Introduction to Probability

Lecture 10: Estimators (Part I)
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Outline

Introduction

Defining and Analysing Estimators

More Examples

Setting: We can take random samples in the form of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate $\mathbf{P}[X \leq a]$ for any $a \in \mathbb{R}$ \rightsquigarrow in principle we can reconstruct the entire distribution
- How can we estimate the variance or other parameters? \rightsquigarrow estimator
- How can we measure the accuracy of an estimator? \rightsquigarrow bias (this lecture) and mean-squared error (next lecture)
$\mathrm{Sexpectation}^{\text {ex }}$ variance

Physical Experiments:

Measurement $=$ Quantity of Interest + Measurement Error

Empirical Distribution Functions

Definition of Empirical Distribution Function (Empirical CDF)

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. samples, and F be the corresponding distribution function. For any $a \in \mathbb{R}$, define

$$
F_{n}(a):=\frac{\text { number of } X_{i} \in(-\infty, a]}{n}
$$

Remark

The Weak Law of Large Numbers implies that for any $\epsilon>0$ and $a \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left[\left|F_{n}(a)-F(a)\right|>\epsilon\right]=0
$$

Thus by taking enough samples, we can estimate the entire distribution (including its expectation and variance).

Empirical Distribution Functions (Example 1/2)

Example 1

Consider throwing an unbiased dice 8 times, and let the realisation be:

$$
\left(x_{1}, x_{2}, \ldots, x_{8}\right)=(4,1,4,3,1,6,4,1)
$$

What is the Empirical Distribution Function $F_{8}(a)$?

Empirical Distribution Functions (Example 2/2)

Figure: Empirical Distribution Functions of samples from a Normal Distribution $\mathcal{N}(5,4)$
($n=20$ left, $n=200$ right)

An Example of an Estimation Problem

Scenario

Consider the packages arriving at a network server.

- We might be interested in:

1. number of packets that arrive within a "typical" minute

Estimator for λ
2. percentage of minutes during which no packets arrive Estimator for $e^{-\lambda}$

- If arrivals occur at random time \rightsquigarrow number of arrivals during one minute follows a Poisson distribution with unknown parameter λ

Estimator

Definition of Estimator
An estimate is a value t that only depends on the dataset $x_{1}, x_{2}, \ldots, x_{n}$, i.e.,

$$
t=h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Then t is a realisation of the random variable

$$
T=h\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

which is called estimator.

Questions:

- What makes an estimator suitable? \rightsquigarrow unbiased (later: MSE)
- Does an unbiased estimator always exist? How to compute it?
- If there are several unbiased estimators, which one to choose?

Outline

Introduction

Defining and Analysing Estimators

More Examples

Example: Arrival of Packets (1/3)

- Samples: Given $X_{1}, X_{2}, \ldots, X_{n}$ i.i.d., $X_{i} \sim \operatorname{Pois}(\lambda)$
- Meaning: X_{i} is the number of packets arriving in minute i

Example 2

Estimate λ by using the sample mean \bar{X}_{n}.

We have

$$
\bar{X}_{n}:=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n},
$$

and $\mathbf{E}\left[\bar{X}_{n}\right]=\mathbf{E}\left[X_{1}\right]=\lambda$. This suggests the estimator:

$$
h\left(X_{1}, X_{2}, \ldots, X_{n}\right):=\bar{X}_{n} .
$$

Applying the Weak Law of Large Numbers:

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\lambda\right|>\epsilon\right]=0 \quad \text { for any } \epsilon>0
$$

Example: Arrival of Packets (2/3)

Example 3a

Estimate the probability of zero arrivals, which is $e^{-\lambda}$.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be the n samples. Let

$$
Y_{i}:=\mathbf{1}_{X_{i}=0} .
$$

Then

$$
\mathbf{E}\left[Y_{i}\right]=\mathbf{P}\left[X_{i}=0\right]=e^{-\lambda}
$$

and thus we can define an estimator by

$$
h_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right):=\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n}=\overline{Y_{n}}
$$

Example: Arrival of Packets (3/3)

- Suppose we get the sample $\left(x_{1}, x_{2}, x_{3}\right)=(50,100,0)$
- Then $\left(y_{1}, y_{2}, y_{3}\right)=(0,0,1)$, and $h_{1}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{3}$
- This seems too small! Also note that for the samples $\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$, our estimator would give the same estimate

Example 3b

Estimate the probability of zero arrivals $e^{-\lambda}$ based on \bar{X}_{n}.
We saw that $\bar{X}_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ satisfies $\mathbf{E}\left[\bar{X}_{n}\right]=\mathbf{E}\left[X_{1}\right]=\lambda$. Recall by the Weak Law of Large Numbers:

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\lambda\right|>\epsilon\right]=0 \quad \text { for any } \epsilon>0
$$

This suggests to estimate $e^{-\lambda}$ by $e^{-\bar{X}_{n}}$. Hence our estimator is

$$
h_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right):=e^{-\bar{X}_{n}}
$$

Behaviour of the Estimators

- Suppose we have $n=30$ and we want to estimate $e^{-\lambda}$
- Consider the two estimators $h_{1}\left(X_{1}, \ldots, X_{n}\right)$ and $h_{2}\left(X_{1}, \ldots, X_{n}\right)$.

How good are these two estimators?

\Rightarrow The first estimator can only attain values $0, \frac{1}{30}, \frac{2}{30}, \ldots, 1$
\Rightarrow The second estimator can only attain values $1, e^{-1 / 30}, e^{-2 / 30}, \ldots$

For most values of λ, both estimators will never return the exact value of $e^{-\lambda}$ on the basis of 30 observations.

Simulation of the two Estimators

- The unknown parameter is $p=e^{-\lambda}=0.1$ (i.e., $\lambda=\ln 10 \approx 2.30 \ldots$)
- We consider $n=30$ minutes and compute h_{1} and h_{2}
- We repeat this 500 times and draw a frequency histogram ($h_{1}=\bar{Y}_{n}$ left, $h_{2}=e^{-\bar{X}_{n}}$ right)

Source: Modern Introduction to Statistics
Both estimators concentrate around the true value 0.1 , but the second estimator appears to be more concentrated.

Unbiased Estimators and Bias

Definition

An estimator T is called an unbiased estimator for the parameter θ if

$$
\mathbf{E}[T]=\theta,
$$

irrespective of the value θ. The bias is defined as

$$
\mathbf{E}[T]-\theta=\mathbf{E}[T-\theta]
$$

Source: Edwin Leuven (Point Estimation)

Which of the two estimators h_{1}, h_{2} are unbiased?

Analysis of the Bias of the First Estimator

Example 4a

Is $h_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n}$ an unbiased estimator for $e^{-\lambda}$?

Answer

Recall we defined $Y_{i}:=\mathbf{1}_{X_{i}=0}$. Yes, because:

$$
\begin{aligned}
\mathbf{E}\left[h_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] & =\frac{n \cdot \mathbf{E}\left[Y_{1}\right]}{n} \\
& =\mathbf{P}\left[X_{1}=0\right] \\
& =e^{-\lambda}
\end{aligned}
$$

Bias of the Second Estimator (and Jensen's Inequality)

Example 4b

Is $h_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=e^{-\bar{X}_{n}}$ an unbiased estimator for $e^{-\lambda}$?
\qquad
No! (recall: $\mathbf{E}\left[X^{2}\right] \geq \mathbf{E}[X]^{2}$)

- We have

$$
\mathbf{E}\left[e^{-\bar{x}_{n}}\right]>e^{-\mathbf{E}\left[\bar{x}_{n}\right]}=e^{-\lambda}
$$

- This follows by Jensen's inequality, and the inequality is strict since $g: z \mapsto e^{-z}$ is strictly convex and \bar{X}_{n} is not constant.
- Thus $h_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is not unbiased - it has positive bias.

$$
\lambda g(a)+(1-\lambda) g(b) \geq g(\lambda a+(1-\lambda) b)
$$

Jensen's Inequality
For any random variable X, and any convex function $g: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\mathbf{E}[g(X)] \geq g(\mathbf{E}[X])
$$

If g is strictly convex and X is not constant, then the inequality is strict.

Asymptotic Bias of the Second Estimator (non-examinable)

Example 4c

$\mathbf{E}\left[h_{2}\left(X_{1}, \ldots, X_{n}\right)\right] \xrightarrow{n \rightarrow \infty} e^{-\lambda}$ (hence it is asymptotically unbiased).

- Recall $h_{2}\left(X_{1}, \ldots, X_{n}\right)=e^{-\bar{X}_{n}}$. For any $0 \leq k \leq n$,

$$
\mathbf{P}\left[h_{2}\left(X_{1}, \ldots, X_{n}\right)=e^{-k / n}\right]=\mathbf{P}\left[\sum_{i=1}^{n} X_{i}=k\right]=\mathbf{P}[Z=k],
$$

where $Z \sim \operatorname{Pois}(n \cdot \lambda)\left(\right.$ since $\left.\operatorname{Pois}\left(\lambda_{1}\right)+\operatorname{Pois}\left(\lambda_{2}\right)=\operatorname{Pois}\left(\lambda_{1}+\lambda_{2}\right)\right)$

$$
\begin{aligned}
& \Rightarrow \quad \mathbf{P}\left[h_{2}\left(X_{1}, \ldots, X_{n}\right)=e^{-k / n}\right]=\frac{e^{-n \lambda} \cdot(n \lambda)^{k}}{k!} \\
& \Rightarrow \quad \mathbf{E}\left[h_{2}\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{k=0}^{\infty} e^{-n \lambda} \cdot \frac{\left(n \lambda^{k}\right)}{k!} \cdot e^{-k / n} \\
& \text { By LOTUS }=e^{-n \lambda} \cdot e^{n \lambda e^{-1 / n}} \sum_{k=0}^{\infty} e^{-n \lambda e^{-1 / n}} \cdot \frac{\left(n \lambda e^{-1 / n}\right)^{k}}{k!} \\
&=e^{-n \lambda \cdot\left(1-e^{-1 / n}\right)} \cdot 1
\end{aligned}
$$

since $e^{x}=1+x+O\left(x^{2}\right)$ for small $x \xrightarrow{n \rightarrow \infty} e^{-n \lambda \cdot\left(1-1+1 / n+O\left(1 / n^{2}\right)\right)}=e^{-\lambda+O(\lambda / n)}$.
Hence in the limit, the positive bias of h_{2} diminishes.

Outline

Introduction

Defining and Analysing Estimators

More Examples

Unbiased Estimator for Expectation and Variance

Unbiased Estimators for Expectation and Variance
Let $X_{1}, X_{2}, \ldots, X_{n}$ be identically distributed samples from a distribution with finite expectation μ and finite variance σ^{2}.

- Then

$$
\bar{X}_{n}:=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

is an unbiased estimator for μ.

- Furthermore, for $n \geq 2$,

$$
S_{n}=S_{n}\left(X_{1}, \ldots, X_{n}\right):=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

is an unbiased estimator for σ^{2}.

Example 5

We need to prove: $\mathbf{E}\left[S_{n}\right]=\sigma^{2}$.

Multiplying by $n-1$ yields:

$$
\begin{aligned}
(n-1) \cdot S_{n} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu+\mu-\bar{X}_{n}\right)^{2} \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i=1}^{n}\left(\bar{X}_{n}-\mu\right)^{2}-2 \sum_{i=1}^{n}\left(X_{i}-\mu\right)\left(\bar{X}_{n}-\mu\right) \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+n\left(\bar{X}_{n}-\mu\right)^{2}-2\left(\bar{X}_{n}-\mu\right) \cdot n \cdot\left(\bar{X}_{n}-\mu\right) \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n\left(\bar{X}_{n}-\mu\right)^{2}
\end{aligned}
$$

By Lec. 8, Slide 21: $\mathbf{E}\left[\left(\bar{X}_{n}-\mu\right)^{2}\right]=\mathbf{V}\left[\bar{X}_{n}\right]=\sigma^{2} / n$

$$
\begin{aligned}
(n-1) \cdot \mathbf{E}\left[S_{n}\right] & =\sum_{i=1}^{n} \mathbf{E}\left[\left(X_{i}-\mu\right)^{2}\right]-n \cdot \mathbf{E}\left[\left(\bar{X}_{n}-\mu\right)^{2}\right] \\
& =n \cdot \sigma^{2}-n \cdot \sigma^{2} / n \\
& =(n-1) \cdot \sigma^{2} .
\end{aligned}
$$

An Unbiased Estimator may not always exist

Example 6

Suppose that we have one sample $X \sim \operatorname{Bin}(n, p)$, where $0<p<1$ is unknown but n is known. Prove there is no unbiased estimator for $1 / p$.

- First a simpler proof which exploits that p might be arbitrarily small
- Intuition: By making p smaller and smaller, we force $\max _{0 \leq k \leq n} T(k)$, $k \in\{0,1, \ldots, n\}$ to become bigger and bigger
- Formal Argument:
- Fix any estimator $T(X)$
- Define $M:=\max _{0 \leq k \leq n} T(k)$. Then,

$$
\begin{aligned}
\mathbf{E}[T(X)] & =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \cdot T(k) \\
& \leq M \cdot \sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=M .
\end{aligned}
$$

- Hence this estimator does not work for $p<\frac{1}{M}$, since then $\mathbf{E}[T(X)] \leq M<\frac{1}{p}$ (negative bias!)
- The next proof will work even if $p \in[a, b]$ for $0<a<b \leq 1$.

An Unbiased Estimator may not always exist (cntd. - non-examinable)

Example 6 (cntd.)

Suppose that we have one sample $X \sim \operatorname{Bin}(n, p)$, where $0<p<1$ is unknown but n is known. Prove there is no unbiased estimator for $1 / p$.

- Suppose there exists an unbiased estimator with $\mathbf{E}[T(X)]=1 / p$.
- Then

$$
\begin{aligned}
1 & =p \cdot \mathbf{E}[T(X)] \\
& =p \cdot \sum_{k=0}^{n} \mathbf{P}[X=k] \cdot T(k) \\
& =p \cdot \sum_{k=0}^{n}\binom{n}{k} p^{k} \cdot(1-p)^{n-k} \cdot T(k)
\end{aligned}
$$

- Last term is a polynomial of degree $n+1$ with constant term zero $\Rightarrow p \cdot \mathbf{E}[T(X)]-1$ is a (non-zero) polynomial of degree $\leq n+1$
\Rightarrow this polynomial has at most $n+1$ roots
$\Rightarrow \mathbf{E}[T(X)]$ can be equal to $1 / p$ for at most $n+1$ values of p, and thus cannot be an unbiased.

