LATEX

Markus Kuhn

CTAN lion drawing by Duane Bibby

> Department of Computer Science and Technology University of Cambridge
https://www.cl.cam.ac.uk/teaching/2223/TeX+MATLAB/

LTEX - a document formatter

${ }^{\Delta T} T_{\mathrm{E}} \mathrm{X}$: a macro package for the $\mathrm{T}_{\mathrm{E}} \mathrm{X}(\tau \epsilon \chi$, "tech") typesetting system

- excellent facilities for mathematical notation
- de-facto standard for preparing scientific publications in mathematical, physical, computing and engineering disciplines
History: Donald Knuth (Stanford CS) developed T_{E} in mid 1970s, in SAIL, to typeset his "Art of Computer Programming" books, reimplemented it in Pascal in the mid 1980s (WEB, literate programming), was later ported to C.
Leslie Lamport (SRI, DEC) wrote $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ in early 1980s.
Both now community maintained as $T_{E} X$ Live open-source distribution.

Classic processing steps:

Modern alternative:

These slides: prepared using the ${ }^{A} T_{E} \mathrm{X}$ beamer class.

DOCUMENT COMPLEXITY

Figure: Dheepak Krishnamurthy, CC BY, https://blog.kdheepak.com/writing-papers-with-markdown.html

ATEX - resources

Recommended introduction

Leslie Lamport: $\operatorname{AT} T_{E X}$ - a document preparation system. 2nd ed., Addison-Wesley, 1994.

Installation

$$
\begin{aligned}
& \text { Debian/ Linux: } \text { apt-get install texlive } \\
& \text { Ubuntu } \\
& \text { macOS: } \text { https://www.tug.org/mactex/ } \\
& \text { Windows: } \text { https://miktex.org/ } \\
& \text { https://www.tug.org/protext/ } \\
& \text { https://www.tug.org/texlive/ }
\end{aligned}
$$

More documentation

Online tutorials:
https://www.latex-project.org/help/
TEX Frequently Asked Questions list:
https://texfaq.org/
For advanced users:
Mittelbach, et al.: The $A T_{E} X$ Companion.

The IATEX Companion

Second Edition

Frank Mittelbach and Michel Goossens with Johannes Braanms, David Carlisle, and Chris Rowley

2nd ed., Addison-Wesley, 2004.

ATEX - features and benefits

- Most popular mathematical typesetting language (subset imitations now also in: Word, MathJax, MediaWiki, etc.)
- Encourages logical markup \Rightarrow helps to maintain consistent style
- Plain-text source \Rightarrow easy to collaborate via version-control systems
- Command-line tool \Rightarrow easy to automate build (make)
- Use any plain-text editor you like (Emacs, vi, TeXworks, Word, etc.)
- Robust for large, complex documents (PhD thesis, books, etc.)
- Highly extensible (a Turing-complete macro programming language) \Rightarrow vast collection of add-on packages for special typesetting needs (figures, logic proofs, pseudo code, circuit diagrams, flow charts, chemical formulae, slides, chess positions, etc.)

```
\usepackage[skaknew]{skak}
\newgame
\mainline{1.e4 e5 2. Nf3 Nc6 3.Bb5}
\showboard
```

- Computer Modern, etc. \Rightarrow free font families

- Mature, free, portable, open source, used by many science publishers

ATEX example

```
\documentclass[12pt]{article}
\setlength{\textwidth}{75mm}
\begin{document}
\title{\TeX\ -- a summary}
\author{Markus G. *Kuhn}
\date{11 October 2019}
\maketitle
\thispagestyle{empty}
\section{Introduction}
Mathematical formul\ae\ such as
$e^{i\pi} = -1$ or even
\[ \Phi(z) = \frac{1}{\sqrt{2\pi}}
    \int_0^x e^{-\frac12 x^2} \]
were a real 'pain' to typeset until
\textsc{Knuth}'s text formatter \TeX\
became available \cite{Knuth86}.
\begin{thebibliography}{9}
    \bibitem{Knuth86}Donald E. Knuth:
    The \TeX book. Ad\-dison-Wesley, 1986.
\end{thebibliography}
\end{document}
```


TEX - a summary

Markus G. Kuhn
11 October 2019

1 Introduction

Mathematical formulæ such as $e^{i \pi}=-1$ or even

$$
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{1}{2} x^{2}}
$$

were a real 'pain' to typeset until Knuth's text formatter $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ became available [1].

References

[1] Donald E. Knuth: The TEXbook. Ad-dison-Wesley, 1986.

TEXworks GUI IDE

$T_{E} X$ works is a $A T_{E} X$ editor that shows source text and PDF output side by side and makes it easy to navigate between them:

There are even Web-based ATEX editors, e.g. overleaf.com, papeeria.com, latexbase.com

TEX input syntax

- $\mathrm{T}_{\mathrm{E} X}$ reads plain-text *.tex files (e.g., prepared with emacs)
- no distinction is made between space character and line feed
- multiple spaces are treated like a single space
- empty lines act as paragraph separator (just like the \par command)
- command, macro and variable names start with a backslash (\backslash), followed by either a sequence of letters or a single non-letter character (uppercase/lowercase is significant).

Correct: \par, - , \pagethree, \LaTeX, \+, \\, \3
Wrong: \page33, \<>

- space and line-feed characters are ignored if they follow a command/macro/variable name consisting of letters. Use $_{\sqcup}$ to add an explicit space (e.g., $\backslash T e \mathrm{X} \backslash$ syntax $\Rightarrow \mathrm{T}_{\mathrm{E}} \mathrm{X}$ syntax).

Characters with special semantics

In *.tex input files, the following are meta characters (part of syntax):

$$
\text { \# \$ \% \& ~ _ - \\{ \} }}
$$

$\# \$ \% \&_{-}\{ \}$can be included in regular text using the macros

$$
\backslash \# \backslash \$ \backslash \% \backslash \& \backslash _\backslash へ \backslash\{\backslash\}
$$

Otherwise:
\% starts a comment
~ no-break space
\$ delimits inline equations

- superscript
\{ begin group
\# macro parameter
\& tabulator mark macro prefix,
\line separator subscript (in math mode)
\} end group

Comments: All characters between (and including) a \% and the next line feed will be ignored. Append \% at the end of a line to avoid interpretation of the subsequent line feed as a space.

One could also insert \and ~as \ and ̃. But this is rarely ever done. The ASCII characters $\backslash_{-}{ }^{\text {` }\{ \} \text { are not typically used in regular text. They are common in }}$ computing-related strings (identifiers, source code, path names, URLs, etc.), for which it is customary to use a fixed-width typewriter font. There use the verbatim environment or the macro \verb+...+, which typeset all ASCII characters in typewriter font, or \url\{...\} for URLs.

Grouping

The curly braces \{ and \} serve two purposes in $T_{E} X$:

- Lexical scope: a \{ saves current state on a stack and \} restores it, therefore state changes (e.g., font switch, variable assignment) inside a $\{\ldots$ \} group last only until the $\}$:

```
This is a {\bfseries bold} statement.
    |
```

This is a bold statement.

- Commands and macros read for each argument either a single character or a group enclosed by \{ and \}:

Typeset M in boldface.
LATEX macros can have optional arguments, which are enclosed by [...]:
\makebox[80mm] [c] \{this is centered in a box 80 mm wide\}

Changing font style manually

Declaring shape, series, family (each independently):

\mdseries	Medium series	\upshape	Upright shape
\bfseries	Boldface series	\itshape	Italic shape
\rmfamily	Roman family	\slshape	Slanted shape
\sffamily	Sans-serif family	\scshape	SmALL CAPS SHAPE
\ttfamily	Typewriter family	\normalfont	Normal style

Corresponding commands that change the style only for their argument:

\textmd\{text\}	\mdseries	\textup\{text\}	\upshape
\textbf\{text\}	\bfseries	\textit\{text\}	\itshape
\textrm\{text\}	\rmfamily	\textsl\{text\}	\slshape
\textsf\{text\}	\sffamily	\textsc\{text\}	\scshape
\texttt\{text\}	\ttfamily	\textnormal\{text\}	\normalfont

Change type size:

\tiny	\small	\large	\huge
\scriptsize	\normalsize	\Large	\Huge
\footnotesize		\LARGE	

For style consistency: use such low-level font commands only exceptionally (e.g., title pages, special notations). Otherwise leave any font adjustments to higher-level semantic commands such as \emph\{text\} or \section\{heading\}.

Typewriting versus typesetting

The ASCII (ISO 646) 7-bit character set has only 94 graphic characters:

$$
\begin{aligned}
& \text { !"\#\$\% ' (}) *+,-. / 0123456789: ;<=>? ~ \\
& \text { @ABCDEFGHIJKLMNOPQRSTUVWXYZ[
$$ }

\& -abcdefghijklmnopqrstuvwxyz\{1\}
\end{aligned}
\]

They were chosen to cover the character repertoire of US typewriters and teletype printers. The standards committee added a few more symbols ($[\backslash]\{\mid\}_{-}$) in the hope that they will be useful for programming.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ defines a number of shortcuts and macros to access the much larger set of of "typographic" characters used by book printers.

These typographic characters still cannot be found on standard PC keyboard layouts, which were designed for 7-bit ASCII.

	000	001	002	003	004	005	006	007		008	009	00A	00B	00C	00D	O0E	00F
0	$\begin{gathered} \text { NUL } \\ \hdashline 0000 \\ \hline \end{gathered}$		$\underset{\substack{\text { [-W } \\ \text { SP } \\ \text { 0020 }}}{ }$	0	(a) 0040	$\underset{\sim}{\mathrm{P}}$	0060	P_{0070}	0			$\begin{gathered} {\left[\left.\begin{array}{l} \mathrm{NB} \\ \mathrm{SP} \\ \text { cow } \\ \hline \end{array} \right\rvert\,\right.} \end{gathered}$	O 0080	À	D 0000	à OOEO	ð $00 F 0$
1	$\xrightarrow{\substack{\mathrm{SOH} \\ 0001}}$		$\begin{gathered} ! \\ 0021 \end{gathered}$	$\begin{gathered} 1 \\ \operatorname{cosi} 1 \end{gathered}$	A 0041	Q 0051	\mathfrak{a}	$\underset{0}{\mathbf{q}}$	1			${ }_{c o n}$	$\frac{士}{00 B 1}$	${\underset{\sim}{1}}_{00 c 1}$	\tilde{N}	á 00E1	$\tilde{\mathbf{n}}$
2	$:$		11 0022	2		$\underset{c}{\mathbf{c o s} 2}$		$\underset{0072}{ }$	2		$\begin{gathered} 1 \\ \hline \text { PU2 } \\ \hdashline \text { cos2 } \\ \hline \end{gathered}$	ϕ 0012	2 0082	$\underset{\substack{\mathrm{A}}}{\substack{0 \\ \hline}}$		â	Ò $00 F 2$
3	$\begin{gathered} \text { ETX } \\ 0.003 \\ \hline \end{gathered}$	$\left[\begin{array}{c} {\left[\begin{array}{c} \text { DC3 } \\ \hdashline-013 \\ \hline \end{array}\right]} \\ \hline \end{array}\right.$	$\begin{aligned} & \# \\ & 0023 \end{aligned}$	$\begin{gathered} 3 \\ \text { cose } \end{gathered}$	$\underset{0}{C}$	$\underset{\substack{\mathrm{S} \\ \mathbf{S 0 5 3}}}{ }$	C 0063	S	3			$\underset{\sim}{\mathcal{L}}$	3 0083	$\underset{\substack{\boldsymbol{A}}}{\tilde{\boldsymbol{A}}}$	$\mathbf{O}_{\cos }$	$\tilde{\mathrm{a}}$ 00E3	ó 00F3
4	$\frac{\text { EOT }}{\substack{0004}}$	$\begin{array}{\|c} \left\|\begin{array}{c} \text { DC4 } \\ \hdashline-014 \\ \hline \end{array}\right\| \\ \hline \end{array}$	$\$$		D 0044	$\underset{\substack{1 \\ 0054}}{ }$	$\underset{0 \times \infty}{\mathrm{d}}$	$\underset{0}{\boldsymbol{t}}$	4			Q	0084	\ddot{A}		ä ODE4	$\hat{0}$ 00F4
5	$\begin{gathered} \text { ENQ } \\ \hline 0005 \\ \hline \end{gathered}$		$\%$	5	$\underset{0}{E}$	U	e	U	5			$\begin{gathered} \mathbb{Y} \\ \ldots 004 \end{gathered}$	$\underset{\text { poss }}{\mu}$	$\underset{00 c 5}{\underset{i}{i}}$	$\tilde{\sim}$	å OOE5	$\underset{\mathrm{O}}{\tilde{\mathrm{O}}}$
6	ACK 0005	$\begin{array}{\|c\|} \hline \text { SYN } \\ \text { COT1 } \\ \hline \end{array}$	\mathcal{C}_{0}	6	$\underset{\substack{\mathbf{0} 46 \\ \hline}}{ }$	$\begin{gathered} \mathbf{V} \\ 0056 \\ \hline \end{gathered}$	$\underset{0066}{f}$	$\begin{gathered} \mathbf{V} \\ 0076 \\ \hline \end{gathered}$	6	(SSA	$\begin{array}{\|c\|} \hline \text { SPA } \\ \hline \mathbf{c o s e} \\ \hline \end{array}$	$\begin{gathered} \mathbf{1} \\ \operatorname{loN} 6 \end{gathered}$	\qquad	$\underset{0008}{\boldsymbol{E}}$		$\underset{\text { OOEE }}{\boldsymbol{x}}$	$\ddot{\mathrm{O}}$
7			0027	$\begin{gathered} 7 \\ \text { cos7 } \end{gathered}$	G 0047	W	${\underset{0067}{ }}_{\mathbf{G}}^{0}$	W 0077	7	$\begin{array}{\|c} \text { ESA } \\ \hline 0087 \\ \hline \end{array}$	\square	\oint	0087	\bigodot_{5}	\times	$\underset{\substack{\text { Cob }}}{\text { C }}$	$\stackrel{\div}{\div}$
8		$\begin{gathered} \text { CAN } \\ \hdashline-1018 \\ \hline \end{gathered}$	$\underset{0028}{(}$	8	$\underset{\substack{\mathrm{H} \\ \hline}}{ }$	$\underset{\substack{\mathbf{X} \\ 0058 \\ \hline}}{ }$	h 0068	X 0078	8		$\begin{gathered} \text { sos } \\ \hline \end{gathered}$	OOM8	¢088	$\underset{\text { EOC8 }}{\mathbf{E}}$	\varnothing	è	$\begin{gathered} \emptyset \\ 0 \times F 8 \\ \hline \end{gathered}$
9			$)_{0029}$	$\begin{gathered} 9 \\ 0039 \end{gathered}$	$\begin{gathered} \mathbf{I} \\ 0049 \end{gathered}$	$\begin{gathered} \mathbf{Y} \\ 0059 \end{gathered}$	$\underset{0.69}{\mathbf{1}}$	${\underset{0079}{ }}_{\substack{0}}$	9	$\begin{array}{\|c\|} \hline \mathrm{HTJ} \\ \hline 0059 \\ \hline \end{array}$	$\begin{array}{\|c\|} \|c\| \\ \hline \mathbf{x x x} \\ \hline 099 \\ \hline \end{array}$	(C) 0049	1 0089	$00 \mathrm{C9}$	$\bigcup_{\infty}^{\prime}$	é OOE9	ù
A	$\begin{gathered} \text { LF } \\ \hline 000 \mathrm{~A} \end{gathered}$		* 002 A		$\underset{y}{\boldsymbol{c} 4 \mathrm{~A}}$	7	$\dot{j}_{00 B A}$	Z	A	$\begin{gathered} \text { VTS } \\ \hline \text { Coas } \\ \hline \end{gathered}$	$\frac{\mathrm{SCl}}{00 \mathrm{c}}$	$\underline{\mathbf{a}}$ ooas	O mba	\hat{E} ooch	\bigcup^{\prime}	$\hat{\mathrm{e}}$	ú COFA
B	\qquad	$\begin{array}{\|c\|} \hline \text { ESC } \\ \hdashline-\ldots 18 \\ \hline \end{array}$	$\begin{gathered} \text { 十 } \\ 0028 \end{gathered}$	$\underset{\substack{\text { 0. } \\ 0038}}{ }$	$\underset{c}{\mathbf{K}}$	${ }_{0}$	k	$\{$	B	$\begin{array}{\|c} \text { PLD } \\ \hline 100 \mathrm{CB} \\ \hline \end{array}$	$\begin{gathered} \text { csi } \\ 0059 \\ \hline \end{gathered}$	$\stackrel{<}{<0}$	$\begin{gathered} \gg \\ \text { совB } \\ \hline \end{gathered}$	$\ddot{\mathrm{E}}$	$\widehat{\bigcup_{000 B}}$	$\ddot{\mathrm{e}}$ OOEB	û OOFB
C			$\underset{\sim}{9}$	$<$	$\underbrace{}_{004 \mathrm{C}}$	\searrow $006 \mathrm{C}$	$\begin{gathered} 1 \\ 0006 \\ \hline \end{gathered}$	$007 \mathrm{C}$	C			רоac	$\begin{aligned} & 1 / 4 \\ & \cos C \\ & \hline \end{aligned}$		$\dot{U}_{000 c}^{\bullet}$	$\begin{gathered} 1 \\ 00 \in \mathrm{C} \\ \hline \end{gathered}$	$\underset{\substack{\mathrm{u} \\ \mathrm{CoFc}}}{ }$
D	\square		$002 \mathrm{D}$	$\bar{\sim}$	M 004 D	$]_{0050}$	m_{0050}	$\}_{\omega 07 D}$	D		$\begin{gathered} \mathrm{OSc} \\ 0050 \\ \hline \end{gathered}$		$\begin{aligned} & 1 / 2 \\ & \hline \end{aligned}$	$\underset{\alpha c D}{\underline{1}}$	$\mathbf{Y}_{0000}^{\prime}$	$\underset{\substack{1 \\ 0 x \in D}}{ }$	${\underset{c o p D}{\prime}}_{y_{0}}$
E			002E	$>$ 003E		\wedge 006E	$\mathbf{n}^{\mathbf{C O}}$	007E	E			(B) OOAE	$\begin{aligned} & 3 / 4 \\ & C \text { CBE } \end{aligned}$	$\hat{\mathbf{I}}$		$\hat{\mathbf{1}}$ OOEE	$\mathbf{p}_{\substack{ \\\mathbf{F E}}}$
F			$\int_{002 \mathrm{~F}}$	$?$	O 004F	005 F	O 006 F		F	$\begin{gathered} c \\ \hline \text { Ss3 } \\ \hline 008 \mathrm{c} \\ \hline \end{gathered}$		COAE	$\underset{\text { axeF }}{\dot{\boldsymbol{j}}}$		$\underbrace{}_{C 00}$	$\begin{gathered} \ddot{1} \\ \text { OOEF } \end{gathered}$	$\underset{\text { OCFF }}{\ddot{y}}$

The Unicode Standard 9.0, Unicode Inc., https://www.unicode.org/charts/

Dashes

ASCII provides only a single combined hyphen-minus character, but typesetters distinguish carefully between several dash characters:

$$
\begin{array}{rllll}
- & \Rightarrow & \text { hyphen } & \mathrm{U}+002 \mathrm{D} \\
-- & \Rightarrow & - & \text { en dash } & { }^{U}+2013 \\
--- & \Rightarrow & \text { em dash } & \mathrm{U}+2014 \\
\$-\$ & \Rightarrow & \text { minus } & \mathrm{U}+2212
\end{array}
$$

The hyphen (-) is the shortest of these and is used to combine separate words or split words across line-breaks.

The en dash (-) is often used to denote a range of numbers (as in pages 64-128), or - as in this example - as a punctuation dash.

The em dash is used-like this-as a punctuation dash, often without surrounding space, especially in US typography.
The minus (-) is a mathematical operator, whose shape matches the plus (+), unlike the hyphen or dashes. Compare:,,,-+-+-+-+ .

Quotation marks

Typewriters and ASCII offer only undirectional 'single' and "double" quotation marks, while typesetters use 'curly' and "directed" variants.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ input files use the single quotation mark (') and the grave accent ($`$) to encode these, as well the mathematical 'prime' marker and the French accents:

The apostrophe (it's) is identical to the right single quotation mark.
In some older terminal fonts (especially of US origin), the • and ' characters have a compromise shape somewhere between the quotation marks '' and the accents ".

Non-ASCII Symbols

i	!	Å	$\backslash \mathrm{AA}$	9	$\backslash \mathrm{P}$
i	? ${ }^{-}$	\varnothing	\o	\dagger	\backslash dag
œ	\oe	\varnothing	$\backslash 0$	\ddagger	\ddag
¢	$\backslash \mathrm{OE}$	t	$\backslash 1$	(C)	\copyright
æ	\ae	$Ł$	\L	£	\backslash pounds
Æ	$\backslash \mathrm{AE}$	B	\ss		$\backslash \mathrm{ldots}$
a	\aa	§	\backslash S		

With usepackage[utf8]\{inputenc\}suchcharacterscanalsobeenteredasUTF-8Unicode.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Combining characters

\bar{o}	$\backslash=0$
\dot{o}	$\backslash .0$
ŏ	$\backslash u\{o\}$
ǒ	$\backslash v\{o\}$
$o ̋$	$\backslash H\{o\}$

$$
\begin{array}{cc}
\text { oo } & \backslash t\{o o\} \\
\mathrm{o} & \backslash c\{o\} \\
\mathrm{o} & \backslash \mathrm{~d}\{o\} \\
\underline{\mathrm{o}} & \backslash \mathrm{~b}\{\mathrm{o}\}
\end{array}
$$

Space - the final frontier

Traditional English typesetting inserts a larger space at the end of a sentence. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ believes any space after a period terminates a sentence, unless it is preceded by an uppercase letter. Parenthesis are ignored.

This works often: J. F. Kennedy's U.S. budget. Look!
But not always: E.g. NASA. Dr. K. Smith et al. agree.
To correct failures of this heuristic, use
~ $\quad \Rightarrow$ no-break space
$\rangle_{\sqcup} \Rightarrow$ force normal space
\@ \Rightarrow following punctuation ends sentence
as in

$$
\begin{gathered}
\text { E.g. } \backslash \text { NASA\@. Dr. } \sim \text { K. Smith et al. } \backslash \text { agree. } \\
\Downarrow \\
\text { E.g. NASA. Dr. K. Smith et al. agree. }
\end{gathered}
$$

Or disable the distinction of spaces with \backslash frenchspacing.

Structure of a LTEX document

First select a document class and its options, e.g. with

$$
\text { \documentclass[12pt,a4paper] \{article\} }
$$

Standard classes: article, report, book, letter, slides.
Publishers often provide authors with their own class as a *.cls file. Appendix A of The $A T_{E} X$ Companion explains how to write new class files. A popular class for presentation slides: beamer

Environment: group delimited by \begin\{name\} and \end\{name\}, e.g. }
\begin\{document\} }
\end\{document\} }
Common environments: abstract, center, verbatim, itemize, enumerate, quote, tabular, equation, ...

Mark headings with

```
\section{...} \subsubsection{...}
\subsection{...} \paragraph{...}
```

and $\operatorname{LAT} \mathrm{E}_{\mathrm{E}}$ will take care of font sizes, numbering, and table of contents.

ATEX list environments

```
\begin{itemize}
    \item Mammals
    \begin{itemize}
        \item Dogs
        \item Ponys
    \end{itemize}
    \item Insects
    \item[+] \ldots
\end{itemize}
\begin{enumerate}
    \setcounter{enumi}{-1}
    \item Fruits
    \begin{enumerate}
        \item Apples
        \item Cucumbers\label{c}
    \end{enumerate}
    \item Veggies
    (see also \ref{c})
    \item \ldots
\end{enumerate}
```


Verbatim text: quoting source code

Lines of source code: the verbatim environment disables all meta characters, uses a typewriter font and preserves space and line feed:

```
\begin{verbatim}
$initial = substr($record->{'name'}, 0, 1);
\end{verbatim}
```

Do not indent a verbatim block (prints all whitespace). Keep atim\}onitsownline.}Sourcecodewithmathmode:alltt(\usepackage\{alltt\})issimilartoverbatim,butkeepsthemetacharacters$\backslash\}$,soyoucanstillswitchfontsandtypesetmathematicalexpressions:undefined

```
\begin{alltt}
for \(i:=1,\ldots,n\)
    print \(x\sb{i}\sp{2}\)
\end{alltt}
```

Inline strings: use \verb+text+ to quote text inside a paragraph, where + is any character that does not occur in text. This also disables meta characters, preserves whitespace, and switches to a typewriter font.

[^0]
Tweaking and extending АTEX

LATEX behaviour can be changed by overwriting predefined variables and macros. This can be done

- in the preamble (between the \documentclass\{...\} and \begin\{document\} lines) } \Rightarrow for the entire document
- anywhere in the document \Rightarrow the effect will last only until the end of the current group (i.e., the next \} or \end\{...\}) }

Packages

A huge collection of extension packages exists for }EX\).Somemerelydefineadditionalmacrosandenvironments,othersrewritepartsofLTTEX'sinternalmachinery.Forexample,addingtothepreamble\usepackage\{hyperref\}loadsallthemacrosandsettingsdefinedinthehyperref.stypackage.hyperrefaddsnewmarcros,suchas\url\{...\}fortypesettingURLs,butalsoautomaticallyturnseveryreferencetoapage,section,orbibliographicentryintoahyperlink.undefined

Documentation: texdoc packagename e.g. texdoc geometry

Example: changing page layout geometry

Adjust margins manually, via numerous length variables:

```
\setlength{\oddsidemargin}{-0.4mm} % 25 mm left margin
\setlength{\evensidemargin}{\oddsidemargin}
\setlength{\textwidth}{160mm} % 25 mm right margin
\setlength{\topmargin}{-5.4mm} % 20 mm top margin
\setlength{\headheight}{5mm}
\setlength{\headsep}{5mm}
\setlength{\footskip}{10mm}
\setlength{\textheight}{237mm} % 20 mm bottom margin
```


More comfortable:

\usepackage[vmargin=20mm,hmargin=25mm]\{geometry\}Thegeometry.stypackageautomaticallyrecalculatesanydimensionsnotspecified.Makeparagraphsnotindentedatthefirstline,butspacedapartslightly:\setlength\{\parindent\}\{0mm\}\setlength$\{\backslash$parskip\}$\{\backslash$medskipamount$\}$Orjust:\usepackage\{parskip\}undefined

Mathematical typesetting

In $T_{E} X$, mathematical formulas are formatted in a completely different mode from that used for normal text.
Inline formulas such as $a_{n}\left(\$ a_{-} \mathrm{n} \$\right)$ that appear as part of a normal paragraph have to be surrounded with $\$ \ldots \$$ or $\backslash(\ldots \backslash)$, while $\backslash[\ldots \backslash]$ produces a displayed formula, such as

$$
F_{n}=F_{n-1}+F_{n-2} \quad \backslash\left[F_{-} n=F_{-}\{n-1\}+F_{-}\{n-2\} \backslash\right]
$$

In math mode

- space characters are ignored; T_{EX} adds its own space around operators based on heuristics; manually add thinspace with " \backslash,"
- a special math italic font is used, with different inter-character spacing, designed for single-letter variables concatenated in products
- many additional macros for special symbols are defined

Math italic is very different and not suitable for writing words or units! Use \mathrm\{...\} around words, as in \$v_\mathrm\{diff\}\$ $\rightarrow v_{\text {diff }}$.

Macros for common function symbols (constants: upright font!):

$$
\max _{x \in \mathbb{R}}\left\{\log _{2}(\cos x)\right\} \quad \$ \backslash \max _{-}\{\mathrm{x} \backslash \text { in } \backslash \operatorname{mathbb}\{\mathrm{R}\}\} \backslash\left\{\backslash \log _{-} 2(\backslash \cos \mathrm{x}) \backslash\right\} \$
$$

Mathematical symbols

Greek letters

Γ	\Gamma	δ	\delta	π	\pi
Δ	\Delta	ϵ	\epsilon	ϖ	\varpi
Θ	\Theta	ε	\varepsilon	ρ	\rho
Λ	\Lambda	ζ	\zeta	ϱ	\varrho
\equiv	\Xi	η	\eta	σ	\sigma
Π	\Pi	θ	\theta	ς	\varsigma
Σ	\Sigma	ϑ	\vartheta	τ	\tau
γ	\Upsilon	ι	\iota	v	\upsilon
Φ	\Phi	κ	\kappa	ϕ	\phi
ψ	\Psi	λ	\lambda	φ	\varphi
Ω	\Omega	μ	\backslash mu	χ	\chi
α	\alpha	ν	\backslash nu	ψ	\backslash psi
β	\beta	ξ	\backslash xi	ω	\omega
γ	\gamma	o	o		

Mathematical symbols

Binary operators

\pm	\pm	\triangleleft	\backslash lhd	\oplus	\oplus
干	$\backslash m p$	\cap	\cap	\ominus	\backslash \ominus
\}	\setminus	\cup	\cup	\otimes	\otimes
.	\cdot	\uplus	$\backslash u p l u s$	\bigcirc	\oslash
\times	\times	\square	\sqcap	\odot	\odot
*	\ast	\sqcup	\sqcup	\dagger	\dagger
\star	\star	2	\wr	\ddagger	\ddagger
\diamond	\diamond	\bigcirc	$\backslash \mathrm{bigcirc}$	L	\amalg
\bigcirc	\circ	\triangleright	\backslash rhd	\unlhd	\unlhd
\bullet	\backslash bullet	\checkmark	\vee	\unrhd	\unrhd
\div	\div	\wedge	\wedge		
\triangleleft	\triangleleft		\triangle	\backslash bigtria	leup
\triangleright	\triangleright		∇	\backslash bigtrian	ledown

Mathematical symbols

Relations

\leq	$\backslash \mathrm{leq}$	\geq	$\backslash \mathrm{geq}$	三	\equiv	
\prec	\backslash prec	\succ	\succ	\sim	\sim	
\preceq	\backslash preceq	\succeq	\backslash succeq	\simeq	\simeq	
\ll	$\backslash 11$	$>$	$\backslash \mathrm{gg}$	\asymp	\asymp	
\bigcirc	\backslash subset	\bigcirc	\backslash supset	\approx	\approx	
\subseteq	\backslash subseteq	\bigcirc	\backslash supseteq	\cong	\cong	
\sqsubseteq	\backslash \qsubseteq	\sqsupseteq	\backslash \qsupseteq	\bowtie	\bowtie	
ϵ	\in	\ni	$\backslash \mathrm{ni}$	\propto	\propto	
\vdash	\vdash	\dagger	\dashv	$1=$	\backslash models	
\smile	\smile	\|	\backslash mid	$=$	\backslash doteq	
\bigcirc	\frown	\|		\backslash parallel	\perp	\perp
\sqsubset	\sqsubset	\sqsupset	\backslash \qsupset	\bowtie	\Join	
<	\not<	\neq	\backslash not $=$	\ngtr	\not>	
$\not \pm$	\backslash not \backslash leq	$\not \geq$	\backslash not $\backslash \mathrm{geq}$	\#	\not\equiv	
\ldots	\backslash not \backslash prec	\nsucc	\not\succ			

Mathematical symbols

Arrows

\leftarrow	\leftarrow
\Leftarrow	\Leftarrow
\rightarrow	\rightarrow
\Rightarrow	\Rightarrow
\leftrightarrow	\leftrightarrow
\Leftrightarrow	\Leftrightarrow
\mapsto	\mapsto
\hookleftarrow	\hookleftarrow
\leftharpoonup	\leftharpoonup
\leftharpoondown	\leftharpoondown
\rightleftharpoons	\rightleftharpoons
\longleftarrow	\longleftarrow
\Longleftrightarrow	\Longleftarrow
\longrightarrow	\longrightarrow
\Longrightarrow	\Longrightarrow
\longleftrightarrow	\longleftrightarrow

Mathematical symbols

\aleph	\aleph	1	\backslash prime	\forall	\backslash forall	
\hbar	$\backslash \mathrm{hbar}$	\emptyset	\emptyset	\exists	\exists	
\imath	\imath	∇	$\backslash \mathrm{nabla}$	\neg	\backslash neg	
J	\jmath	\checkmark	\surd	b	$\backslash f l a t$	
ℓ	\ell	T	\top	4	\backslash natural	
\wp	\wp	\perp	\backslash bot	\#	\sharp	
\Re	$\backslash \mathrm{Re}$	\|		\I	8	\clubsuit
\Im	$\backslash \mathrm{Im}$	\angle	\angle	\diamond	\diamondsuit	
∂	\partial	\triangle	\triangle	\bigcirc	\backslash heartsuit	
∞	\infty	1	\backslash	¢	\backslash spadesuit	
\square	\backslash Box	\diamond	\backslash Diamond			

Use ··· in a, b, \ldots, z, but \cdots in $a+b+\cdots+z$. Never write \ldots

Large operators and delimiters

\sum	\sum	\bigcirc	\backslash bigcap	\odot	\backslash bigodot
1	\backslash prod	\cup	\backslash bigcup	\otimes	\backslash bigotimes
I	\coprod	\sqcup	\bigsqcup	\oplus	\backslash bigoplus
\int	\int	V	\bigvee	\biguplus	\biguplus
\oint	\oint	\wedge	$\backslash \mathrm{bigwedge}$		

These appear smaller inline than in displayed equations: \prod_{0}^{n-1} vs \prod_{0}^{n-1}

\left(and \right) grow delimiters to the height of what they enclose:

$$
\left(\sum_{i=0}^{\infty} x^{i}\right) \quad \backslash \operatorname{left}(\backslash \text { sum_\{i=0\}^\infty x^i } \backslash \text { right })
$$

Mathematical symbols

Alternative names

\neq	$\backslash \mathrm{ne}$	\{				
	\ni	\owns	\vert			
\neq	\backslash neq	\}				
$}$	\wedge	\backslash land	\backslash Vert			
\leq	$\backslash \mathrm{le}$	\rightarrow	\to	V	\lor	
\geq	$\backslash \mathrm{ge}$	\leftarrow	\gets	\neg	\backslash not	

Stacking things

$$
\begin{aligned}
& a^{b} \quad a^{\wedge}\{b\} \\
& \overline{a-b} \text { \overline\{a-b\} } \\
& \underline{a-b} \text { \underline\{a-b\} } \\
& a_{b} \quad \mathrm{a}_{-}\{\mathrm{b}\} \\
& \overbrace{a-b} \text { \overbrace\{a-b\} } \\
& \underbrace{a-b}_{c} \text { \underbrace\{a-b\}_c } \\
& = \begin{cases}a^{2^{2^{2}}}, & a \geq 0 \\
-\frac{1}{a}, & a<0\end{cases} \\
& =\backslash l e f t \backslash\{\backslash \text { begin }\{\text { array }\}\{c l\} \\
& a^{\wedge}\left\{2^{\wedge}\left\{2^{\wedge} 2\right\}\right\} \text {, \& a \ge } 0 \backslash \\
& -\backslash f r a c\{1\}\{a\}, \& a<0 \\
& \text { \end\{array\}\right. } }
\end{aligned}
$$

Tables

```
\newcommand{\xor}
    {\operatorname{\mathtt{xor}}}
\begin{tabular}{c|c|c}
$x$ & $y$ & $x \xor y$ \\ \hline
    0 & 0 & 0 \\
    0 & 1 & 1 \\
    1& 0 & 1 \\
    1 & 1 & 0
\end{tabular}
```

The tabular environment supports these column types:
1 left-aligned lines
r right-aligned lines
c centred lines
| vertical line (as column separator or border) $\mathrm{p}\{55 \mathrm{~mm}\}$ paragraphs 55 mm wide

Including graphics

DVI only supports characters and filled rectangles, but dvips and pdftex also understand embedded "special" instructions that provide more.

Embedded PostScript (EPS) vector graphics:

Normal PostScript files (*.ps) produce a sequence of pages. An EPS file describes only an image and is meant to be included into a PostScript page. EPS files lack instructions to output paper, but define a rectangular "bounding box", using special xtensionofLATEXbyadding\usepackage\{graphicx\}tothepreamble.Thenwritewhereveryouwanttoincludethegraphicsfileintoyourtext.Inpdflatex,thegraphicxpackageallowsyoutoincludegraphicsfromPDF(vectorgraphics),JPEG(photos)andPNG(bitmap)files:undefined

Postscript/PDF graphics facilities

Applying coordinate transforms:

The graphicx package provides access to the geometric transform capabilities of the PostScript and PDF languages:
\scalebox\{0.8\}\{\}

\resizebox\{190mm\}\{60mm\}\{becomes 19 cm \$\times\$ 6 cm large\}
\resizebox\{190mm\}\{!\}\{this becomes 19 cm wide\}
\rotatebox\{180\}\{this is upside down!\}

Changing colours:

The color package also uses Postscript/PDF special commands:
This text is {red\}\{printedinred\}if...Thistextisprintedinredifyouinclude\usepackage\{color\}.Default:\definecolor\{red\}\{rgb\}\{1,0,0\}undefined

Figures and references

Larger diagrams interfere with page breaking. They are best placed into a figure environment, such that $\mathbb{L T}^{2} \mathrm{EX}$ can move them around. Example:

```
\begin{figure}
    \includegraphics[width=0.6\linewidth]{photo.jpg}
    \caption{This photograph shows the experimental setup.}
    \label{fig:expsetup}
\end{figure}
```

The automatically assigned figure number can be quoted as in:

```
See also Figure~\ref{fig:expsetup}
(page ~pageref{fig:expsetup}).
```

The \label\{...\} command can also be used after \section\{...\}, \subsection\{...\}, etc. and inside \begin\{equation\}... } \end\{equation\} to assign symbolic names to section and equation } numbers, which can then be resolved via \ref \{...\} or \pageref\{...\}.

No need to manually renumber figures, sections, or equations!

Build tools for 4TEX

To make sure \label references and tables of contents use the correct numbers, it may be necessary to call latex twice. It will output "Rerun to get cross-references right" in this case.

The following implicit Makefile rule takes care of this:
.DELETE_ON_ERROR:
$\%$.pdf \%.aux \%.idx: \%.tex
pdflatex \$<
while grep 'Rerun to get ' $\$ * . \log$; do pdflatex $\$<$; done

An alternative is the "latexmk" tool, which automatically determines dependencies (e.g. from T_{E} \mathrm{X}\) documents where file modification timestamps indicate that this is necessary.

Graphics editor xfig

- Its *.fig files have a simple plain-text format that can be edited manually, script generated, and leads to useful diffs.
- Can export *.eps or *.pdf files
- Can also produce figures in which $\operatorname{AT} T_{E X}$ is used to fill in all the text. This provides math mode, macros, symbols, references, fonts that match the main text, etc.

Ask xfig to export a *.pstex + *.pstex_t file pair. The *.pstex file lacks the text parts of the figure. The *.pstex_t file contains $\operatorname{LA}^{2} \mathrm{E}_{\mathrm{X}}$ commands that first load the *.pstex image, and then add all the text in the figure. Select the "special text" mode in xfig to enable ${ }^{A} T_{E X}$ metacharacters. Use \include\{*.pstex_t\} to add such a figure in your document. (PDF equivalent: *.pdftex $+*$.pdftex_t)

- Command-line export tool (e.g., for Makefile): fig2dev

```
%.eps: %.fig
    fig2dev -L eps $< $@
%.pstex %.pstex_t: %.fig
    fig2dev -L pstex_t -p $*.pstex $< $*.pstex_t
    fig2dev -L pstex $< $*.pstex
%.pdftex %.pdftex_t: %.fig
    fig2dev -L pdftex_t -p $*.pdftex $< $*.pdftex_t
    fig2dev -L pdftex $< $*.pdftex
```

Other graphics tools: TikZ, pnmtops, Inkscape, MATLAB, R, gnuplot, Python+matplotlib

Bibliographic references

Academic writing: detailed references to prior work

- to support arguments
- to document familiarity with the field
- to help newcomers to the field
- to give due academic credit
- to join the bibliometric graph of the field (recommendation systems)
- to trigger notifications to cited authors (e.g. Google Scholar alerts)

A bibliographic reference needs to contain all information needed to help readers (and increasingly search engines!) to unambiguously identify and locate the text referred to. Minimum: First two authors, full title, date, indication of type of publication (usually implicitly via other details).

Inter-library loan required many details: names and location of publishers or the volume, issue and page numbers in printed journals. Today, most readers retrieve scientific publications (with the exception of books) digitally, so online identifiers such as URIs or DOIs are more important instead.

Many URLs (e.g., to author's home pages, "grey literature") do not last long, but can still later be retrieved via archival services (e.g., archive.org). Therefore: accompany URLs with the date on which you accessed them. Try to HTTP redirect your own URLs when moving web space.

Bibliographic references - styles

Four widely used styles:

- short-title - most common in books on humanities, e.g. "Hart, Hart's Rules, p. 52"
- author-date - most common in science and social science, e.g. "Goossens (1997)" or "(Goossens, 1997b)".
- author-number - follows the name of the author(s) with a per-author number (rare with LaTeX), e.g. "Goossens (2)"
- number-only - all publications sequentially numbered in bibliography, made popular by LTEX, now very widely used in 2 computer science, e.g. "[67]".
Collect full references at the end of the document (bibliography), each chapter, or page of first mention (footnotes).

With number-only bibliography: for important work, include author(s) name and year in first mention in the text. Avoid abusing numerical references like a noun (bad: "as shown by [17]", nice: "as Knuth showed in 1988 [17]").
When referencing books, also include a chapter or page number.

Bibliographic references - manual approach

ATEX can also manage numerical references to a bibliography.
Append near the end of your document (usually after conclusions and before appendices) your list of bibliographic items, assigning each an alphanumeric identifier:

```
\begin{thebibliography}{9}
    \bibitem{Lamport94} Leslie Lamport: \LaTeX\ -- A document preparation
system : User's guide and reference manual. Addison-Wesley, }1994
\bibitem{Companion} Frank Mittelbach, Michael Goossens: The \LaTeX\
Companion. Second edition, Addison Wesley, 2004.
\bibitem{Dup98} Lyn Dupre: BUGS in Writing: A guide to debugging your
prose. 2nd edition, Addison Wesley, 1998.
\end{thebibliography}
```

Then refer to these in the text using \cite:
Finer details on the use of en ${ }^{\sim}$ dashes are explained by Lamport~\cite\{Lamport94\} or Dupre~\cite[page~134]\{Dup98\}.
\cite can take an optional note in [], e.g. for a page or section number.
\bibitem can take an optional label in [].
\begin\{thebibliography\}\{99\} needs a "widest label" as an argument to plan indentation. }

Automatic compilation of references with BibTEX

Consider using BibTeX if you

- expect to write several publications, sharing many references, each formatted to different house styles;
- want number-only references sorted in order of first reference;
- want automatic author-year references (use package natbib)
- want to use a reference database

Provide .bib bibliographic database files and a . bst bibliographic style file (often provided by publisher). Load these as in
\bibliography\{articles,group-refs\}
\bibliographystyle\{unsrt\}
Details:
Lamport, Section 4.3 and Appendix B.

${ }^{A} T_{E} X$ Companion, Chapter 12.

Example *.bib file entry

```
@TechReport{UCAM-CL-TR-123,
    author = {Herbert, John},
    title = {Case Study of the {Cambridge Fast Ring ECL}
                                Chip using {HOL}},
    year = 1988,
    month = feb,
    institution = {University of Cambridge, Computer Laboratory},
    number = {UCAM-CL-TR-123}
}
```

Important: Many U.S. publishers' house styles use "title case" for publication titles, where most words (other than short articles and prepositions) start with a capital letter.

This form of emphasis is not appropriate for bibliographic references, therefore many $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}$ styles convert titles to lowercase.
Protect names (proper nouns) and acronyms in titles from automatic lowercase-ification by surrounding them with \{...\}.

Title case:
Sentence case:
Bad-BibTEX case:

Case Study of the Cambridge Fast Ring ECL Chip using HOL Case study of the Cambridge Fast Ring ECL chip using HOL
Case study of the cambridge fast ring ecl chip using hol

Exercise 1: Copy file example.tex from slide 6, run "pdflatex example" twice (why?), and then "okular example.pdf \&" (Linux) to see the output.

Exercise 2: Read pages 1-64 of the ${ }^{A T} T_{E X}$ book, then write your $C V$ with $A T_{E} X$, convert the result into PDF, and put it onto your homepage.

For information on how to set up homepages locally:
https://www.srcf.net/

Exercise 3: In a job interview for a position as a subeditor of a technical journal, your skills in spotting typographic mistakes made by 1 TTEX beginners are tested with this example text:

The -7 dB loss $(\pm 2 d B)$ shown on pp. 7-9 can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and $f=48 \mathrm{Khz}$ is the "sampling frequency".

Can you spot all 14 mistakes? Write down both the probable original incorrect ATEX source text, as well as a corrected version.

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. 7-9 can be attributed

Correct:

Original ${ }^{A T} T_{E} \mathrm{X}$ source:

Corrected source:

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. $7-9$ can be attributed

Correct:

Original ${ }^{\Delta T} T_{E X}$ source:

The -7 dB loss $(\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$)$ shown on $\mathrm{pp} .7-9$ can be attributed

Corrected source:

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. 7-9 can be attributed

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed

Original ${ }^{A T} T_{E} \mathrm{X}$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on pp. 7-9 can be attributed

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on $\mathrm{pp} .{ }^{\sim} 7--9$ can be attributed

Original:

The -7 dB loss $(\pm 2 d B)$ shown on pp. 7-9 can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed

Original ${ }^{A T} T_{E} \mathrm{X}$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on pp. 7-9 can be attributed

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on $\mathrm{pp} .{ }^{\sim} 7--9$ can be attributed

Original:

The -7 dB loss $(\pm 2 d B)$ shown on pp. 7-9 can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed

Original $\operatorname{LT} T_{E} X$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on pp . 7-9 can be attributed to the $f(t) \$=\sin (2 \backslash p i f t) \$$ signal, where t is the the time and

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on $\mathrm{pp} .{ }^{\sim} 7--9$ can be attributed

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. $7-9$ can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed to the $f(t)=\sin (2 \pi f t)$ signal, where t is the time and

Original ${ }^{A T} T_{E} X$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on $\mathrm{pp} .7-9$ can be attributed to the $f(t) \$=\sin (2 \backslash p i f t) \$$ signal, where t is the the time and

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on pp. ${ }^{\sim} 7--9$ can be attributed to the $\$ f(t)=\backslash \sin (2 \backslash p i f t) \$$ signal, where $\$ t \$$ is the time and

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. $7-9$ can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and $f=48 \mathrm{Khz}$ is the "sampling frequency".

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed to the $f(t)=\sin (2 \pi f t)$ signal, where t is the time and

Original ${ }^{A T} T_{E} X$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on pp . 7-9 can be attributed to the $f(t) \$=\sin (2 \backslash p i f t) \$$ signal , where t is the the time and

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on $\mathrm{pp} .{ }^{\sim} 7--9$ can be attributed to the $\$ f(t)=\backslash \sin (2 \backslash p i f t) \$$ signal, where $\$ t \$$ is the time and

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. $7-9$ can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and $f=48 \mathrm{Khz}$ is the "sampling frequency".

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed to the $f(t)=\sin (2 \pi f t)$ signal, where t is the time and

Original ${ }^{A T} T_{E} X$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on pp . 7-9 can be attributed to the $f(t) \$=\sin (2 \backslash p i f t) \$$ signal , where t is the the time and $\$ \mathrm{f}=\$ 48 \mathrm{Khz}$ is the ''sampling frequency''.

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on $\mathrm{pp} .{ }^{\sim} 7--9$ can be attributed to the $\$ f(t)=\backslash \sin (2 \backslash p i f t) \$$ signal, where $\$ t \$$ is the time and

Original:
The -7 dB loss $(\pm 2 d B)$ shown on pp. 7-9 can be attributed to the $\mathrm{f}(\mathrm{t})=\sin (2 \pi f t)$ signal, where t is the the time and $f=48 \mathrm{Khz}$ is the "sampling frequency".

Correct:
The -7 dB loss ($\pm 2 \mathrm{~dB}$) shown on pp. 7-9 can be attributed to the $f(t)=\sin (2 \pi f t)$ signal, where t is the time and $f=48 \mathrm{kHz}$ is the "sampling frequency".

Original ${ }^{A T} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ source:

The -7 dB loss ($\$ \backslash \mathrm{pm} 2 \mathrm{~dB} \$$) shown on pp . 7-9 can be attributed to the $f(t) \$=\sin (2 \backslash p i f t) \$$ signal , where t is the the time and $\$ \mathrm{f}=\$ 48 \mathrm{Khz}$ is the ''sampling frequency''.

Corrected source:

The $\$-7 \$^{\sim} \mathrm{dB}$ loss ($\$ \backslash \mathrm{pm} 2 \$^{\sim} \mathrm{dB}$) shown on $\mathrm{pp} .{ }^{\sim} 7--9$ can be attributed to the $\$ f(t)=\backslash \sin (2 \backslash p i f t) \$$ signal, where $\$ \mathrm{t} \$$ is the time and $\$ \mathrm{f}=48 \$^{\sim} \mathrm{kHz}$ is the ${ }^{-\quad \text { sampling frequency' '. }}$

[^0]: You can't use rbincommandarguments,use\texttt\{text\}thereinstead.The\verb*+text+variantprintsspacesas⿺.Fixsinglequotationmark:\usepackage\{upquote\}.undefined

