Advanced Graphics and Image Processing

Colour perception and colour spaces
 Part 1/5-physics of light

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Electromagnetic spectrum

- Visible light

- Electromagnetic waves of wavelength in the range 380 nm to 730 nm
- Earth's atmosphere lets through a lot of light in this wavelength band
- Higher in energy than thermal infrared, so heat does not interfere with vision

Colour

- There is no physical definition of colour - colour is the result of our perception
- For reflective displays / objects

$$
\text { colour }=\text { perception(illumination } \times \text { reflectance })
$$

- For emissive objects or displays
colour = perception(emission)

Black body radiation

- Electromagnetic radiation emitted by a perfect absorber at a given temperature
- Graphite is a good approximation of a black body

Correlated colour temperature

- The temperature of a black body radiator that produces light most closely matching the particular source
- Examples:
, Typical north-sky light: 7500 K
, Typical average daylight: 6500 K
- Domestic tungsten lamp (100 to 200 W): 2800 K
, Domestic tungsten lamp (40 to 60 W): 2700 K
- Sunlight at sunset: 2000 K
- Useful to describe colour of the illumination (source of light)

Standard illuminant D65

- Mid-day sun in Western Europe / Northern Europe
- Colour temperature approx. 6500 K

CIE D65

Reflectance

- Most of the light we see is reflected from objects
- These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

Reflected light

$$
L(\lambda)=I(\lambda) R(\lambda)
$$

- Reflected light $=$ illumination \times reflectance

The same object may appear to have different color under different illumination.

Fluorescence

Advanced Graphics and Image Processing

Colour perception and colour spaces

Part 2/5 - perception, cone fundamentals

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Colour perception

- Di-chromaticity (dogs, cats)
- Yellow \& blue-violet
- Green, orange, red indistinguishable
- Tri-chromaticity (humans, monkeys)
- Red-ish, green-isn, blue-ish
- Colour-deficiency
- Most often men, green-red colour-deficiency

www.lam.mus.ca.us/cats/color/

www.colorcube.com/illusions/clrbInd.html

Colour vision

- Cones are the photreceptors responsible for colour vision
- Only daylight, we see no colours when there is not enough light
- Three types of cones
- S - sensitive to short wavelengths
- M - sensitive to medium wavelengths
- L - sensitive to long wavelengths

Sensitivity curves - probability that a photon of that wavelengths will be absorbed by a photoreceptor. S,M and L curves are normalized in this plot.

Perceived light

- cone response $=$ sum $($ sensitivity \times reflected light $)$

Although there is an infinite number of wavelengths, we have only three photoreceptor types to sense differences between light spectra

Formally

$$
R_{S}=\int_{380}^{730} S_{S}(\lambda) \cdot L(\lambda) d \lambda
$$

Metamers

- Even if two light spectra are different, they may appear to have the same colour
- The light spectra that appear to have the same colour are called metamers
- Example:

$=\left[\mathrm{L}_{1}, \mathrm{M}_{1}, \mathrm{~S}_{1}\right]$

II

15

Practical application of metamerism

- Displays do not emit the same light spectra as real-world objects
- Yet, the colours on a display look almost identical

Tristimulus Colour Representation

- Observation

- Any colour can be matched using three linear independent reference colours
- May require "negative" contribution to test colour value for matching monochromatic spectral colours of equal intensity
- With respect to a certain set of primary colours

Standard Colour Space CIE-XYZ

- CIE Experiments [Guild and Wright, I93I]
- Colour matching experiments
- Group ~ 12 people with „normal" colour vision
- 2 degree visual field (fovea only)
- CIE 2006 XYZ
- Derived from LMS colour matching functions by Stockman \& Sharpe
- S-cone response differs the most from CIE I93I
- CIE-XYZ Colour Space
- Goals
- Abstract from concrete primaries used in an experiment
- All matching functions are positive
- Primary „ Y " is roughly proportionally to achromatic response (luminance)

Standard Colour Space CIE-XYZ

- Standardized imaginary primaries CIE XYZ (193I)
- Could match all physically realizable colour stimuli
- Cone sensitivity curves can be obtained by a linear transformation of CIE XYZ

CIE chromaticity diagram

- chromaticity values are defined in terms of x, y, z

$$
x=\frac{X}{X+Y+Z}, \quad y=\frac{Y}{X+Y+Z}, \quad z=\frac{Z}{X+Y+Z} \quad x+y+z=1
$$

- ignores luminance
- can be plotted as a 2D function
- pure colours (single wavelength) lie along the outer curve
b all other colours are a mix of pure colours and hence lie inside the curve
- points outside the curve do not exist as colours

Advanced Graphics and Image Processing

Colour perception and colour spaces
 Part 3/5-colour opponent processing

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Luminance

- Luminance - measure of light weighted by the response of the achromatic mechanism. Units: $\mathrm{cd} / \mathrm{m}^{2}$ (ISO) or nit

Achromatic/chromatic vision mechanisms

Light spectra

Achromatic/chromatic vision mechanisms

Light spectra

Luminance does NOT explain the brightness of light! [Koenderink et al. Vision Research 2016]

achromatic

Achromatic/chromatic vision mechanisms

Achromatic/chromatic vision mechanisms

Achromatic/chromatic vision mechanisms

Light spectra

Advanced Graphics and Image Processing

Colour perception and colour spaces

Part 4/5 - gamuts, linear and gamma-encoded colour

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Visible vs. displayable colours

- All physically possible and visible colours form a solid in the XYZ space
- Each display device can reproduce a subspace of that space
- A chromacity diagram is a projection of a slice taken from a 3D solid in XYZ space
- Colour Gamut - the solid in a colour space
- Usually defined in XYZ to be deviceindependent

Standard vs. High Dynamic Range

- HDR cameras/formats/displays attempt capture/represent/reproduce (almost) all visible colours
- They represent scene colours and therefore we often call this representation scene-referred
- SDR cameras/formats/devices attempt to capture/represent/reproduce only colours of a standard sRGB colour gamut, mimicking the capabilities of CRTs monitors
, They represent display colours and
 therefore we often call this representation display-referred

From rendering to display

From rendering to display

From rendering to display

Display encoding for SDR: gamma

- Gamma correction is often used to encode luminance or tristimulus color values (RGB) in imaging systems (displays, printers, cameras, etc.)

(relative) Luminance Physical signal

Luma
Digital signal (0-I)

Inverse: $\mathrm{V}_{\mathrm{in}}=\left(\frac{1}{a} \cdot V_{\text {out }}\right)^{\frac{1}{\gamma}}$

Colour: the same equation applied to red, green and blue colour channels.

Why is gamma needed?

<- Pixel value (luma)
<- Luminance

- Gamma-corrected pixel values give a scale of brightness levels that is more perceptually uniform
- At least 12 bits (instead of 8) would be needed to encode each color channel without gamma correction
- And accidentally it was also the response of the CRT gun

Luma - gray-scale pixel value

- Luma - pixel "brightness" in gamma corrected units

$$
L^{\prime}=0.2126 R^{\prime}+0.7152 G^{\prime}+0.0722 B^{\prime}
$$

- R^{\prime}, G^{\prime} and B^{\prime} are gamma-corrected colour values
, Prime symbol denotes gamma corrected
- Used in image/video coding
- Note that relative luminance if often approximated with

$$
\begin{aligned}
& L=0.2126 R+0.7152 G+0.0722 B \\
& =0.2126\left(R^{\prime}\right)^{\gamma}+0.7152\left(G^{\prime}\right)^{\gamma}+0.0722\left(B^{\prime}\right)^{\gamma}
\end{aligned}
$$

- R, G, and B are linear colour values
- Luma and luminace are different quantities despite similar formulas

Standards for display encoding

Display type	Colour space	EOTF	Bit depth
Standard Dynamic Range	ITU-R 709	2.2 gamma / sRGB	8 to 10
High Dynamic Range	ITU-R 2020	ITU-R 2100 (PQ/HLG)	10 to I2

Colour space
What is the XYZ of "pure" red,
green and blue

Electro-Optical Transfer Function
How to efficiently encode each primary colour

How to transform between RGB colour spaces (SDR and HDR)?

, From ITU-R 709 RGB to XYZ:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{array}\right]_{R 709 t o X Y Z} \cdot\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{R 709}
$$

Relative $X Y Z$
of the red
primary

Relative $X Y Z$
of the green
primary

Relative XYZ
of the blue
primary

Relative RGB (0-I) in the R709 space

How to transform between RGB colour spaces?

- From ITU-R 709 RGB to ITU-R 2020 RGB:

$$
\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{R 2020}=M_{X Y Z t o R 2020} \cdot M_{R 709 t o X Y Z} \cdot\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{R 709}
$$

- From ITU-R 2020 RGB to ITU-R 709 RGB:

$$
\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{R 709}=M_{X Y Z t o R 709} \cdot M_{R 2020 t o X Y Z} \cdot\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{R 2020}
$$

- Where:

$$
\begin{aligned}
M_{R 709 t o X Y Z} & =\left[\begin{array}{lll}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{array}\right] \text { and } M_{X Y Z t o R 709}=M_{R 709 t o X Y Z}^{-1} \\
M_{\text {R2020toXYZ }} & =\left[\begin{array}{lll}
0.6370 & 0.1446 & 0.1689 \\
0.2627 & 0.6780 & 0.0593 \\
0.0000 & 0.0281 & 1.0610
\end{array}\right] \text { and } M_{X Y Z t o R 2020}=M_{R 2020 t o X Y Z}^{-1}
\end{aligned}
$$

Exercise 1: Map colour to a display

- We have:
* Spectrum of the colour we want to reproduce: L (NxI vector)
- XYZ sensitivities: $S_{X Y Z}$ ($\mathrm{N} \times 3$ matrix)
- Spectra of the RGB primaries: $P_{R G B}$ ($\mathrm{N} \times 3$ matrix)
- Display gamma: $\gamma=2.2$
- We need to find display-encoded R'G'B' colour values
- Step I: Find XYZ of the colour

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T}=S_{X Y Z}^{T} L
$$

- Step 2: Find a linear combination of RGB primaries

$$
S_{X Y Z}^{T} P_{R G B}=M_{R G B \rightarrow X Y Z}
$$

- Step 3: Convert and display-encode linear colour values

$$
\begin{aligned}
& {\left[\begin{array}{lll}
R & G & B
\end{array}\right]^{T}=M_{R G B \rightarrow X Y Z}^{-1}\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llll}
R^{\prime} & G^{\prime} & B^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
R^{1 / \gamma} & G^{1 / \gamma} & B^{1 / \gamma}
\end{array}\right]}
\end{aligned}
$$

Exercise 2: Find a camera colour correction matrix

- We have:
- XYZ sensitivities: $S_{X Y Z}$ (N×3 matrix)
- Spectral sensitivities of camera's RGB pixels: $C_{R G B}$ ($\mathrm{N} \times 3$ matrix)
- Spectrum in the real world: L (NxI vector)
- Find a 3×3 matrix mapping from camera's native RGB to $X Y Z$

$$
\begin{gathered}
M_{C \rightarrow X Y Z} C_{R G B}^{T} L \approx S_{X Y Z}^{T} L \\
\operatorname{argmin}_{M_{C \rightarrow X Y Z}}\left\|M_{C \rightarrow X Y Z} C_{R G B}^{T} L-S_{X Y Z}^{T} L\right\|_{2} \\
M_{C \rightarrow X Y Z}^{T}=\left(C_{R G B}^{T} C_{R G B}\right)^{-1} C_{R G B}^{T} S_{X Y Z}
\end{gathered}
$$

- Show that a camera is colour-accurate if $C_{R G B}^{T}=N S_{X Y Z}^{T}$

$$
M N S_{X Y Z}^{T}=S_{X Y Z}^{T}, \text { where } M=N^{-1}
$$

Advanced Graphics and Image Processing

Colour perception and colour spaces

Part 5/5-colour spaces

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Representing colour

- We need a way to represent colour in the computer by some set of numbers
- A) preferably a small set of numbers which can be quantised to a fairly small number of bits each
- Gamma corrected RGB, sRGB and CMYK for printers
- B) a set of numbers that are easy to interpret
- Munsell's artists' scheme
- HSV, HLS
- C) a set of numbers in a 3D space so that the (Euclidean) distance in that space corresponds to approximately perceptually uniform colour differences
- CIE Lab, CIE Luv

$R G B$ spaces

- Most display devices that output light mix red, green and blue lights to make colour
- televisions, CRT monitors, LCD screens
- RGB colour space
- Can be linear (RGB) or display-encoded ($R^{\prime} G^{\prime} B^{\prime}$)

- Can be scene-referred (HDR) or display-referred (SDR)
- There are multiple RGB colour spaces
- ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3
- Each using different primary colours
- And different OETFs (gamma, PQ, etc.)
- Nominally, $R G B$ space is a cube

$R G B$ in CIE XYZ space

- Linear RGB colour values can be transformed into CIE XYZ
- by matrix multiplication
- because it is a rigid transformation the colour gamut in CIE XYZ is a rotate and skewed cube
- Transformation into Yxy
b is non-linear (non-rigid)
- colour gamut is more complicated

CMY space

- printers make colour by mixing coloured inks
- the important difference between inks (CMY) and lights ($R G B$) is that, while lights emit light, inks absorb light
- cyan absorbs red, reflects blue and green
- magenta absorbs green, reflects red and blue
- yellow absorbs blue, reflects green and red
- $C M Y$ is, at its simplest, the inverse of $R G B$
- CMY space is nominally a cube

CMYK space

- in real printing we use black (key) as well as CMY
- why use black?

- inks are not perfect absorbers
- mixing $C+M+Y$ gives a muddy grey, not black
- lots of text is printed in black: trying to align C, M and Y perfectly for black text would be a nightmare

Munsell's colour classification system

- three axes
- hue $>$ the dominant colour
- value $>$ bright colours/dark colours
- chroma $>$ vivid colours/dull colours
- can represent this as a 3D graph

Munsell's colour classification system

- any two adjacent colours are a standard "perceptual" distance apart
- worked out by testing it on people
- a highly irregular space
- e.g. vivid yellow is much brighter than vivid blue

Colour spaces for user-interfaces

- $R G B$ and $C M Y$ are based on the physical devices which produce the coloured output
- $R G B$ and $C M Y$ are difficult for humans to use for selecting colours
- Munsell's colour system is much more intuitive:
- hue - what is the principal colour?
, value - how light or dark is it?
- chroma - how vivid or dull is it?
- computer interface designers have developed basic transformations of $R G B$ which resemble Munsell's humanfriendly system

$H S V$: hue saturation value

- three axes, as with Munsell
- hue and value have same meaning
» the term "saturation" replaces the term "chroma"
- simple conversion from gammacorrected RGB to HSV

- designed by Alvy Ray Smith in 1978
- algorithm to convert HSV to $R G B$ and back can be found in Foley et al., Figs 13.33 and 13.34

HLS: hue lightness saturation

+ a simple variation of $H S V$
- hue and saturation have same meaning
- the term "lightness" replaces the term "value"
+ designed to address the complaint that $H S V$ has all pure colours having the same lightness/value as white
- designed by Metrick in 1979
- algorithm to convert HLS to RGB and back can be found in Foley et al., Figs 13.36 and 13.37

Perceptually uniformity

- MacAdam ellipses \& visually indistinguishable colours

In CIE xy chromatic coordinates

In CIE u'v' chromatic coordinates

CIE L*u*v* and u'v'

- Approximately perceptually uniform
- u'v' chromacity

$$
\begin{aligned}
u^{\prime}=\frac{4 X}{X+15 Y+3 Z} & =\frac{4 x}{-2 x+12 y+3} \\
v^{\prime}=\frac{9 Y}{X+15 Y+3 Z} & =\frac{9 y}{-2 x+12 y+3}
\end{aligned}
$$

- CIE LUV

$$
\begin{aligned}
& C_{u v}^{*}=\sqrt{\left(u^{*}\right)^{2}+\left(v^{*}\right)^{2}} \\
& h_{u v}=\operatorname{atan} 2\left(v^{*}, u^{*}\right)
\end{aligned}
$$

CIE L*a*b* colour space

- Another approximately perceptually uniform colour space

$$
\begin{array}{rlr}
L^{\star} & =116 f\left(\frac{Y}{Y_{\mathrm{n}}}\right)-16 & \begin{array}{c}
\text { Trichromatic } \\
\text { values of the } \\
\text { white point, e.g. }
\end{array} \\
a^{\star} & =500\left(f\left(\frac{X}{X_{\mathrm{n}}}\right)-f\left(\frac{Y}{Y_{\mathrm{n}}}\right)\right. & \begin{array}{l}
X_{\mathrm{n}}=95.047, \\
Y_{\mathrm{n}}=100.000, \\
Z_{\mathrm{n}}=108.883
\end{array} \\
b^{\star} & =200\left(f\left(\frac{Y}{Y_{\mathrm{n}}}\right)-f\left(\frac{Z}{Z_{\mathrm{n}}}\right)\right) & \begin{array}{ll}
\sqrt[3]{t} & \text { if } t>\delta^{3} \\
\frac{t}{3 \delta^{2}}+\frac{4}{29} & \text { otherwise }
\end{array} \\
f(t) & =\frac{6}{29}
\end{array}
$$

- Chroma and hue

$$
C^{\star}=\sqrt{a^{\star 2}+b^{\star 2}}, \quad h^{\circ}=\arctan \left(\frac{b^{\star}}{a^{\star}}\right)
$$

Lab space

- this visualization shows those colours in Lab space which a human can perceive
- again we see that human perception of colour is not uniform
- perception of colour diminishes at the white and black ends of the L axis
- the maximum perceivable chroma differs for different hues

Colour - references

- Chapters „Light" and „Colour" in
- Shirley, P. \& Marschner, S., Fundamentals of Computer Graphics
- Textbook on colour appearance
- Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley \& Sons.
- Comprehensive review of colour research
- Wyszecki, G., \& Stiles,W. S. (2000). Color science: concepts and methods, quantitative data, and formulae (Second ed.). John Wiley \& Sons.

