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1 Introduction

The following notes show how to evaluate the standard integral required in deriving the approxi-
mation to the Bayes-optimal neural network.

2 Gaussian integrals: the simple case

The simplest version of the problem is to evaluate the integral
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This is a fairly standard integration problem and several solutions are available in text books. For
example, start by squaring it, so
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Then convert to polar co-ordinates, so x = r cos @, y = r sin § and the Jacobian is
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We now have
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3 Gaussian integrals: the general case

The problem now is to evaluate the more general integral
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where A is an n X n symmetric matrix with real-valued elements, b € R" is a real-valued vector
and c € R. First of all, we can dispose of the constant part of the integrand as

I = /n exp <—; (XTAX + bTX)> exp (—g) dx = exp (—%) I

where

P = / exp <—% (XTAX + bTX)> dx.

We’re now going to make a change of variables, based on the fact that A has n eigenvalues v; and
n eigenvectors e; such that
Ae; = vie; (1)

fori =1,...,n. The eigenvalues can be found such that they are orthonormal
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0 otherwise.
Multiplying (1) on both sides by A~! gives
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fori =1,...,n, where I, is the n X n identity matrix. Consequently
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fori =1,...,n and A~! has the same eigenvectors as A, but eigenvalues 1/v;. As the eigenvectors

are orthonormal, any vector x can be written as
n
X = E )\iei
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for suitable values \;, and we can represent b as
n
b=> Be;
i=1

in the same way. Next, we make a change of variables from x to

M=[Xx X o M.



To make a change of variables we need to compute the Jacobian and rewrite the integral. The Jacobian
for this transformation is
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As we saw above that
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we have .
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where egj ) is the jth element of e;, and so
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That is, the determinant of the matrix having the eigenvectors as its columns. Define

E= e e -+ e,

such that J = |E|. As the eigenvectors are orthonormal we have
J? = |[E|[E| = [E[[E"| = [EE"| = |L,| = 1

andso J = 1.
Let’s now look at the integrand
x"Ax +b'x.

Looking at the first term
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The second term simplifies in a similar way
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and so the integrand becomes
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Thus the result of changing the variable is that

4 )
I'= / exp (-% (xTAx+bTx)> dx

— /nexp (—% (i (vi)\?+ﬁ/\i)>> d\

1

= H/OO exp (—1 (vi)\? + 5¢)\i)) d\;.
\ i=1Y 2

What have we gained by changing the variable?

« We have changed a multiple integral into a product of single integrals.

« Each of these single integrals is almost of a form that can be solved using the simple case
above.

How do we proceed? Writing
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and changing the variable in the simple integral from J; to
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and
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This can be simplified further in two steps. First, if A has eigenvalues v; then
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Then, we have
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and collecting everything together we have
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