
Type Systems
Lecture 7: Programming with Effects

Neel Krishnaswami
University of Cambridge

Wrapping up Polymorphism

System F is Explicit

We saw that in System F has explicit type abstraction and
application:

Θ, α; Γ ⊢ e : B
Θ; Γ ⊢ Λα. e : ∀α.B

Θ; Γ ⊢ e : ∀α.B Θ ⊢ A type
Θ; Γ ⊢ e A : [A/α]B

This is fine in theory, but what do programs look like in
practice?

1

System F is Very, Very Explicit

Suppose we have a map functional and an isEven function:

map : ∀α. ∀β. (α → β) → listα → listβ
isEven : N → bool

A function taking a list of numbers and applying isEven to it:

mapNbool isEven : listN → list bool

If you have a list of lists of natural numbers:

map (listN) (list bool) (mapNbool isEven)
: list (listN) → list (list bool)

The type arguments overwhelm everything else!

2

Type Inference

• Luckily, ML and Haskell have type inference
• Explicit type applications are omitted – we write
map isEven instead of mapNbool isEven

• Constraint propagation via the unification algorithm
figures out what the applications should have been

Example:

map ?a ?b isEven Introduce placeholders ?a and ?b
map ?a ?b : (?a→?b) → list ?a→ list ?b
isEven : N → bool So ?a→?b must equal N → bool
?a = N, ?b = bool Only choice that makes ?a→?b = N → bool

3

Effects

The Story so Far…

• We introduced the simply-typed lambda calculus
• …and its double life as constructive propositional logic
• We extended it to the polymorphic lambda calculus
• …and its double life as second-order logic

This is a story of pure, total functional programming

4

Effects

• Sometimes, we write programs that takes an input and
computes an answer:

• Physics simulations
• Compiling programs
• Ray-tracing so tware

• Other times, we write programs to do things:
• communicate with the world via I/O and networking
• update and modify physical state (eg, file systems)
• build interactive systems like GUIs
• control physical systems (eg, robots)
• generate random numbers

• PL jargon: pure vs effectful code

5

Two Paradigms of Effects

• From the POV of type theory, two main classes of effects:
1. State:

• Mutable data structures (hash tables, arrays)
• References/pointers

2. Control:
• Exceptions
• Coroutines/generators
• Nondeterminism

• Other effects (eg, I/O and concurrency/multithreading)
can be modelled in terms of state and control effects

• In this lecture, we will focus on state and how to model it

6

State

let r = ref 5;;
val r : int ref = {contents = 5}
!r;;
- : int = 5
r := !r + 15;;
- : unit = ()
!r;;
- : int = 20

• We can create fresh reference with ref e
• We can read a reference with !e
• We can update a reference with e := e'

7

A Type System for State

Types X ::= 1 | N | X→ Y | ref X
Terms e ::= ⟨⟩ | n | λx : X. e | e e′

| new e | !e | e := e′ | l

Values v ::= ⟨⟩ | n | λx : X. e | l
Stores σ ::= · | σ, l : v

Contexts Γ ::= · | Γ, x : X
Store Typings Σ ::= · | Σ, l : X

8

Operational Semantics

⟨σ; e0⟩ ; ⟨
σ′; e′0

⟩
⟨σ; e0 e1⟩ ; ⟨

σ′; e′0 e1
⟩ ⟨σ; e1⟩ ; ⟨

σ′; e′1
⟩

⟨σ; v0 e1⟩ ; ⟨
σ′; v0 e′1

⟩
⟨σ; (λx : X. e) v⟩ ; ⟨σ; [v/x]e⟩

• Similar to the basic STLC operational rules
• Threads a store σ through each transition

9

Operational Semantics

⟨σ; e⟩ ; ⟨
σ′; e′

⟩
⟨σ;new e⟩ ; ⟨

σ′;new e′
⟩ l ̸∈ dom(σ)

⟨σ;new v⟩ ; ⟨(σ, l : v); l⟩

⟨σ; e⟩ ; ⟨
σ′; e′

⟩
⟨σ; !e⟩ ; ⟨

σ′; !e′
⟩ l : v ∈ σ

⟨σ; !l⟩ ; ⟨σ; v⟩

⟨σ; e0⟩ ; ⟨
σ′; e′0

⟩
⟨σ; e0 := e1⟩ ; ⟨

σ′; e′0 := e1
⟩ ⟨σ; e1⟩ ; ⟨

σ′; e′1
⟩

⟨σ; v0 := e1⟩ ; ⟨
σ′; v0 := e′1

⟩
⟨
(σ, l : v, σ′); l := v′

⟩ ; ⟨
(σ, l : v′, σ′); ⟨⟩

⟩
10

Typing for Terms

Σ; Γ ⊢ e : X

x : X ∈ Γ

Σ; Γ ⊢ x : X
Hyp

Σ; Γ ⊢ ⟨⟩ : 1
1I

Σ; Γ ⊢ n : N
NI

Σ; Γ, x : X ⊢ e : Y
Σ; Γ ⊢ λx : X. e : X→ Y

→I

Σ; Γ ⊢ e : X→ Y Σ; Γ ⊢ e′ : X
Σ; Γ ⊢ e e′ : Y

→E

• Similar to STLC rules + thread Σ through all judgements

11

Typing for Imperative Terms

Σ; Γ ⊢ e : X

Σ; Γ ⊢ e : X
Σ; Γ ⊢ new e : ref X

RefI
Σ; Γ ⊢ e : ref X
Σ; Γ ⊢ !e : X

RefGet

Σ; Γ ⊢ e : ref X Σ; Γ ⊢ e′ : X
Σ; Γ ⊢ e := e′ : 1

RefSet

l : X ∈ Σ

Σ; Γ ⊢ l : ref X
RefBar

• Usual rules for references
• But why do we have the bare reference rule?

12

Proving Type Safety

• Original progress and preservations talked about
well-typed terms e and evaluation steps e ; e′

• New operational semantics ⟨σ; e⟩ ; ⟨σ′; e′⟩ mentions
stores, too.

• To prove type safety, we will need a notion of store typing

13

Store and Configuration Typing

Σ ⊢ σ′ : Σ′ ⟨σ; e⟩ : ⟨Σ; X⟩

Σ ⊢ · : ·
StoreNil

Σ ⊢ σ′ : Σ′ Σ; · ⊢ v : X
Σ ⊢ (σ′, l : v) : (Σ′, l : X)

StoreCons

Σ ⊢ σ : Σ Σ; · ⊢ e : X
⟨σ; e⟩ : ⟨Σ; X⟩

ConfigOK

• Check that all the closed values in the store σ′ are
well-typed

• Types come from Σ′, checked in store Σ

• Configurations are well-typed if the store and term are
well-typed 14

A Broken Theorem

Progress:

If ⟨σ; e⟩ : ⟨Σ; X⟩ then e is a value or ⟨σ; e⟩ ; ⟨σ′; e′⟩.

Preservation:

If ⟨σ; e⟩ : ⟨Σ; X⟩ and ⟨σ; e⟩ ; ⟨σ′; e′⟩ then ⟨σ′; e′⟩ : ⟨Σ; X⟩.

• One of these theorems is false!

15

The Counterexample to Preservation

Note that

1. ⟨·;new ⟨⟩⟩ : ⟨·; ref 1⟩
2. ⟨·;new ⟨⟩⟩ ; ⟨(l : ⟨⟩); l⟩ for some l

However, it is not the case that

⟨l : ⟨⟩; l⟩ : ⟨·; ref 1⟩

The heap has grown!

16

Store Monotonicity

Definition (Store extension):

Define Σ ≤ Σ′ to mean there is a Σ′′ such that Σ′ = Σ,Σ′′.

Lemma (Store Monotonicity):

If Σ ≤ Σ′ then:

1. If Σ; Γ ⊢ e : X then Σ′; Γ ⊢ e : X.
2. If Σ ⊢ σ0 : Σ0 then Σ′ ⊢ σ0 : Σ0.

The proof is by structural induction on the appropriate
definition.

This property means allocating new references never breaks
the typability of a term.

17

Substitution and Structural Properties

• (Weakening)
If Σ; Γ, Γ′ ⊢ e : X then Σ; Γ, z : Z, Γ′ ⊢ e : X.

• (Exchange)
If Σ; Γ, y : Y, z : Z, Γ′ ⊢ e : X then Σ; Γ, z : Z, y : Y, Γ′ ⊢ e : X.

• (Substitution)
If Σ; Γ ⊢ e : X and Σ; Γ, x : X ⊢ e′ : Z then Σ; Γ ⊢ [e/x]e′ : Z.

18

Type Safety, Repaired

Theorem (Progress):

If ⟨σ; e⟩ : ⟨Σ; X⟩ then e is a value or ⟨σ; e⟩ ; ⟨σ′; e′⟩.

Theorem (Preservation):

If ⟨σ; e⟩ : ⟨Σ; X⟩ and ⟨σ; e⟩ ; ⟨σ′; e′⟩ then there exists Σ′ ≥ Σ

such that ⟨σ′; e′⟩ : ⟨Σ′; X⟩.

Proof:

• For progress, induction on derivation of Σ; · ⊢ e : X
• For preservation, induction on derivation of
⟨σ; e⟩ ; ⟨σ′; e′⟩

19

A Curious Higher-order Function

• Suppose we have an unknown function in the STLC:

f : ((1→ 1) → 1) → N

• Q: What can this function do?
• A: It is a constant function, returning some n
• Q: Why?
• A: No matter what f(g) does with its argument g, it can
only gets ⟨⟩ out of it. So the argument can never influence
the value of type N that f produces.

20

The Power of the State

count : ((1→ 1) → 1) → N
count f = let r : refN = new0 in

let inc : 1→ 1 = λz : 1. r := !r+ 1 in
f(inc)

• This function initializes a counter r
• It creates a function inc which silently increments r
• It passes inc to its argument f
• Then it returns the value of the counter r
• That is, it returns the number of times inc was called!

21

Backpatching with Landin’s Knot

1 let knot : ((int -> int) -> int -> int) -> int -> int =
2 fun f ->
3 let r = ref (fun n -> 0) in
4 let recur = fun n -> !r n in
5 let () = r := fun n -> f recur n in
6 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref
3. Set the reference to a function that calls f on the
forwarder and the argument n

4. Now f will call itself recursively!

22

Another False Theorem

Not a Theorem: (Termination) Every well-typed program
·; · ⊢ e : X terminates.

• Landin’s knot lets us define recursive functions by
backpatching

• As a result, we can write nonterminating programs
• So every type is inhabited, and consistency fails

23

Consistency vs Computation

• Do we have to choose between state/effects and logical
consistency?

• Is there a way to get the best of both?
• Alternately, is there a Curry-Howard interpretation for
effects?

• Next lecture:
• A modal logic suggested by Curry in 1952
• Now known to functional programmers as monads
• Also known as effect systems

24

Questions

1. Using Landin’s knot, implement the fibonacci function.
2. The type safety proof for state would fail if we added a
C-like free() operation to the reference API.
2.1 Give a plausible-looking typing rule and operational

semantics for free.
2.2 Find an example of a program that would break.

25

	Wrapping up Polymorphism
	Effects

