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1. Show that for any objects X and Y in a cartesian closed category C, there are functions
feCX,Y)— f1eC(1,YX)
geC(1,YX) »geC(X,Y)

that give a bijection between the set C(X, Y) of C-morphisms from X to Y and the set C(1, YX)
of C-morphisms from the terminal object 1 to the exponential YX. [Hint: use the isomorphism
(7) from Exercise Sheet 2, question 2.]

2. Show that for any objects X and Y in a cartesian closed category C, the morphism app :
YX x X — Y satisfies cur(app) = idyx. [Hint: recall from equation (4) on Exercise Sheet 2
that ldyX X ldX = idYXXX']

3. Suppose f : YXX — Zand g: W — Y are morphisms in a cartesian closed category C. Prove
that

cur(f ° (9 x idx)) = (cur f) = g € C(W, 2¥) (1)

[Hint: use Exercise Sheet 2, question 1c.]

4. Let C be a cartesian closed category. For each C-object X and C-morphism f : Y — Z, define

e (W xx By Lo z) e c(vX, 2% (2)

(a) Prove that (idy)* = idyx.
(b) Given f € C(Y X X,Z) and g € C(Z, W), prove that

cur(ge f) = g5 o cur f € C(Y, W) 3)
(c) Deduce that ifu € C(Y,Z) andv € C(Z, W), then (v o u)X = vX o uX € C(YX, WX).
[Hint: for part (4a) use question 2; for part (4b) use Exercise Sheet 2, question 1c.]

5. Let C be a cartesian closed category. For each C-object X and C-morphism f : Y — Z, define

id
XF 2 cur(X? x ¥ 22, X% 5 7 2, x) e c(xZ,XY) (4)

(a) Prove that X% = id,v.
(b) Giveng € C(W,X) and f € C(Y X X, Z), prove that

cur(fo(idy X g)) = Z9 o cur f € C(Y,Z") (5)

(c) Deduce thatifu € C(Y,Z) andv € C(Z, W), then X(@%) = X% o X? € C(XW, XY).



[Hint: for part (5a) use question 2; for part (5b) use Exercise Sheet 2, question 1c.]

6. Let C be a cartesian closed category in which every pair of objects X and Y possesses a binary

inlxy inrxy A A .
coproduct X —— X +Y «—— Y. For all objects X,Y,Z € C construct an isomorphism

(Y+Z)xX = (Y xX) + (Z x X). [Hint: you may find it helpful to use some of the properties
from question 4.]

7. Using the natural deduction rules for Intuitionistic Propositional Logic (given in Lecture 6),
give proofs of the following judgements. In each case write down a corresponding typing
judgement of the Simply Typed Lambda Calculus.

@ oyr(p=>9) =y
) oor-(p=>9)=Y
© o(lp=>Y)=>Y)=>yre=>9Y

8. (a) Given simple types A, B, C, give terms s and t of the Simply Typed Lambda Calculus that
satisfy the following typing and fy-equality judgements:

0,x: (AxB) - Crs:A—- (B—C) (6)
oy:A-(B—-C)rt:(AxB) - C (7)
o,x: (AxB) = Ctrt[s/y] =g, x : (AxB) = C (8)
0,y:A—= (B—=C)rs[t/x] =g y:A— (B-C) 9)

(b) Explain why question (8a) implies that for any three objects X,Y and Z in a cartesian
closed category C, there are morphisms

f . Z(XXY) — (ZY)X (10)
g: (ZH)X — zXD (11)
that give an isomorphism Z**Y) = (z¥)X in C.

9. Make up and solve a question like question 8 ending with an isomorphism X* = X for any
object X in a cartesian closed category C (with terminal object 1).
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Question 1 Recalling the isomorphism 1 X X = X from question 2 on Exercise Sheet 2, define

= cur(ixX 25 x L y)

,id i
g=x SN0,y oy SO yx o x 2Ry
Thus
g = cur(app°(g X idx) ° (), 1dx) ° 72)
= cur(appeo(g X idyx)) since 7, : 1 X X — X is an iso with inverse ((), idx)
=g Dby the uniqueness part of the universal property of exponentials
and

Tf7 = appe(cur(f o m) X idy) ° ({), idx)
= fomo((),idx) by definition of cur(f o )

=f since m; : 1 X X — X is an iso with inverse ((), idx)

Question 2 By definition, cur(app) is the unique morphism f € C(Y*, YX) satisfying app o(f x
idyx) = app. But from Exercise Sheet 2 question 1c, we have idyx X idx = idyx,x and hence
appe(f X idx) = app also holds when f = idyx. Therefore idyx = cur(app).

Question 3 Note that

appe(((cur f) e g) X idx) = appe(cur f X idx) o (g X idx) by Ex. Sh. 2, question 1c
= fo(gxidx) by definition of cur f

and therefore (cur f) o g = cur(f o (g X idyx)), by the uniqueness part of the universal property of
exponentials.

Question 4
(@) (idy)X 2 cur(idy o app) = cur(app) = idyx, by question 2.
(b) appo((g* o cur f) x idyx) = app°(g~ X idx) o (cur f x idx) by Ex. Sh. 2, question 1c
=goappeo(cur f X idyx) by definition of g*
=gof by definition of cur f

and therefore g*X o cur f = cur(g ¢ f), by the uniqueness part of the universal property of
exponentials.



(©) g~ o fX=g~ocur(foapp) by definition of fX
=cur(ge foapp) by part (b)
2 (go ¥
Question 5
(a) X £ cur(appo(idyy X idy)) = cur(appcidyryy) = cur(app) = idyv, by question 2.

(b) appo((Z9 o cur f) X idw) = appe(Z9 X idy) o (cur f X idy) by Ex.Sh. 2, question 1c

appeo(idy X g) o (cur f X idy) by definition of Z9

appe(cur f X idy) o (idy X g) by Ex.Sh. 2, question 1c

= fo(idy X g) by definition of cur f
and therefore Z9¢c cur f = cur(f(idy Xg)), by the uniqueness part of the universal property
of exponentials.
() X" oX?=X"ocur(appeo(id Xv)) by definition of X°
= cur(appeo(id X v) o (id X u)) by part (b)
= cur(appeo(id X (v o u))) by Ex.Sh. 2, question 1c
2 x(vou)

Question 6 The universal property of the coproduct X + Y says that for all f € C(X,Z) and
g € C(Y,Z) there is a unique morphism [f,g] € C(X +Y,Z) with [f,g] e inlxy = f and [f,g] °
inryy = g. Given objects X, Y, Z € C, from

cur(inlyxx,zxx) : ¥ = (Y X X) + (Z x X))*
cur(inryxx,zxx) : Z = ((Y x X) + (Z x X))*

we get
[cur(inlyxx zxx), cur(inTyxxzxx)] : Y +Z — (Y x X) + (Z x X))*

and hence
i = appe([cur(inlyxx,zxx), cur(inryxxzxx)] X idx) € C((Y + Z) X X, (Y X X) + (Z X X))
In the other direction, define
j = [inlyz X idx,inryz X idx] € C((Y X X) + (Z X X), (Y + Z) x X)

To see that i o j = id, note that

iojoinl =io(inl X id) by definition of j
= appe([cur inl, cur inr] X id) o (inl X id) by definition of i
= app °(([cur inl, cur inr] o inl) X id) by Ex.Sh. 2, question 1c
= appe(cur inl X id) by definition of [, _]
=inl by definition of cur _

=ideinl



and similarly, i o j o inr = id o inr; therefore by the uniqueness part of the universal property for
coproducts we have i o j = id. To see that j o i = id, note that

cur(joi) = jX ocuri by (3)
= jX o [cur inl, cur inr] by definition of i
= [j% o cur inl, jX o cur inr] by the dual of property (1) for products from Ex.Sh. 2
= [cur(jcinl), cur(jecinr)] by (3)

= [cur(inl X id), cur(inr X id)] by definition of j
= [(cur id) o inl, (cur id) o inr] by (1)

= (curid) o [inl, inr] by the dual of property (1) for products from Ex.Sh. 2
= (cur id) o id by uniqueness part of univ. property of coproducts
= cur id

and hence j o i = app(cur(j o i) X id) = app(cur id X id) = id.
Question 7
(a) IPL proof tree

(ax)
(WK)

(=1)

oYy
oo =yry
oyrlp=y)=9y
STLC typing judgement o,y : Y FAf :o => Y.y: (¢ = ¢) => ¢
(b) IPL proof tree

v

QP9 =>Y kg (=5)

00,0 =YY (a%)

Q0,0 =>YHY
ook (p=>Y)=Yy

=1

STLC typing judgement o,y : Y FAf o =Y. fx: (¢ = ¥) = ¢
(c) IPL proof tree, where 6 =2 ((¢p = ¢) > ¥) = ¢

o, 0,0+ ¢ (ax)
00,0, 0=>Yre=19 (ax) 00,0, 0 > Yo (W)
———— (ax) (=E)
<>>9}_0 (WK) 0’0’(/”90:)30"'70 (ﬁl)
0,0, +0 00, pF(p=9Y)=¢ (=5)
o, 0,0+ (=1)
00Frp=1Y !

STLC typing judgement o, f : 0 - Ax : . f(Ag: o = Y. gx) : 9 = ¢



Question 8

(@) s=Ada:A.Ab:B.x(a,b)
t=Ac: AxB.y(fstc) (sndc)
Proof of (6), where' £ ¢o,x: (AxB) > C,a: A b: B:

(VAR)

0 EVAR) LISIA&)AR:)
(PAIR)

VAR') Tra: T+b:B

I't(ab):AxB (app)

I'+x(ab):C
o,x: (AxB)=Crs:A—= (B-C)

(2%)

Proof of (7), where I" £ o,y: A - (B— C),c: AxB:

(VAR)
(FST) — — (vaR)
(app)

(A T e AxE
I'ry:A- (B-0) I+ fstc: A
I'+y(fstc): B> C
I+ y(fstc) (snde) : C
Sy:A-(B—-C)+rt:(AxB)—-C

Proof of (8) (not laid out as a tree):

t[s/y] 2 Ac: AxB.(da: A.Ab : B.x(a,b)) (fstc) (sndc)
=gy Ac: AxB.x (fstc,sndc) f-conversion, twice
=gy Ac: AxB.xc n-conv. at type A x B
=gy X n-conv. at type (AxB) - C

Proof of (9) (not laid out as a tree):

s[t/x] 2 Aa: AAb:B.(Ac: AxB.y(fstc) (sndc)) (a b)
=gy Aa : A.Ab : B.y (fst(a, b)) (snd(a, b)) B-conversion,
=gy Aa: A.Ab:B.yab B-conversion, twice
=gy Aa:A.ya n-conv. at type B = C
=gy Y n-conv. at type A — (B — C)

(b) Inpart (8a), if we take A, B, C to be ground types that are interpreted in C by the objects X, Y, Z,
then the interpretations of (6) and (7) give morphisms

ZXXY M{[o,x:(AxB)—=Crs:A—(B—C)]

fa (ZXXY =1x (ZY)X)

M[o,y:A—(B—C)rt:(AxB)—C] ZXXY)

g ((ZY)X =1 x(Z")X



with the required domains and codomains. Furthermore, by the semantics of substitution and
the Soundness Theorem for STLC, (8) implies

gof = (ZXXY o {5 ZXXY M[o,x:(AxB)—~Crt[s/y]:(AxB)~C] ZXXY)

(ZXXY o 1 5 ZXXY M[o,x:(AxB)—Crx:(AxB)—C] ZXXY)

TT;
_ (ZXXY o 1w ZXXY T ZXXY)
= idzxxv)

and similarly (9) implies f o g = id v )x.

For the record, f and g can be described using the structure of a cartesian closed category as
follows:

(myomy,(maomy, ) )
#

f £ cur (cur ((Z(XXY) XX)xY ZXXY) 5 (X x Y) PP Z))

({7r1,7m10780 ), 020772 )

gécur((ZY)XX(XXY) ((ZY)Xxx)xyszxyﬂz)

However, it is quite tedious to use these descriptions to verify that f and g are mutually inverse.

Question 9 The STLC terms you need to use are

ox:unit - Arx():A

o,y :AF Az :unit.y:unit - A



