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M;; is maximal if 7 and j individually appear completely random (f; = f; =
0.25), but i and j are perfectly correlated, for instance in a Watson—Crick base
pair.

Intuitively, M;; tells us how much information we get about the identity of
the residue in one position if we are told the identity of the residue in the other
position. In the case of a base pair with no sequence constraints, we get 2 bits
of information: for instance, if we are told that i is a G, our uncertainty about j
collapses from four possibilities to just one (C) so we gain 2 bits of information. If
i and j are uncorrelated, the mutual information is zero. If either i or j are highly
conserved positions, we also get little or no mutual information: if a position does
not vary, we do not learn anything more about it by knowing the identity of its
partner.

Figure 10.6 shows a contour plot of M;; values calculated from a multiple
alignment of 1415 tRNA sequences. The four base-paired stems of the clover-
leaf structure are readily apparent. The D and Ty CG stems, which are rela-
tively highly conserved in primary sequence, are somewhat less apparent than
the anticodon and acceptor stems which are extremely variable in primary
sequence.

Exercise

10.1  The mutual information calculation in (10.1) requires counting frequen-
cies of all sixteen different base pairs. This has the advantage that it
makes no assumptions about Watson—Crick base pairing, so mutual in-
formation can be detected between covarying non-canonical pairs like
A-A and G-G pairs. On the other hand, the calculation requires a large
number of aligned sequences to obtain reasonable frequencies for sixteen
possibilities. Write down an alternative information theoretic measure of
base-pairing correlation that considers only two classes of i, j identities
instead of all sixteen: Watson—Crick and G-U pairs grouped in one class,
and all other pairs grouped in the other. Compare the properties of this
calculation to the M;; calculation both for small numbers of sequences
and in the limit of infinite data.

10.2 RNA secondary structure prediction

Suppose we wish to predict the secondary structure of a single RNA. Many
plausible secondary structures can be drawn for a sequence. The number in-
creases exponentially with sequence length. An RNA only 200 bases long has
over 10°° possible base-paired structures. We must distinguish the biologically
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Figure 10.6 A mutual information plot of a tRNA alignment (top) shows
four strong diagonals of covarying positions, corresponding to the four
stems of the tRNA cloverleaf structure (bottom; the secondary structure
of yeast phenylalanine tRNA is shown). Dashed lines indicate some of the
additional tertiary contacts observed in the yeast tRNA-Phe crystal struc-
ture. Some of these tertiary contacts produce correlated pairs which can be
seen weakly in the mutual information plot.
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Figure 10.7 The Nussinov algorithm looks at four ways in which the best
RNA structure for a subsequence i, j can be made by adding i and/or j
onto already calculated optimal structures for smaller subsequences. Pseu-
doknots are not considered.

correct structure from all the incorrect structures. We need both a function that
assigns the correct structure the highest score, and an algorithm for evaluating the
scores of all possible structures.

Base pair maximisation and the Nussinov folding algorithm

One approach might be to find the structure with the most base pairs. Nussinov
introduced an efficient dynamic programming algorithm for this problem [Nussi-
nov et al. 1978]. Although this criterion is too simplistic to give accurate structure
predictions, the example is instructive because the mechanics of the Nussinov al-
gorithm are the same as those of the more sophisticated energy minimisation
folding algorithms and of probabilistic SCFG-based algorithms.

The Nussinov calculation is recursive. It calculates the best structure for small
subsequences, and works its way outwards to larger and larger subsequences. The
key idea of the recursive calculation is that there are only four possible ways of
getting the best structure for 7, j from the best structures of the smaller subse-
quences (Figure 10.7):

(1) add unpaired position i onto best structure for subsequence i + 1, j;
(2) add unpaired position j onto best structure for subsequence i, j — 1;
(3) add i, j pair onto best structure found for subsequence i + 1, j — 1;
(4) combine two optimal substructures i,k and Kk + 1, j.

More formally, the Nussinov RNA folding algorithm is as follows. We are
given a sequence x of length L with symbols x,...,xy. Let §(7, j) = 1 if x; and
X; are a complementary base pair; else §(i, j) = 0. We will recursively calculate
scores ¥ (i, j) which are the maximal number of base pairs that can be formed for
subsequence x;,...,X;.
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Algorithm: Nussinov RNA folding, fill stage

Initialisation:
y(i,i—1) =0 fori=2toL;
y(@,i) =0 fori=1to L.

Recursion: starting with all subsequences of length 2, to length L:
y(i+1,)),
- y@,j—=1D,
i,j) = max . . .
reD P+ 10— D+ ).
max; << [y (k) +y (k+ 1, )] <

Figure 10.8 shows an example of a Nussinov matrix fill in operation.
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Figure 10.8 The matrix fill stage of the Nussinov folding algorithm is
shown for an example sequence GGGAAAUCC. (a) The initialised half-
diagonal matrix. (b) The matrix after scores for subsequences of length two
have been calculated. (c) An example of two different optimal substructures
for the same subsequence. For the subsequence AAAU, either the A at i and
the U at j can be paired (diagonal path) or i can be added to a substructure
that already pairs the A at i + 1 to the U at j (vertical path). (d) The final
matrix. The value in the upper right indicates that the maximally paired
structure has three base pairs.
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The value of y(1, L) is the number of base pairs in the maximally base-paired
structure. There are often a number of alternative structures with the same number
of base pairs. To find one of these maximally base-paired structures, we trace back
through the values we calculated in the dynamic programming matrix, beginning
from y(1,L). In pseudocode, the traceback algorithm is:

Algorithm: Nussinov RNA folding, traceback stage

Initialisation: Push (1, L) onto stack.
Recursion: Repeat until stack is empty:
- pop (7, ).
-if i >= j continue;
elseif y(G+1,j)=y(@,j)push (i +1,));
elseif y(i,j—1)=y(@,j)push (i,j —1);
elseif y(Gi+1,j —D+68 ;=v3,)):
- record i, j base pair.
-pushG+1,j—1).
elsefork=i+1toj—1:ify(i,k)+yk+1,j))=y0,J)):
- push (k+1, ).

- push (7, k).
- break. <
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Figure 10.9 The traceback stage of the Nussinov folding algorithm is
shown for the filled matrix from Figure 10.8. An optimal traceback path
is indicated with circles. The optimal structure corresponding to this path
is shown at right.

The traceback is linear in time and memory. The fill step is the limiting step
as it is O(L?) in memory and O(L?) in time. An example traceback is shown
in Figure 10.9. The traceback in Figure 10.9 is unbranched, so the need for the
pushdown stack in the traceback algorithm is not apparent. The pushdown stack
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becomes important when bifurcated structures are traced back. The stack remem-
bers one side of the the bifurcation while the other side is traced back, reminiscent
of the push-down automata in Chapter 9.

Exercises

10.2

10.3

10.4

The traceback algorithm given above does not actually produce the struc-
ture shown in Figure 10.9. What alternative optimal structure containing
three base pairs does it recover instead? Are there other optimal struc-
tures? Modify the traceback algorithm so it finds a different optimal
structure.

As we have given it, the Nussinov algorithm can produce nonsensical
‘base pairs’ between adjacent complementary residues, with a physically
improbable loop length of zero (for example, you should have seen one
such structure in the preceding exercise) Modify the Nussinov folding
algorithm so that hairpin loops must have a minimum length of 4. Give
the new recursion equations for the fill and traceback.

Show that the Nussinov folding algorithm can be trivially extended to
find a maximally scoring structure where a base pair between residues
a and b gets a score s(a,b). (For instance, we might set s(G, C) = 3 and
s(A, U) =2 to better reflect the increased thermodynamic stability of GC
pairs.)

An SCFG version of the Nussinov algorithm

The Nussinov algorithm is fundamentally similar to the SCFG algorithms in
Chapter 9. As an example of how SCFGs apply to RNA secondary structure anal-
ysis, consider the following production rules of a simple RNA folding SCFG:

S — aS|cS|gS|uS (i unpaired),

S — Sa|Sc|Sg|Su (J unpaired),

S — aSu|cSg|gScluSa (i,] pair), (10.2)
S — SS (bifurcation),

S — € (termination).

The SCFG has a single nonterminal S and 14 production rules with associ-

ated probability parameters. For now, assume that the probability parameters are

known. The maximum probability parse of a sequence with this SCFG is an as-

signment of sequence positions to productions. Because the productions corre-

spond to secondary structure elements (base pairs and single-stranded bases), the

maximum probability parse is equivalent to the maximum probability secondary
structure. If base pair productions have relatively high probability, the SCFG will
favour parses which tend to maximise the number of base pairs in the structure.
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Although the production rules for the SCFG are not in Chomsky normal form,
a CYK parsing algorithm is readily written that finds the maximum probabil-
ity secondary structure. Alternatively, we could convert the SCFG to Chomsky
normal form and apply the algorithms in Chapter 9. Although the Chomsky nor-
mal form approach is attractive in its generality, specific algorithms for specific
SCFGs are typically more efficient. The adapted CYK algorithm is as follows.
Let the probability parameters of the SCFG productions be denoted by p(aS),
p(aSu), etc.

Algorithm: CYK for Nussinov-style RNA SCFG

Initialisation:
y(,i—1) = —o0 fori =2to L;
.. log p(x;S) )
(i,i) = max{ fori=1to L.
4 log p(Sx;)

Recursion: fori=L—1downtol, j=i+1toL:

y(+1,j)+log p(x;S);

y(i,j—1)+log p(Sx;);

y(i+1,j—1)+log p(x;Sx;);

max; x<; y(i,k)+yk+1,j)+log p(SS). <

y(i,j) = max

When this is done, y(1,L) is the log likelihood log P(x,7|0) of the optimal
structure 7 given the SCFG model 8. The traceback to find the structure corre-
sponding to that best score is either performed analogously to the traceback in the
Nussinov algorithm, or by keeping additional traceback pointers in the fill stage
analogous to the CYK algorithm description in Chapter 9.

The principal difference between this and the original Nussinov algorithm is
that the SCFG description is a probabilistic model. We gain access to several
well-principled options for optimising the parameters of the model. We can set
the SCFG’s parameters by subjective estimation of the relevant probabilities, or
by estimating parameters by counting state transitions in known RNA structures
and converting the counts to probabilities. We can even learn probabilities from
example RNAs of unknown structure using expectation maximisation (EM) and
inside—outside training to iteratively infer both the structures and the parameters
(i.e. the structures are the hidden data in the EM algorithm). Once we have written
down the SCFG as a full probabilistic model of the RNA folding problem, we
can ‘turn the crank’, applying all the probabilistic machinery we have learned in
previous chapters almost by rote.

Like the Nussinov algorithm, this small SCFG is a good starting example but
it is too simple to be an accurate RNA folder. It does not consider important
structural features like preferences for certain loop lengths nor preferences for
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certain nearest neighbours in the structure caused by stacking interactions be-
tween neighbouring base pairs in a stem.

Exercises

10.5  Write down a traceback algorithm for determining the best RNA sec-
ondary structure after the above algorithm has completed.

10.6  Devise an SCFG which uses different nonterminals to model bulge loops,
hairpin loops, multifurcation loops and single strands.

Energy minimisation and the Zuker folding algorithm

RNA folding is dictated by biophysics rather than by counting and maximising
the number of base pairs. The most sophisticated secondary structure prediction
method for single RNAs is the Zuker algorithm, an energy minimisation algo-
rithm which assumes that the correct structure is the one with the lowest equilib-
rium free energy (AG) [Zuker & Stiegler 1981; Zuker 1989a].

The AG of an RNA secondary structure is approximated as the sum of individ-
ual contributions from loops, base pairs and other secondary structure elements.
An important difference from the simpler Nussinov calculation is that the en-
ergies of stems are calculated by adding stacking contributions for the interface
between neighbouring base pairs instead of individual contributions for each pair.
In other words, the energy of a stem of n base pairs is the sum of n — 1 base stack-
ing terms instead of n base pair terms. This produces a better fit to experimentally
observed AG values for RNA structures but it complicates the dynamic program-
ming algorithm. Tables of AG parameters for RNA structure prediction have
been fitted to the results of experimental thermodynamic studies of small model
RNAs [Freier et al. 1986; Turner et al. 1987]. They include parameters for stack-
ing, hairpin loop lengths, bulge loop lengths, interior loop lengths, multi-branch
loop lengths, single dangling nucleotides and terminal mismatches on stems.

An example of the prediction of the AG of an RNA structure is given in Fig-
ure 10.10. Single base bulges are assumed not to disrupt stacking in the stem, so
a stacking term is included in the example in the figure. Longer bulges, which are
assumed to disrupt stacking, get no added stacking term. The hairpin loop energy
is the sum of two terms: a loop destabilisation energy dependent only on the loop
length, and a terminal mismatch energy dependent on the closing base pair and
the first and last bases of the stem. The energies used in Figure 10.10 are from
the older ‘Freier rules’ [Freier et al. 1986] at 37°C.!

The minimum energy structure can be calculated recursively by a dynamic
programming algorithm (assuming no pseudoknots), very similar to how the

' Currently the most up-to-date parameters are available on the Web from
http://www.bioinfo.rpi.edu/~zukerm/rna/energy/.
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Figure 10.10 An example AG calculation for an RNA stem loop (the wild
type R17 coat protein binding site).

maximum base-paired structure was calculated above. The principal difference
is that because of the stacking parameters, two matrices (called V and W) are
kept instead of one. W (i, j) is the energy of the best structure on i, j. V (i, j) is
the energy of the best structure on i, j given that i, j are paired. The algorithm
can then keep track of stacking interactions by adding new base pairs only onto
the V matrix. Conceptually this two-state calculation is very similar to the use of
extra insert states in pairwise dynamic programming alignment with affine gap
costs (Chapter 2) to keep track of insert extensions. For a complete description of
the Zuker algorithm, see Zuker & Stiegler [1981].

We could write down a SCFG that followed similar rules. The simplest stack-
ing production rule would be, for instance, cV g — cgV cg for producing a GC
pair in a stem after (stacked on) a CG, using V as a base pair generating nonter-
minal (as in the Zuker V matrix). With the CG terminals on the left as context for
the production of the GC, this is technically a context-sensitive production, so we
can’t use such rules as the basis for a SCFG. However, we can convert to context-
free productions by using four different nonterminals V%,V 8 V& V44 and us-
ing right-hand sides of the form — gV &¢c to produce a G-C pair, for instance
— the nonterminal identity V #¢ ‘remembers’ that a G- C pair was just generated.
(In other words, all we are doing is making the model a higher order Markov
process.) The probability of a production V¢ — gVé¢c, for instance, would be
the probability of a C-G pair stacked on a G-C pair.? Other details of the Zuker
algorithm and its two matrices V and W could be incorporated similarly into an
analogous full probabilistic model with two nonterminals V and W (expanded
for nearest neighbour context). CYK and inside—outside algorithms for an SCFG

2 Since only one nonterminal is possible for a given x;, x ; pair and the other three have zero
probability, the four nonterminals behave as one for the purposes of memory and time com-
plexity in parsing algorithms.
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version of the Zuker algorithm have the same algorithmic complexity as the Zuker
algorithm itself.

Suboptimal RNA folding

The original Zuker algorithm finds only the optimal structure. The biologically
correct structure is often not the calculated optimal structure, but rather a struc-
ture within a few percent (i.e. within the error bars) of the calculated minimum
energy. It was a significant advance when an efficient suboptimal folding algo-
rithm was introduced. The Zuker suboptimal folding algorithm [Zuker 1989b] is
similar to running the CYK algorithm in both the inside and outside directions.
One matrix (exactly the CYK algorithm) finds the AG of the best structure for
all subsequences i, j with 7, j paired, and a second matrix (effectively an outside
CYK algorithm) finds the best structure for the sequence with i, j paired and the
subsequence i + 1, j — 1 excluded.? The sum of the two numbers for a given i, j is
the AG of the optimal structure that uses the pair i, j. The suboptimal folding al-
gorithm then samples a base pair i, j ‘randomly’ according to its AG, then traces
back in both the inside and outside matrices to find the optimal structure that uses
that base pair. (It is therefore more correct to say that the algorithm samples one
base pair suboptimally. The rest of the structure is the optimal structure given
that base pair.)

SCFG versions of RNA folding algorithms can also sample structures accord-
ing to their likelihood by a probabilistic traceback of the inside matrix, analogous
to the way in which suboptimal profile HMM alignments were sampled from a
forward matrix in Chapter 6.

Base pair confidence estimates

Partition function calculations for calculating the probabilities of particular base
pairs or structures were introduced for energy minimisation folding algorithms by
McCaskill [1990]. The McCaskill algorithm converts AGs to probabilities using
the Gibbs—Boltzmann equation and sums probabilities of all structures instead of
choosing the single minimum energy structure. The sum of the probabilities of
all structures containing a base pair i, j divided by the sum over all structures is
interpreted as a confidence estimate in the pair 7, j.
From the SCFG viewpoint, the McCaskill algorithm is fundamentally an inside—

outside algorithm, compared to the Zuker algorithm which is fundamentally a

3 Zuker actually doubles the sequence, treats it as circular, and calculates the energy of the
best structure on j,...,L/1,...,i. For circular RNAs, this gives the same result as the out-
side algorithm. For linear RNAs, the Zuker algorithm must handle the non-existent junction
between the 3’ and 5" end as a special case. The outside algorithm might be less complicated
to implement.
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CYK algorithm. The estimation of base pair confidences for an SCFG is con-
ceptually similar to the estimation of pairwise alignment confidences that we de-
scribed for pair HMMs in Chapter 4.

Exercises

10.7  Write down the inside algorithm, outside algorithm, and inside—outside
re-estimation equations for the Nussinov-style RNA folding SCFG in
equation (10.2).

10.8 By analogy to profile HMM suboptimal alignment sampling, give an al-
gorithm for sampling structures probabilistically from your inside ma-
trix.

10.9  Show how to use your inside and outside variables to calculate the proba-
bility that positions i, j are base-paired, summed over all structures. The
functional form of the answer will be analogous to your inside—outside
re-estimation equations.

10.3 Covariance models: SCFG-based RNA profiles

Suppose we have a family of related RNAs — transfer RNAs or group I catalytic
introns, perhaps — which share a common consensus secondary structure as well
as some primary sequence motifs, and we want to search a sequence database
for homologous RNAs. In Chapter 5, we used HMM-based profiles to model the
consensus of protein and DNA sequence families, but we showed in Chapter 9
that HMMs are primary structure models that cannot deal effectively with RNA
secondary structure constraints. In this section, we describe SCFG-based RNA
structure profiles called ‘covariance models’ (CMs) which are the SCFG ana-
logue of profile HMMs. Whereas profile HMMs specify a repetitive linear HMM
architecture well suited for modelling multiple sequence alignments, CMs spec-
ify a repetitive tree-like SCFG architecture suited for modelling consensus RNA
secondary structures.

Although we follow here the ‘covariance model’ approach developed in Eddy
& Durbin [1994], these same general ideas and algorithms are shared by com-
parable SCFG-based RNA models independently developed at the same time by
Sakakibara and coworkers [1994].

CMs are detailed and fairly complex probabilistic models. We first set the stage
by looking in an intuitive way at more simple models of small RNA alignments.

SCFG models of ungapped RNA alignments

Figure 10.11 shows an example RNA consensus structure and an ungapped
multiple alignment of an RNA family that fit the consensus. To describe this
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