Introduction to MATLAB
 - exercises and solution notes

Markus Kuhn

Exercise 1: Find a short MATLAB expression to build the matrix

$$
B=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 7 & 5 & 3 & 1 & -1 & -3 \\
4 & 8 & 16 & 32 & 64 & 128 & 256
\end{array}\right)
$$

```
Answer: b = [1:7; 9:-2:-3; 2.^(2:8)]
```

Exercise 2: Give a MATLAB expression that uses only a single matrix multiplication with B to obtain
(a) the sum of columns 5 and 7 of B

```
Answer: b * [0}0
```

(b) the last row of B

```
Answer: [0 0 1] * b
```

(c) a version of B with rows 2 and 3 swapped

```
Answer: [1 0 0; 0 0 1; 0 1 0] * b
```

Exercise 3: Give a MATLAB expression that multiplies two vectors to obtain
(a) the matrix $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5\end{array}\right)$

Answer: $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ * (1:5)
(b) the matrix $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4\end{array}\right)$

Answer: (0:4)' * $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$

Exercise 4: Modify slide 30 to produce tones of falling frequency instead.

Answer: Replace

```
f = fmin * (fmax/fmin) .^ l;
```

with
f = fmax * (fmin/fmax) .^ l;

Exercise 5:

(a) Write down the function $g(t)$ that has the shape of a sine wave that increases linearly in frequency from 0 Hz at $t=0 \mathrm{~s}$ to 5 Hz at $t=10 \mathrm{~s}$.

Answer: The instantaneous frequency of function $g(t)$ at time t is

$$
f(t)=t \cdot \frac{5 \mathrm{~Hz}}{10 \mathrm{~s}}=\frac{t}{2 \mathrm{~s}^{2}}
$$

and since the phase of a sine wave is 2π times the integrated frequency so far, we get

$$
g(t)=\sin \left(2 \pi \int_{0}^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)=\sin \left(2 \pi \frac{t^{2}}{4 \mathrm{~s}^{2}}\right)=\sin \left(\frac{\pi t^{2}}{2 \mathrm{~s}^{2}}\right)
$$

(b) Plot the graph of this function using MATLAB's plot command.
(c) Add to the same figure (this can be achieved using the hold command) in a different colour a graph of the same function sampled at 5 Hz , using the stem command.


```
t = 0:0.01:10;
f = sin(pi*t.^2/2);
plot(t,f);
hold;
t2 = 0:1/5:10;
stem(t2, sin(pi*t2.^2/2), 'r');
```

(d) [Extra credit] Plot the graph from (c) separately. Can you explain its symmetry? [Hints: sampling theorem, aliasing].

Abstract

Answer: A sine wave with a frequency f larger than half the sampling frequency f_{s} cannot be distinguished based on the sample values from a sine wave of frequency $f_{\mathrm{s}}-f$. In other words, the sample values would have looked the same had we replaced the instantaneous frequency $f(t)$ with $f_{\mathrm{s}} / 2-\left|f_{\mathrm{s}} / 2-f(t)\right|$, and the latter is symmetric around $f_{\mathrm{s}} / 2$, which is in this graph 2.5 Hz and occurs at $t=5 \mathrm{~s}$. [The above is of course just a hand-waving argument, but shall be sufficient for this exercise. There are actually a few more conditions fulfilled here that lead to the exact symmetry of the plot. Firstly, since we started sampling at $t=0 \mathrm{~s}$ with $f_{\mathrm{s}}=5 \mathrm{~Hz}$, the positions of the sample values end up being symmetric around $t=5 \mathrm{~s}$. Secondly, at the symmetry point $t=5 \mathrm{~s}$, the sine wave was at a symmetric peak from where increasing or decreasing the phase has the same result.]

Exercise 6: Use MATLAB to write an audio waveform (8 kHz sampling frequency) that contains a sequence of nine tones with frequencies $659,622,659,622,659,494,587,523$, and 440 Hz . Append to this waveform a copy of itself in which every other sample has been multiplied by -1 . Play the waveform, write it to a WAV file, and use the spectrogram command to plot its spectrogram with correctly labelled time and frequency axis.

```
f = [659 622 659 622 659 494 587 523 440];
fs = 8000; % sampling frequency
d = 0.5; % duration per tone
t = 0:1/fs:d-1/fs;
w = sin(2 * pi * f' * t)/2;
w = w'; w = w(:)';
w = [w, w .* (mod((1:length(w)), 2) * 2 - 1)];
audiowrite('matlab_answer-2.wav', w, fs);
spectrogram(w, 1024, [], [], fs, 'yaxis');
```


