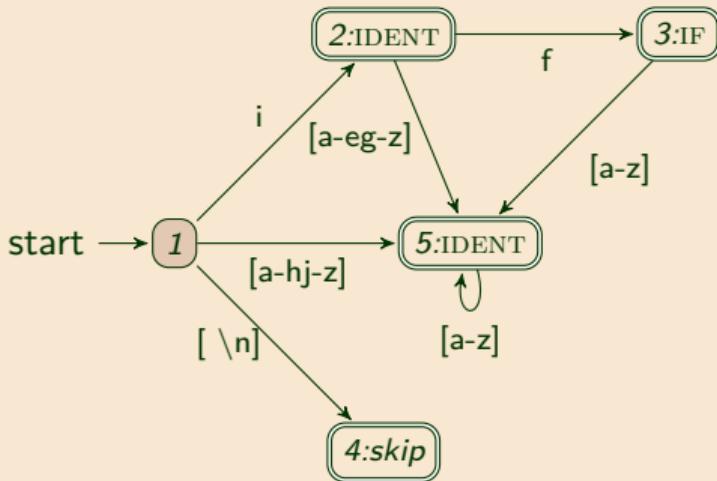
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

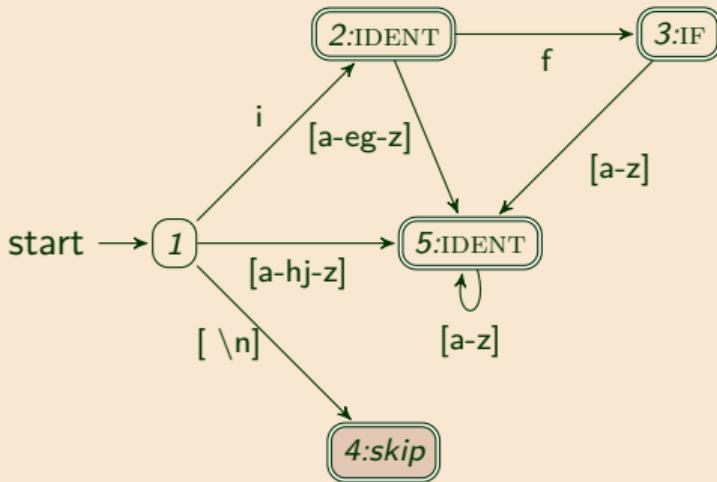
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position

tokens: IF

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

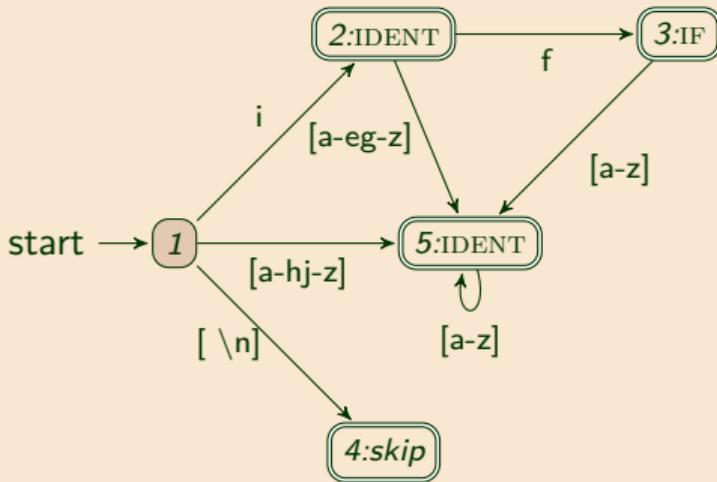
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

0



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

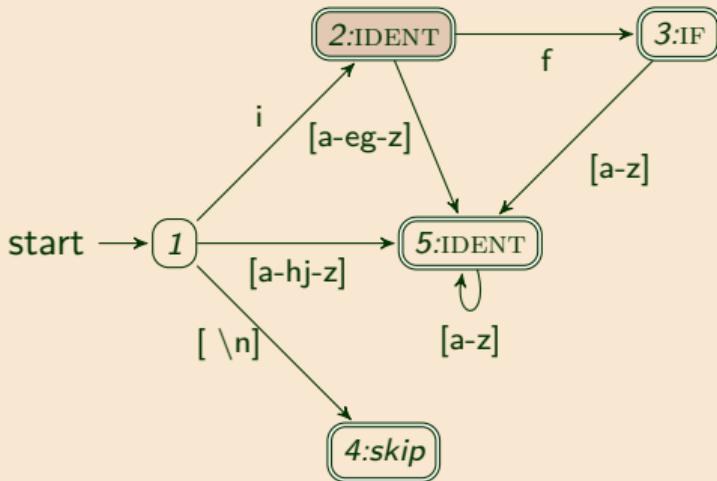
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

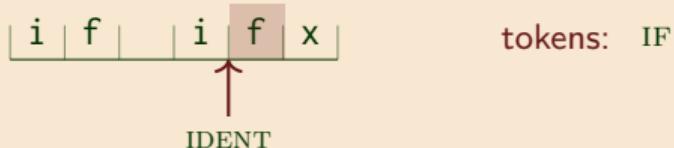
∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position



Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

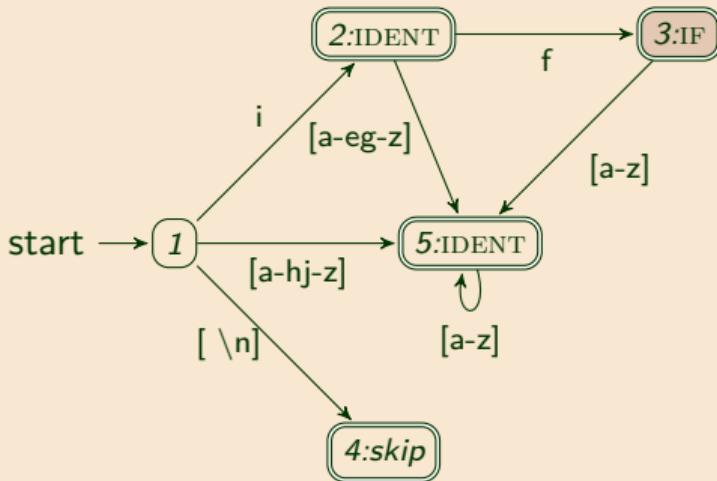
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

0



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position

tokens: IF

Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

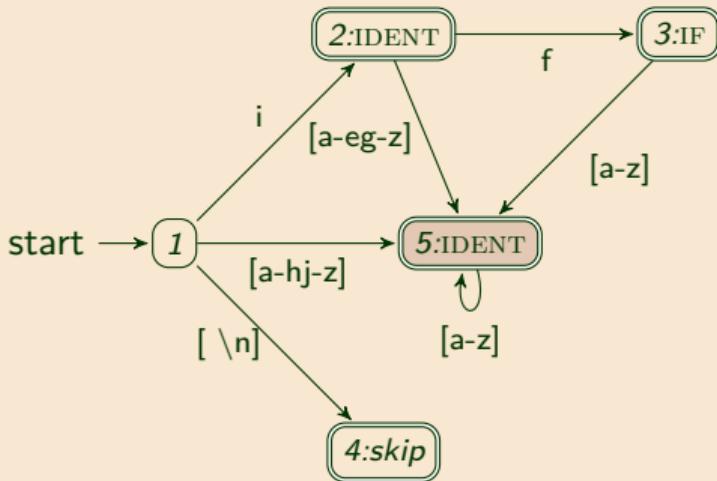
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position



Note: the machine is deterministic, but **the algorithm can backtrack**.

What about longest match?

Lexing

Regexes

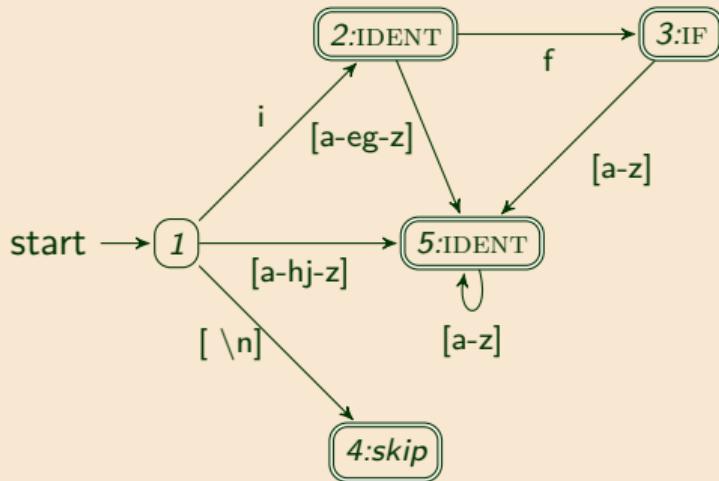
NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)

∂



lexing algorithm

Start in initial state, and repeatedly:

1. Read input until failure (no transition)
Emit tag for last accepting state
2. Reset state to start state
Reset position to last accepting position

tokens: IF IDENT ifx

Note: the machine is deterministic, but **the algorithm can backtrack**.

Lexing with derivatives

Lexing

Brzozowski (1964)'s formulation of regex matching, based on *derivatives*.

Regexes

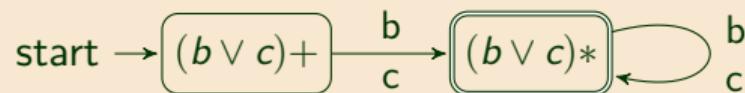
Derivative of regex r w.r.t. character c is
another regex $\partial_c r$ that matches s iff r matches cs .

NFA, DFA

E.g.: consider $(b \vee c)^+$. After matching c , can accept either ϵ or more b/c , so:

$$\partial_c (b \vee c)^+ = \epsilon \vee (b \vee c)^+ = (b \vee c)^*$$

Construct DFA for r , taking regexes r as states, adding transition $r_i \xrightarrow{c} r_j$
whenever $\partial_c r_i = r_j$. For example, for $(b \vee c)^+$:



NB: $\partial_c (b \vee c)^* = (b \vee c)^*$. (Can you see why?) Also: ϵ -matching states are accepting.

Lexing

 ∂_c is defined inductively over regexes.

Regexes

Can you see the similarities with derivatives of numerical functions?

(Hint: read $r_1 r_2$ as $r_1 \times r_2$ and $r_1 \vee r_2$ as $r_1 + r_2$.)

NFA, DFA

$$\partial_c \emptyset = \emptyset$$

$$\partial_c \epsilon = \emptyset$$

$$\partial_c b = \emptyset$$

$$\partial_c c = \epsilon$$

$$\partial_c (rs) = (\partial_c r)s \mid \nu(r)(\partial_c s) \quad \nu(r) = \epsilon \text{ if } \epsilon \in L(r)$$

$$\partial_c (r \vee s) = \partial_c r \vee \partial_c s \quad = \emptyset \text{ if } \epsilon \notin L(r)$$

$$\partial_c r^* = (\partial_c r)r^*$$

Lexing
(reprise)More information: *Regular-expression derivatives re-examined* (Owens et al, 2009).

Lexing with derivatives

Lexing

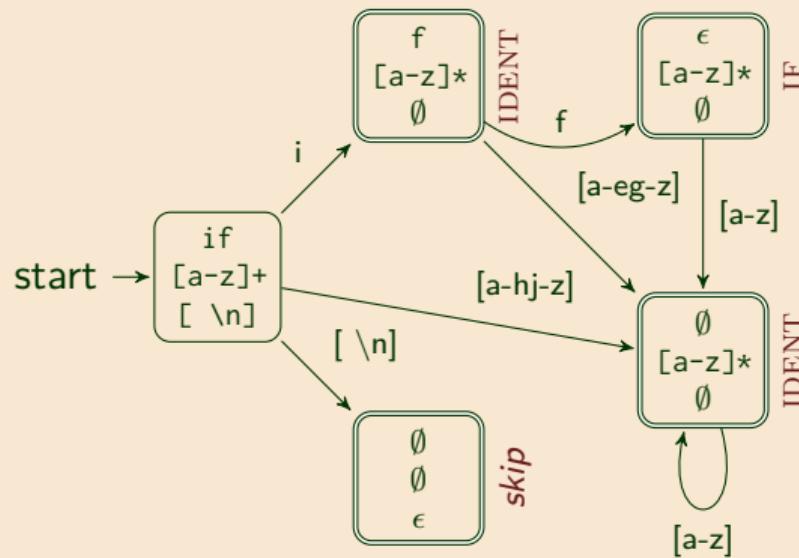
Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing
(reprise)



∂

Next time: context-free grammars