Type Systems

Lecture 3: Consistency and Termination

Neel Krishnaswami University of Cambridge

From Type Safety to Stronger Properties

- In the last lecture, we saw how <u>evaluation</u> corresponded to proof normalization
- This was an act of knowledge transfer from <u>computation</u> to <u>logic</u>
- Are there any transfers we can make in the other direction?

Logical Consistency

- An important property of any logic is <u>consistency</u>: there are no proofs of \bot !
- Otherwise, the \perp E rule will let us prove <u>anything</u>.
- · What does this look like in a programming language?

Types and Values

```
Types X ::= 1 \mid X \times Y \mid 0 \mid X + Y \mid X \rightarrow Y
Values v ::= \langle \rangle \mid \langle v, v' \rangle \mid \lambda x : A.e \mid Lv \mid Rv
```

- · There are no values of type 0
- · I.e., no normal forms of type 0
- · But what about non-normal forms?

What Type Safety Does, and Doesn't Show

- We have proved type safety:
 - Progress: If $\cdot \vdash e : X$ then e is a value or $e \leadsto e'$.
 - Type preservation If $\cdot \vdash e : X$ and $e \leadsto e'$ then $\cdot \vdash e' : X$.
- If there were a closed term of type 0, then progress means it must always step (since there are no values of type 0)
- But the term it would step to also has type 0 (by preservation)
- So any closed term of type 0 must <u>loop</u> it must step forever.

A Naive Proof that Does Not Work

Theorem: If $\cdot \vdash e : X$ then there is a value v such that $e \leadsto^* v$.

"Proof": By structural induction on $\cdot \vdash e : X$

$ \overbrace{\Gamma \vdash e : X \to Y} \qquad \overbrace{\Gamma \vdash e' : X}^{(3)} $	
Γ ⊢ <i>e e'</i> : Y	Assumption
$e \sim^* v$	Induction on (2)
$e' \sim^* V'$	Induction on (3)
$\cdot \vdash v : X \to Y$	Preservation on (2), (4)
$\cdot \vdash \lor' : X$	Preservation on (3), (5)
$\cdot \vdash v \equiv \lambda x : X . e'' : X \to Y$	Canonical forms on (6)
$X:X\vdash e'':Y$	Subderivation
$\cdot \vdash [v'/x]e'' : Y$	Substitution
Can't do induction on this!	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5

A Minimal Typed Lambda Calculus

Types
$$X ::= 1 \mid X \to Y \mid 0$$

Terms $e ::= x \mid \langle \rangle \mid \lambda x : X . e \mid e \, e' \mid \text{abort } e$
Values $v ::= \langle \rangle \mid \lambda x : X . e$

$$\frac{X : X \in \Gamma}{\Gamma \vdash x : X} \vdash \text{Hyp} \qquad \frac{\Gamma \vdash e : X \to Y \qquad \Gamma \vdash e' : X}{\Gamma \vdash e \, e' : Y} \to E$$

$$\frac{\Gamma \vdash e : 0}{\Gamma \vdash \text{abort } e : Z} = 0$$

Reductions

$$\frac{e \rightsquigarrow e'}{\text{abort } e \rightsquigarrow \text{abort } e'}$$

$$\frac{e_1 \rightsquigarrow e'_1}{e_1 e_2 \rightsquigarrow e'_1 e_2} \qquad \frac{e_2 \rightsquigarrow e'_2}{v_1 e_2 \rightsquigarrow v_1 e_2}$$

$$\overline{(\lambda x : X. e) v \rightsquigarrow [v/x]e}$$

Theorem (Determinacy): If $e \rightsquigarrow e'$ and $e \rightsquigarrow e''$ then e' = e''

Proof: By structural induction on $e \sim e'$

Why Can't We Prove Termination

- · We can't prove termination by structural induction
- Problem is that knowing a term evaluates to a function doesn't tell us that applying the function terminates
- We need to assume something stronger

A Logical Relation

- 1. We say that \underline{e} halts if and only if there is a v such that $e \sim^* v$.
- 2. Now, we will define a type-indexed family of set of terms:
 - $Halt_0 = \emptyset$ (i.e, for all $e, e \notin Halt_0$)
 - $e \in Halt_1$ holds just when e halts.
 - $e \in Halt_{X \to Y}$ holds just when
 - 1. e halts
 - 2. For all e', if $e' \in Halt_X$ then $(e \ e') \in Halt_Y$.
- 3. Hereditary definition:
 - Halt₁ halts
 - Halt_{1 \rightarrow 1} preserves the property of halting
 - Halt $_{(1\to 1)\to (1\to 1)}$ preserves the property of preserving the property of halting...

Closure Lemma, 1/5

Lemma: If $e \leadsto e'$ then $e' \in \text{Halt}_X$ iff $e \in \text{Halt}_X$.

Proof: By induction on *X*:

- Case $X = 1, \Rightarrow$:
 - (1) $e \sim e'$ Assumption
 - (2) $e' \in Halt_1$ Assumption
 - (3) $e' \rightarrow^* v$ Definition of Halt₁
 - (4) $e \rightarrow^* v$ Def. of transitive closure, (1) and (3)
 - (5) $e \in Halt_1$ Definition of $Halt_1$

Closure Lemma, 2/5

• Case
$$X = 1, \Leftarrow$$
:

(1)
$$e \sim e'$$

(2) $e \in Halt_1$

(3)
$$e \rightsquigarrow^* v$$

(5)
$$e \sim e''$$
 and $e'' \sim^* v$ Definition of $e \sim^* v$

(6)
$$e'' = e'$$

(7)
$$e' \sim^* v$$

(8)
$$e' \in Halt_1$$

Assumption

Definition of Halt₁

Since $e \sim e'$

By determinacy on (1), (5)

By equality (6) on (5)

Definition of Halt₁

Closure Lemma, 3/5

```
• Case X = Y \rightarrow Z, \Rightarrow:
   (1) e \sim e'
                                        Assumption
   (2) e' \in Halt_{Y \to Z}
                                        Assumption
   (3) e' \sim * v
                                        Def. of Halt_{V\rightarrow 7}
   (4) \forall t \in Halt_Y, e' t \in Halt_Z
   (5) e \sim^* v
                                        Transitive closure. (1) and (3)
          Assume t \in Halt_Y:
   (6) e t \sim e' t
                                        By congruence rule on (1)
   (7) e' t \in Halt_7
                                        Bv (4)
                                        By induction on (6), (7)
            e t \in Halt_7
```

Def of Halt $_{Y\to Z}$ on (5), (8)

(8) $\forall t \in \text{Halt}_{Y}, e \ t \in \text{Halt}_{Z}$

(9) $e \in Halt_{Y \rightarrow Z}$

Closure Lemma, 4/5

```
• Case X = Y \rightarrow Z. \Leftarrow:
    (1)
         e \sim e'
                                               Assumption
   (2) e \in Halt_{Y \to Z}
                                               Assumption
    (3) e \sim^* v
                                               Def. of Halt_{\vee \rightarrow 7}
   (4) \forall t \in \text{Halt}_{Y}, e \ t \in \text{Halt}_{Z}
                                               Since (1)
             e is not a value
    (5) e \sim e'' and e'' \sim^* v
                                               Definition of e \sim^* v
    (6)
          e'' = e'
                                               By determinacy on (1), (5)
             Assume t \in Halt_Y:
    (7)
               et \sim e't
                                               By congruence rule on (1)
    (8)
                                               By (4)
               e t \in Halt_7
                                               By induction on (6), (7)
                e' t \in Halt_7
    (9) \forall t \in \text{Halt}_{v}. e' t \in \text{Halt}_{z}
    (10) e' \in Halt_{V \rightarrow 7}
                                               Def of Halt<sub>Y\rightarrow7</sub> on (5), (8)
```

Closure Lemma, 5/5

• Case X = 0, \Rightarrow :

(1) $e \sim e'$ Assumption

(2) $e' \in Halt_0$ Assumption

(3) $e' \in \emptyset$ Definition of Halt₀

(4) Contradiction!

• Case X = 0, \Leftarrow :

(1) $e \rightarrow e'$ Assumption

(2) $e \in Halt_0$ Assumption

(3) $e \in \emptyset$ Definition of Halt₀

(4) Contradiction!

The Fundamental Lemma

Lemma:

If we have that:

- $x_1 : X_1, ..., x_n : X_n \vdash e : Z$, and
- for $i \in \{1...n\}$, $\cdot \vdash v_i : X_i$ and $v_i \in \mathsf{Halt}_{X_i}$

then $[v_1/x_1,\ldots,v_n/x_n]e\in \mathsf{Halt}_Z$

Proof:

By structural induction on $x_1: X_1, \ldots, x_n: X_n \vdash e: Z!$

The Fundamental Lemma, 1/5

· Case Hyp:

$$(1) \quad \frac{x_{j}: X_{j} \in \overline{x_{i}: X_{i}}}{\overline{x_{i}: X_{i}} \vdash x_{j}: X_{j}} \text{ HYP}$$

$$(2) \quad [\overline{v_{i}/x_{i}}]x_{j} = v_{j} \qquad \text{Def. of substitution}$$

$$(3) \quad v_{j} \in \text{Halt}_{X_{j}} \qquad \text{Assumption}$$

$$(4) \quad [\overline{v_{i}/x_{i}}]x_{j} \in \text{Halt}_{X_{j}} \qquad \text{Equality (2) on (3)}$$

The Fundamental Lemma, 2/5

· Case 1I:

(1)
$$\overrightarrow{x_i}: \overrightarrow{X_i} \vdash \langle \rangle : 1$$
 Assumption
(2) $[\overrightarrow{v_i/x_i}] \langle \rangle = \langle \rangle$ Def. of substitution
(3) $\langle \rangle \leadsto^* \langle \rangle$ Def. of transitive closure
(4) $\langle \rangle \in \text{Halt}_1$ Def. of Halt₁
(5) $[\overrightarrow{v_i/x_i}] \langle \rangle \in \text{Halt}_1$ Equality (2) on (4)

The Fundamental Lemma, 3a/5

• Case \rightarrow I:

$$(1) \quad \overrightarrow{x_i : X_i}, y : Y \vdash e : Z$$

$$(2) \quad \overrightarrow{x_i : X_i} \vdash \lambda y : Y \cdot e : Y \rightarrow Z \qquad \text{Assumption}$$

$$(3) \quad \overrightarrow{[v_i/x_i]}(\lambda y : Y \cdot e) = \lambda y : Y \cdot \overrightarrow{[v_i/x_i]}e \qquad \text{Def of substitution}$$

$$(4) \quad \lambda y : Y \cdot \overrightarrow{[v_i/x_i]}e \rightsquigarrow^* \lambda y : Y \cdot \overrightarrow{[v_i/x_i]}e \qquad \text{Def of closure}$$

The Fundamental Lemma, 3b/5

Case \rightarrow I:

```
(5)
             Assume t \in Halt_V:
(6)
                      t \sim^* V_v
                                                                                                       Def of Halty
(7)
                      v_V \in Halt_Y
                                                                                                       Closure on (6)
                     (\lambda y : Y. \overrightarrow{[v_i/x_i]}e) v_y \sim \overrightarrow{[v_i/x_i, v_y/y]}e
\overrightarrow{[v_i/x_i, v_y/y]}e \in Halt_Z
(8)
                                                                                                       Rule
(9)
                                                                                                       Induction
                     (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) t \sim (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) v_y
(10)
                                                                                                       Congruence
                     (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ t \in Halt_Z
(11)
                                                                                                       Closure
            \forall t \in \mathsf{Halt}_Y, (\lambda y : Y, [v_i/x_i]e) \ t \in \mathsf{Halt}_Z
(12)
```

The Fundamental Lemma, 3c/5

Case \rightarrow I:

(4)
$$\lambda y : Y. [\overrightarrow{v_i/x_i}]e \rightsquigarrow^* \lambda y : Y. [\overrightarrow{v_i/x_i}]e$$
 Def of closure
(12) $\forall t \in \text{Halt}_Y, (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) t \in \text{Halt}_Z$
(13) $(\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \in \text{Halt}_{Y \to Z}$ Def. of $\text{Halt}_{Y \to Z}$

The Fundamental Lemma, 4/5

• Case \rightarrow E:

$$(1) \qquad \overrightarrow{x_i : X_i} \vdash e : Y \to Z \qquad \overrightarrow{x_i : X_i} \vdash e' : Y \\ \overrightarrow{x_i : X_i} \vdash e e' : Z \qquad \qquad \rightarrow \mathbb{E}$$
 Assumption (2)
$$\overrightarrow{x_i : X_i} \vdash e : Y \to Z \qquad \qquad \text{Subderivation}$$
 (3)
$$\overrightarrow{x_i : X_i} \vdash e' : Y \qquad \qquad \text{Subderivation}$$
 (4)
$$[\overrightarrow{v_i/x_i}]e \in \text{Halt}_{Y \to Z} \qquad \qquad \text{Induction}$$
 (5)
$$\forall t \in \text{Halt}_Y, [\overrightarrow{v_i/x_i}]e \ t \in \text{Halt}_Z \qquad \text{Def of Halt}_{Y \to Z}$$
 (6)
$$[\overrightarrow{v_i/x_i}]e' \in \text{Halt}_Y \qquad \qquad \text{Induction}$$
 (7)
$$([\overrightarrow{v_i/x_i}]e) \ ([\overrightarrow{v_i/x_i}]e') \in \text{Halt}_Z \qquad \qquad \text{Instantiate (5) w/ (6)}$$
 (8)
$$[\overrightarrow{v_i/x_i}](e \ e') \in \text{Halt}_Z \qquad \qquad \text{Def. of substitution}$$

The Fundamental Lemma, 5/5

· Case 0E:

$$(1) \quad \overrightarrow{x_i : X_i} \vdash e : 0$$

$$(2) \quad \overrightarrow{x_i : X_i} \vdash abort e : Z \quad \text{Assumption}$$

$$(3) \quad \overrightarrow{[v_i/x_i]}e \in \text{Halt}_0 \quad \text{Induction}$$

$$(4) \quad \overrightarrow{[v_i/x_i]}e \in \emptyset \quad \text{Def of Halt}_0$$

$$(5) \quad \text{Contradiction!}$$

Consistency

Theorem: There are no terms $\cdot \vdash e : 0$.

Proof:

- (1) $\cdot \vdash e : 0$ Assumption
- (2) $e \in Halt_0$ Fundamental lemma
- (3) $e \in \emptyset$ Definition of Halt₀
- (4) Contradiction!

Conclusions

- · Consistency and termination are very closely linked
- We have proved that the simply-typed lambda calculus is a total programming language
- Since every closed program reduces to a value, and there are no values of empty type, there are no programs of empty type
- We seem to have circumvented the Halting Theorem?
- No: we do not accept <u>all</u> terminating programs!

Exercises

- 1. Extend the logical relation to support products
- 2. (Harder) Extend the logical relation to support sum types