iconst_1
istore_1
iload_0
iconst_1
if_icmple 17
iload_1

: iload_0

: imul

public int fact(int x) {
int r = 1;

o Compiler

return r;

: Construction

OO N D WN e

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk
Lent 2026

Why study compilers?

Understanding compilers is useful

Why study
compilers?

7 Compilers are complex programs
00 p plex prog

You often need compilers
(whenever you write and run a program)

e
T
(2
A
o
>
o
A
s
c
o
[}
c
S
>
(7]
a0
s
I
-
=

If you understand how compilers work,
you'll know what to expect
and how to get the best out of them

Building compilers is useful

Why study
compilers?))
Compiler-like programs are everywhere.

MO All sorts of programs can be viewed as compilers. For example,

query languages (GraphQL) browser engines (WebKit)
serialisation frameworks (Protobuf) document processors (IATEX)
build systems (make) continuous integration (GitHub Actions)
game engine scripting (Lua) blockchain platforms (Solidity)
financial contracts (MLFI) legal contracts (Catala)
music systems (Csound) text processors (sed, grep, ..)
text editors (emacs) interactive testing systems (expect)
hardware description languages (VHDL) compiler compilers (yacc)
statistical computing environments (R) wikis (MediaWiki)
(etc.)

https://graphql.org/
https://webkit.org/
https://developers.google.com/protocol-buffers
https://www.latex-project.org/
https://www.gnu.org/software/make/
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://www.lua.org/
https://soliditylang.org/
https://www.lexifi.com/blog/structured-thoughts/contract-description-language/
https://catala-lang.org/
https://csound.com/
https://www.cl.cam.ac.uk/teaching/2223/UnixTools/
https://www.gnu.org/software/emacs/
https://en.wikipedia.org/wiki/Expect
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Yacc
https://www.r-project.org/
https://www.mediawiki.org/wiki/MediaWiki

Why study
compilers?

Compilers are interesting

Programming languages are semantically rich,
so programs that process language are rich, too

Compilers view a program from
many different perspectives

Compilers put semantics into practice

Compilers represent 70+ years of research
A computer science success story!

Compilers involve self-application
(How might we compile a compiler?)

Lots of interesting questions: what does it mean for a compiler to be correct?
what kind of optimizations are possible for a particular language? .. for a
particular program? .. for particular inputs?

public int fact(int x) {
int r =1
for (; x

r *= X;
return r;

>1; x —=1)

’

iconst_1
istore_1
iload_0
iconst_1
if_icmple 17
iload_1
iload_o

imul

W oo~NP»WN =

High-level — low-level

~ High-level language ~
Machine-independent
Complex syntax
Complex type system
Variables
Nested scope
Procedures, functions
Modules, objects
Cannot be run directly

Low-level language
Machine-specific
Simple syntax
Simple types
Memory, registers, words
Single flat scope
Can be run directly

Java

class Fact {
public static int fact(int x) {
int result = 1;
for (; x > 1; x -=
return result;

D)

result *= x;

javac Fact.java
javap -c Fact.class

Java — JVM bytecode

—— JVM bytecode ——

iconst_1
istore_1
iload_0
iconst_1
if_icmple 17
iload_1
iload_@
imul
istore_1
iinc 0, -1
goto 2
iload_1
ireturn

OCaml — OCaml bytecode

OCaml
let rec fact = function
| 0 — 1
| n - n % fact (pred n)

—— OCaml bytecode ——

branch L2

L1: acc 0
push
const 0
neqint
branchifnot L3
acc 0
offsetint -1
push
offsetclosure @

ocamlc -dinstr fact.ml apply 1

push

acc 1

mulint

return 1

const 1

return 1

C — assembly code

int fact(int x)

{
1

int result =
for (; x > 1;
return result;

X -= 1) result *= x;

—— assembly code ——

fact(int):
cmp edi, 1
mov eax, 1
jle .L4

imul eax, edi
sub edi, 1
gcec -S fact.c cmp edi, 1
jne .L3

rep ret

rep ret

Structure of a compiler

branch L2
L1: acc @
push

/\ const 0
int x = y+1; a . . /N : neqint
return x*x; *{Iexmglﬂ(parsmg} {typmg 7 C N ?| middle/back end ” branchifnot L3

acc 0
offsetint -1
push

The front end

annotated AST

source code

int x = y+1; . . . A
T S HWE parsing P[type checkmg]% ° A

~
\
1
/
/
/

Compiler 4

structure , , ,’
*> ERROR! *> ERROR/! *> ERROR/!

® O

(All error-checking happens in the front end)

middle & back ends

assembly code

annotated AST e

acc 0
push

o const @
neqgint
branchifnot L3
acc 0

. retargetable offsetint -1
? . — push
a mlddle end representat/on baCk end offsetclosure 0
Compiler

apply 1
generic machine-specific push
structure optimizations optimizations acc 1
mulint
return 1
const 1

o0 ; return 1

Structure of this course

lectures 2—6 lectures 7-11

*{ lexing & parsing J—{ deriving the translator F

¢) () ()
(Jassorted topics ()} lectures 12-16
¢) () ()

Lectures 2-6: lexing & parsing

annotated AST

source code

int x =¥+l exin arsin
return x*x; S P g

(deterministic,
top-down &
bottom-up)

Course
structure

® OO

Lectures 7—11: deriving the translator

We'll derive a compiler for Slang (simple language)

Slang AST Jargon VM bytecode

o MK_CLOSURE (f, 0)

MK_CLOSURE (L@, @)
APPLY
HALT

LO:
o i % translator PUSH STACK_UNIT
UNARY READ
//A\\ LOOKUP STACK_LOCATION -2
APPLY

° ° RETURN

Course 1. start with an interpreter
structure 2. perform principled refinements
3. derive a compiler

0O

Lectures 12-16: assorted topics

Why study
compilers?

Linking Objects & inheritance

The Gap OS interface Memory management

Stacks vs registers Bootstrapping

Compiler
structure

Calling conventions Optimisation

Generating assembly code Exceptions

Course
structure

Next time: lexing

	Why study compilers?
	The Gap
	Compiler structure
	Course structure

