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Overview

� why use self-timed circuits?

� flavours of self-timing

– matched delays

– completion detection

� self-timed processors

– micropipelining and counterflow pipelines

– Amulet

– rotary pipelines
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Self-Timed Advantages — Often Cited

Al Davis, Async’94

1. archive average case performance

2. power consumed only where needed

3. ease of modular composition

4. no clock alignment at the interfaces

5. metastability has time to end

6. avoid clock distribution costs

7. easier to exploit concurrency

8. intellectual challenge

9. intrinsic elegance

10. global synchrony does not exist anyway
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Self-Timed Advantages — NOT Often Cited

Al Davis, Async’94

1. it really pisses my boss off

2. I like reinventing wheels

3. I like to be different

4. gee — I really don’t know

5. people and circuits need to play by same rules

6. I don’t understand synchronous circuits

7. world problems stem from glitches

8. synchronous design gives me gas

9. clock radiation causes hair loss

10. it’s none of your business
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Historical Perspective

� early digital circuit design explored various synchronisation
mechanisms

� clocked circuits won because lower device (valve!) count and faster
(e.g. Ordvac, Illinois, 1952)

� Muller instigated a great deal of research into self-timed circuits in the
50’s and 60’s

� as we reach the CMOS end point:

– transistors are cheap and plentiful

– long wires and global synchronisation are a problem

– low power is important (don’t switch the transistors too often)
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Self-timed Circuit Approaches
Delay based

combinatorial
circuit

special latches

delay

data

request
control
circuit

acknowledge

request

acknowledge
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Self-timed Circuit Approaches cont...

Completion based

special latches

data

com
pletion

detection

acknowledge
(full/empty)

combinatorial
circuit

control
logic

completion signal (request) encoded with the data...more later
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Encoding Completion Signals

code meaning

10
01

00 clear
logical 0
logical 1

code meaning

0 100
00 0
0 00

000

1
1

1

0000 clear
logical 0
logical 1
logical 2
logical 3

(a) 1 of 2 encoding (b) 1 of 4 encoding
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Muller C-element

C
A

B
C

(a) symbol

(b) truth table

A B C

0
1

0 0

1
0

1
0
1

C
C
1

think of it as a majority flip-flop

little known and yet immensely useful
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Asymmetric C-elements — Furber Style

A

C

Z

(a) symbol

(b) truth table

B C

A B C

0
1

C

11

0

C

Z

0 0
1

X
X

1

X
0

X
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Implementing Asymmetric C-elements

Z

A

C

ZB CA

B

C
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Event FIFO

C

C

C

C

Rin

Ain

Rout

Aout

N.B. events are edges

works with level information but you use twice as many C-elements
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Human Event FIFO

IF predecessor AND successor differ
THEN copy predecessor
ELSE hold your state

take your time — this is delay insensitive

C

C

C

C

Rin

Ain

Rout

Aout
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Capture/Pass Latches

Capture Mode

C P

Pass Mode

C P

each edge on the control signals has a meaning

just double buffering
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Micropipelines
from Ivan Sutherland’s Turing award lecture

Rin

Ain

Rout

Aout

register

C

Cd P

Pd

C

logic

delay

register

C

Cd P

Pd

C

logic

delay
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Self-timed Processor Design Issues

� high end — multiple instruction issue

– superscalar designs have complex (irregular) feed-forward paths

– global synchronisation mechanism (clock) simplifies design

– exception handling is a killer

� low end — low power

– keep it simple

– minimise latches

– minimise transitions
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Amulet
Steve Furber’s group at Manchester

� ARM processor based on micropipelines

� Amulet 1 based on Sutherland’s micropipelines

� Amulet 2 — taping out soon

— dynamic transparent D-type latches

– faster and smaller than capture/pass latches

— 4-phase (level sensitive) handshaking
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Assessment of Amulet

� good points:

– low power

– small (thus cheap)

� problems:

– could not easily be made superscalar (but probably wouldn’t want
to for low power)

– delays require large margin for error (Philips guys say 100%)

– margins in delays are cumulative down the pipeline
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Counter-flow Pipelines
Sutherland and Sproul

stage R

instruction results

stage 2

instruction results

stage 1

instruction results

stage 0

stage F

register file

instruction fetch & program counter

in
st

ru
ct

io
ns

 fl
ow

 u
p

interm
ediate results flow

 dow
n

bit bucket

'

&

$

%

University of Cambridge

Computer Laboratory 19

'

%

$

Counter-flow Pipelines — Garnering

Source 1 Source 2 Destination Result 1 Result 2Opcode

value
validity bit

register name

update result bindings

garner source bindings
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Counter-flow Pipelines — Traffic Cops

traffic cop

co
m

m
un

ic
at

io
n 

pr
oc

es
s com

m
unication process

GI GR

PI? Y AR?

AI? X PR?

PR!AI!

PI? AR?
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Seitz Arbiter

R0

R1

A1

A0
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Assessment of Counterflow Pipelines

� good points:

– register feedforwarding — regular structure

– speculative execution and exceptions easy

� register file not written to until instruction completes correctly
� “poison pills” to remove erroneous values

� problems:

– too much arbitration

– multiple instruction issue tricky (faster pipeline and more sidings?)

– usual problems with micropipelines
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Rotary Pipelines

ALU

A
LU

ALU

M
em

or
y

A
cc

es
s

instruction
dispatch

decode
instruction

fetch

memory
structure

cyclic pipline where
register values

flow around
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Rotary Pipeline with Register File

ALU
Memory
Access

ALUALU

switch
network

m
ulti-ported register file

flip-flops

fli
p-

flo
ps

register file
subset

flip-flops
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Rotary Pipeline Characteristics

� multiple instruction issue easy

� branches

– non-conditional branches taken by decode stage

– conditional branches predicted — confirmation comes from a stage
in the ring

� speculative execution is easy

– hold old values in flip-flops until you know which of the new values
are valid

� exception handling easy

– use speculative execution mechanism

� but circuits structures are a bit big...
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Determining Completion

C

C

C

inverted 1 of 4
encoded data

complete/cleared
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Completion on Data +
Matched Delays on Clear

inverted 1 of 4
encoded data

complete

precharge
clear
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Pipeline Stage

S Q
R

S Q
R

S Q
R

S Q
R

result
from ALU

part of register in

part of register out

to ALU
operand B

read
reg.

to ALU
operand A

read
reg.

write
reg.

reset
stage

bypass
register

to completion
detector
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Function Unit Utilisation for Compress
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Function Unit Utilisation for Dhrystone
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Concluding Remarks

� Will self-timed circuits subsume clocked design?

– jury out on that one

� Are matched delays better than completion detection?

– both similar power dissipation

– matched delays tend to be smaller

– matched delays = local clocking so work well for clocked designs

– completion detection does not have cumulative overheads

Self-timed circuits require new architectures

– the architectural possibilities may be the key to the success of
self-timed circuits

'

&

$

%

University of Cambridge

Computer Laboratory 32




