
Compiler
Construction

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Lent 2026

Compiler
public int fact(int x) {
int r = 1;
for (; x > 1; x -= 1)
r *= x;

return r;
}

0: iconst_1
1: istore_1
2: iload_0
3: iconst_1
4: if_icmple 17
7: iload_1
8: iload_0
9: imul
. . .

Why study compilers?

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Understanding compilers is useful

Compilers are complex programs

You often need compilers
(whenever you write and run a program)

If you understand how compilers work,
you’ll know what to expect
and how to get the best out of them

(L
ar

ge
ly

un
co

nt
ro

ve
rs

ia
l)

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Building compilers is useful

Compiler-like programs are everywhere.

All sorts of programs can be viewed as compilers. For example,

query languages (GraphQL) browser engines (WebKit)
serialisation frameworks (Protobuf) document processors (LATEX)
build systems (make) continuous integration (GitHub Actions)
game engine scripting (Lua) blockchain platforms (Solidity)
financial contracts (MLFI) legal contracts (Catala)
music systems (Csound) text processors (sed, grep, …)
text editors (emacs) interactive testing systems (expect)
hardware description languages (VHDL) compiler compilers (yacc)
statistical computing environments (R) wikis (MediaWiki)

(etc.)

https://graphql.org/
https://webkit.org/
https://developers.google.com/protocol-buffers
https://www.latex-project.org/
https://www.gnu.org/software/make/
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://www.lua.org/
https://soliditylang.org/
https://www.lexifi.com/blog/structured-thoughts/contract-description-language/
https://catala-lang.org/
https://csound.com/
https://www.cl.cam.ac.uk/teaching/2223/UnixTools/
https://www.gnu.org/software/emacs/
https://en.wikipedia.org/wiki/Expect
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Yacc
https://www.r-project.org/
https://www.mediawiki.org/wiki/MediaWiki

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Compilers are interesting

Programming languages are semantically rich,
so programs that process language are rich, too

Compilers view a program from
many different perspectives

Compilers put semantics into practice
Compilers represent 70+ years of research
A computer science success story!

Compilers involve self-application
(How might we compile a compiler?)

Lots of interesting questions: what does it mean for a compiler to be correct?
what kind of optimizations are possible for a particular language? … for a
particular program? … for particular inputs?

The Gap

public int fact(int x) {
int r = 1;
for (; x > 1; x -= 1)
r *= x;

return r;
}

0: iconst_1
1: istore_1
2: iload_0
3: iconst_1
4: if_icmple 17
7: iload_1
8: iload_0
9: imul
. . .

? ? ? ?

Why study
compilers?

The Gap

Compiler
structure

Course
structure

High-level −→ low-level

Machine-independent
Complex syntax
Complex type system
Variables
Nested scope
Procedures, functions
Modules, objects
Cannot be run directly

High-level language

Machine-specific
Simple syntax
Simple types
Memory, registers, words
Single flat scope
Can be run directly

Low-level language

? ? ? ?

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Java −→ JVM bytecode

c l a s s Fact {
pub l i c s t a t i c i n t fact(i n t x) {

i n t result = 1;
f o r (; x > 1; x -= 1) result *= x;
r e tu rn result;

}
}

Java

...
0: iconst_1
1: istore_1
2: iload_0
3: iconst_1
4: if_icmple 17
7: iload_1
8: iload_0
9: imul

10: istore_1
11: iinc 0, -1
14: goto 2
17: iload_1
18: ireturn
...

JVM bytecode

? ? ?
javac Fact.java
javap -c Fact.class

Why study
compilers?

The Gap

Compiler
structure

Course
structure

OCaml −→ OCaml bytecode

l e t rec fact = f unc t i on
| 0 → 1
| n → n * fact (pred n)

OCaml

branch L2
L1: acc 0

push
const 0
neqint
branchifnot L3
acc 0
offsetint -1
push
offsetclosure 0
apply 1
push
acc 1
mulint
return 1

L3: const 1
return 1
...

OCaml bytecode

? ? ?
ocamlc -dinstr fact.ml

Why study
compilers?

The Gap

Compiler
structure

Course
structure

C −→ assembly code

i n t fact(i n t x)
{

i n t result = 1;
f o r (; x > 1; x -= 1) result *= x;
r e tu rn result;

}

C

fact(int):
cmp edi , 1
mov eax , 1
jle .L4

.L3:
imul eax , edi
sub edi , 1
cmp edi , 1
jne .L3
rep ret

.L4:
rep ret

assembly code

? ? ?
gcc -S fact.c

Structure of a compiler

lexing parsing typingint x = y+1;
return x*x;

•

•

••

• middle/back end

branch L2
L1: acc 0

push
const 0
neqint
branchifnot L3
acc 0
offsetint -1
push
...

Why study
compilers?

The Gap

Compiler
structure

Course
structure

The front end

lexing parsing type checkingint x = y+1;
return x*x;

•

•

••

•

annotated AST

source code

error! error! error!

(All error-checking happens in the front end)

Why study
compilers?

The Gap

Compiler
structure

Course
structure

The middle & back ends

middle end retargetable
representation back end

•

•

••

•

branch L2
L1: acc 0

push
const 0
neqint
branchifnot L3
acc 0
offsetint -1
push
offsetclosure 0
apply 1
push
acc 1
mulint
return 1

L3: const 1
return 1
...

annotated AST

assembly code

generic
optimizations

machine-specific
optimizations

Structure of this course

lexing & parsing deriving the translator

assorted topics

lectures 2–6 lectures 7–11

} lectures 12–16

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Lectures 2–6: lexing & parsing

lexing parsing type checkingint x = y+1;
return x*x;

•

•

••

•

annotated AST

source code

(deterministic,
top-down &
bottom-up)

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Lectures 7–11: deriving the translator

We’ll derive a compiler for Slang (simple language)

translator

•

•

••

•

MK_CLOSURE(f, 0)
MK_CLOSURE(L0 , 0)
APPLY
HALT

L0:
PUSH STACK_UNIT
UNARY READ
LOOKUP STACK_LOCATION -2
APPLY
RETURN

Slang AST Jargon VM bytecode

Plan:
1. start with an interpreter
2. perform principled refinements
3. derive a compiler

Why study
compilers?

The Gap

Compiler
structure

Course
structure

Lectures 12–16: assorted topics

Linking

OS interface

Stacks vs registers

Calling conventions

Generating assembly code

Objects & inheritance

Memory management

Bootstrapping

Optimisation

Exceptions

Next time: lexing

	Why study compilers?
	The Gap
	Compiler structure
	Course structure

