Type Systems

Lecture 7: Programming with Effects

Neel Krishnaswami University of Cambridge

Wrapping up Polymorphism

We saw that in System F has explicit type abstraction and application:

$\Theta, \alpha; \Gamma \vdash e : B$	Θ ; $\Gamma \vdash e : \forall \alpha$. B	$\Theta \vdash A$ type
Θ ; $\Gamma \vdash \Lambda \alpha$. $e : \forall \alpha$. B	Θ; Г ⊢ еА :	$[A/\alpha]B$

This is fine in theory, but what do programs look like in practice?

Suppose we have a map functional and an isEven function:

$$\begin{array}{ll} map & : & \forall \alpha. \, \forall \beta. \, (\alpha \to \beta) \to \operatorname{list} \alpha \to \operatorname{list} \beta \\ is Even & : & \mathbb{N} \to \operatorname{bool} \end{array}$$

A function taking a list of numbers and applying isEven to it:

 $map \mathbb{N} \text{ bool} isEven : list \mathbb{N} \to list bool$

If you have a list of lists of natural numbers:

 $map (list \mathbb{N}) (list bool) (map \mathbb{N} bool isEven)$: list (list \mathbb{N}) \rightarrow list (list bool)

The type arguments overwhelm everything else!

Type Inference

- Luckily, ML and Haskell have type inference
- Explicit type applications are omitted we write *map isEven* instead of *map* ℕ bool *isEven*
- Constraint propagation via the *unification algorithm* figures out what the applications should have been

Example:

map ?a ?b isEvenIntroduce placeholders ?a and ?bmap ?a ?b: $(?a \rightarrow ?b) \rightarrow list ?a \rightarrow list ?b$ isEven : $\mathbb{N} \rightarrow bool$ So ?a \rightarrow ?b must equal $\mathbb{N} \rightarrow bool$?a = \mathbb{N} ,?b = boolOnly choice that makes ?a \rightarrow ?b = $\mathbb{N} \rightarrow bool$

Effects

- We introduced the simply-typed lambda calculus
- ...and its double life as constructive propositional logic
- We extended it to the polymorphic lambda calculus
- ...and its double life as second-order logic

This is a story of pure, total functional programming

Effects

- Sometimes, we write programs that takes an input and computes an answer:
 - Physics simulations
 - Compiling programs
 - Ray-tracing software
- Other times, we write programs to *do things*:
 - · communicate with the world via I/O and networking
 - update and modify physical state (eg, file systems)
 - build interactive systems like GUIs
 - control physical systems (eg, robots)
 - generate random numbers
- PL jargon: pure vs effectful code

Two Paradigms of Effects

- From the POV of type theory, two main classes of effects:
 - 1. State:
 - Mutable data structures (hash tables, arrays)
 - References/pointers
 - 2. Control:
 - Exceptions
 - Coroutines/generators
 - Nondeterminism
- Other effects (eg, I/O and concurrency/multithreading) can be modelled in terms of state and control effects
- In this lecture, we will focus on state and how to model it

```
# let r = ref 5;;
val r : int ref = {contents = 5}
# !r;;
- : int = 5
# r := !r + 15;;
- : unit = ()
# !r;;
- : int = 20
```

- We can create fresh reference with ref e
- We can read a reference with !e
- We can update a reference with e := e'

Types	Х	::=	$1 \mid \mathbb{N} \mid X \to Y \mid refX$
Terms	е	::=	$\langle\rangle \mid n \mid \lambda x : X.e \mid ee$
			$newe \mid !e \mid e := e' \mid$
Values	V	::=	$\langle \rangle \mid n \mid \lambda x : X.e \mid l$
Stores	σ	::=	$\cdot \mid \sigma, l: v$
Contexts	Г	::=	$\cdot \mid \Gamma, x : X$
Store Typings	Σ	::=	$\cdot \mid \Sigma, l : X$

Operational Semantics

$$\frac{\langle \sigma; e_0 \rangle \rightsquigarrow \langle \sigma'; e'_0 \rangle}{\langle \sigma; e_0 e_1 \rangle \rightsquigarrow \langle \sigma'; e'_0 e_1 \rangle} \qquad \frac{\langle \sigma; e_1 \rangle \rightsquigarrow \langle \sigma'; e'_1 \rangle}{\langle \sigma; v_0 e_1 \rangle \rightsquigarrow \langle \sigma'; v_0 e'_1 \rangle}$$

$$\langle \sigma; (\lambda x : X. e) v \rangle \rightsquigarrow \langle \sigma; [v/x] e \rangle$$

- Similar to the basic STLC operational rules
- Threads a store σ through each transition

Operational Semantics

$$\frac{\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle}{\langle \sigma; \mathsf{new} \, e \rangle \rightsquigarrow \langle \sigma'; \mathsf{new} \, e' \rangle} \qquad \frac{l \notin \operatorname{dom}(\sigma)}{\langle \sigma; \mathsf{new} \, v \rangle \rightsquigarrow \langle (\sigma, l : v); l \rangle} \\
\frac{\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle}{\langle \sigma; ! e \rangle \rightsquigarrow \langle \sigma'; ! e' \rangle} \qquad \frac{l : v \in \sigma}{\langle \sigma; ! l \rangle \rightsquigarrow \langle \sigma; v \rangle} \\
\frac{\langle \sigma; e_0 \rangle \rightsquigarrow \langle \sigma'; e'_0 \rangle}{\langle \sigma; e_0 := e_1 \rangle \rightsquigarrow \langle \sigma'; e'_0 := e_1 \rangle} \qquad \frac{\langle \sigma; e_1 \rangle \rightsquigarrow \langle \sigma'; e'_1 \rangle}{\langle \sigma; v_0 := e_1 \rangle \rightsquigarrow \langle \sigma'; v_0 := e'_1 \rangle}$$

$$\Sigma$$
; $\Gamma \vdash e : X$

$$\frac{x : X \in \Gamma}{\Sigma; \Gamma \vdash x : X} \text{ Hyp} \qquad \frac{}{\Sigma; \Gamma \vdash \langle \rangle : 1} \text{ 1I} \qquad \frac{}{\Sigma; \Gamma \vdash n : \mathbb{N}} \text{ NI}$$

$$\frac{\Sigma; \Gamma, x : X \vdash e : Y}{\Sigma; \Gamma \vdash \lambda x : X. e : X \to Y} \rightarrow \text{I}$$

$$\frac{\Sigma; \Gamma \vdash e : X \to Y \qquad \Sigma; \Gamma \vdash e' : X}{\Sigma; \Gamma \vdash e e' : Y} \rightarrow \text{E}$$

 $\cdot\,$ Similar to STLC rules + thread Σ through all judgements

Typing for Imperative Terms

$$\Sigma$$
; $\Gamma \vdash e : X$

$$\frac{\Sigma; \Gamma \vdash e : X}{\Sigma; \Gamma \vdash \text{new} \, e : \text{ref} X} \text{ ReFI} \qquad \qquad \frac{\Sigma; \Gamma \vdash e : \text{ref} X}{\Sigma; \Gamma \vdash !e : X} \text{ ReFGET}$$

$$\frac{\Sigma; \Gamma \vdash e : \text{ref} X \qquad \Sigma; \Gamma \vdash e' : X}{\Sigma; \Gamma \vdash e := e' : 1} \text{ RefSet}$$

$$\frac{l: X \in \Sigma}{\Sigma; \Gamma \vdash l: \operatorname{ref} X} \operatorname{RefBar}$$

- Usual rules for references
- But why do we have the bare reference rule?

- Original progress and preservations talked about well-typed terms e and evaluation steps $e \rightsquigarrow e'$
- New operational semantics $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$ mentions stores, too.
- To prove type safety, we will need a notion of store typing

Store and Configuration Typing

- Check that all the closed values in the store σ' are well-typed
- Types come from Σ' , checked in store Σ
- Configurations are well-typed if the store and term are well-typed

Progress:

If $\langle \sigma; e \rangle : \langle \Sigma; X \rangle$ then *e* is a value or $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$.

Preservation:

 $\mathsf{If} \ \langle \sigma; e \rangle : \langle \Sigma; X \rangle \ \mathsf{and} \ \langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle \ \mathsf{then} \ \langle \sigma'; e' \rangle : \langle \Sigma; X \rangle.$

• One of these theorems is false!

Note that

1.
$$\langle \cdot; \text{new} \langle \rangle \rangle : \langle \cdot; \text{ref } 1 \rangle$$

2. $\langle \cdot; \text{new} \langle \rangle \rangle \rightsquigarrow \langle (l : \langle \rangle); l \rangle$ for some l

However, it is not the case that

$$\langle l:\langle\rangle;l\rangle:\langle\cdot;\mathsf{ref1}\rangle$$

The heap has grown!

Definition (Store extension):

Define $\Sigma \leq \Sigma'$ to mean there is a Σ'' such that $\Sigma' = \Sigma, \Sigma''$.

Lemma (Store Monotonicity):

If $\Sigma \leq \Sigma'$ then:

- 1. If Σ ; $\Gamma \vdash e : X$ then Σ' ; $\Gamma \vdash e : X$.
- 2. If $\Sigma \vdash \sigma_0 : \Sigma_0$ then $\Sigma' \vdash \sigma_0 : \Sigma_0$.

The proof is by structural induction on the appropriate definition.

This property means allocating new references never breaks the typability of a term.

- (Weakening) If Σ ; Γ , $\Gamma' \vdash e : X$ then Σ ; $\Gamma, z : Z, \Gamma' \vdash e : X$.
- (Exchange) If Σ ; Γ , y : Y, z : Z, $\Gamma' \vdash e$: X then Σ ; Γ , z : Z, y : Y, $\Gamma' \vdash e$: X.
- (Substitution) If Σ ; $\Gamma \vdash e : X$ and Σ ; $\Gamma, x : X \vdash e' : Z$ then Σ ; $\Gamma \vdash [e/x]e' : Z$.

Theorem (Progress):

If
$$\langle \sigma; e \rangle : \langle \Sigma; X \rangle$$
 then *e* is a value or $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$.

Theorem (Preservation):

If $\langle \sigma; e \rangle : \langle \Sigma; X \rangle$ and $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$ then there exists $\Sigma' \ge \Sigma$ such that $\langle \sigma'; e' \rangle : \langle \Sigma'; X \rangle$.

Proof:

- For progress, induction on derivation of Σ ; $\cdot \vdash e : X$
- For preservation, induction on derivation of $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$

A Curious Higher-order Function

• Suppose we have an unknown function in the STLC:

```
f:((1\to 1)\to 1)\to \mathbb{N}
```

- Q: What can this function do?
- A: It is a constant function, returning some n
- Q: Why?
- A: No matter what f(g) does with its argument g, it can only gets ⟨⟩ out of it. So the argument can never influence the value of type N that f produces.

The Power of the State

count :
$$((1 \rightarrow 1) \rightarrow 1) \rightarrow \mathbb{N}$$

count f = let r : ref \mathbb{N} = new 0 in
let inc : $1 \rightarrow 1 = \lambda z$: 1. r := !r + 1 in
f(inc)

- This function initializes a counter r
- It creates a function *inc* which silently increments *r*
- It passes inc to its argument f
- Then it returns the value of the counter r
- That is, it returns the number of times inc was called!

Backpatching with Landin's Knot

1	<pre>let knot : ((in</pre>	t -> int) -> int -> int) -> int -> int =
2	fun f ->	
3	let r	= ref (fun n -> 0) in
4	let recur	= fun n -> !r n in
5	let ()	= r := fun n -> f recur n in
6	recur	

- 1. Create a reference holding a function
- 2. Define a function that forwards its argument to the ref
- 3. Set the reference to a function that calls *f* on the forwarder and the argument *n*
- 4. Now *f* will call itself recursively!

Not a Theorem: (Termination) Every well-typed program ·; · ⊢ *e* : *X* terminates.

- Landin's knot lets us *define recursive functions* by backpatching
- As a result, we can write nonterminating programs
- So every type is inhabited, and consistency fails

Consistency vs Computation

- Do we have to choose between state/effects and logical consistency?
- Is there a way to get the best of both?
- Alternately, is there a Curry-Howard interpretation for effects?
- Next lecture:
 - A modal logic suggested by Curry in 1952
 - Now known to functional programmers as *monads*
 - Also known as effect systems

- 1. Using Landin's knot, implement the fibonacci function.
- The type safety proof for state would fail if we added a C-like free() operation to the reference API.
 - 2.1 Give a plausible-looking typing rule and operational semantics for **free**.
 - 2.2 Find an example of a program that would break.