Introduction to Probability

Lectures 9: Central Limit Theorem Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

$$
\Rightarrow \quad \epsilon=0.2, \delta=0.25, \exists N: \forall n \geq N: \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>0.2\right] \leq 0.25
$$

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

$$
\Rightarrow \quad \epsilon=0.2, \delta=0.25, \exists N: \forall n \geq N: \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>0.2\right] \leq 0.25
$$

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

$$
\Rightarrow \quad \epsilon=0.2, \delta=0.25, \exists N: \forall n \geq N: \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>0.2\right] \leq 0.25
$$

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

$$
\Rightarrow \quad \epsilon=0.2, \delta=0.25, \exists N: \forall n \geq N: \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>0.2\right] \leq 0.25
$$

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

$$
\Rightarrow \quad \epsilon=0.2, \delta=0.25, \exists N: \forall n \geq N: \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>0.2\right] \leq 0.25
$$

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$

$$
\Rightarrow \quad \epsilon=0.2, \delta=0.25, \exists N: \forall n \geq N: \mathbf{P}\left[\left|\bar{X}_{n}-\mu\right|>0.2\right] \leq 0.25
$$

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

The Sum

- Let $\widetilde{X}_{n}:=\sum_{i=1}^{n} X_{i}$ (often denoted by S_{n})

- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n \sigma^{2} \rightarrow \infty$

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

The Sum

- Let $\widetilde{X}_{n}:=\sum_{i=1}^{n} X_{i}$ (often denoted by S_{n})

- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n \sigma^{2} \rightarrow \infty$

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

The Sum

- Let $\widetilde{X}_{n}:=\sum_{i=1}^{n} X_{i}$ (often denoted by S_{n})

- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n \sigma^{2} \rightarrow \infty$

The Sample Average (Sample Mean)

- Let $\bar{X}_{n}:=\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}$
- The variance is $\mathbf{V}\left[\bar{X}_{n}\right]=\sigma^{2} / n \rightarrow 0$

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

The Sum

- Let $\widetilde{X}_{n}:=\sum_{i=1}^{n} X_{i}$ (often denoted by S_{n})

- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n \sigma^{2} \rightarrow \infty$

The Sample Average (Sample Mean)

- Let $\bar{X}_{n}:=\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}$
- The variance is $\mathbf{V}\left[\bar{X}_{n}\right]=\sigma^{2} / n \rightarrow 0$

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

The Sum

- Let $\widetilde{X}_{n}:=\sum_{i=1}^{n} X_{i}$ (often denoted by S_{n})

- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n \sigma^{2} \rightarrow \infty$

The Sample Average (Sample Mean)

- Let $\bar{X}_{n}:=\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}$
- The variance is $\mathbf{V}\left[\bar{X}_{n}\right]=\sigma^{2} / n \rightarrow 0$

The "Proper" Scaling (Standardising)

- Let $Z_{n}:=\frac{1}{\sqrt{n} \cdot \sigma} \cdot \sum_{i=1}^{n} X_{i}$
- The variance is $\mathbf{V}\left[Z_{n}\right]=1$

Towards the CLT: Finding the Right Scaling

- Let X_{1}, X_{2}, \ldots i.i.d. with $\mu=0$ and finite σ^{2}

The Sum

- Let $\widetilde{X}_{n}:=\sum_{i=1}^{n} X_{i}$ (often denoted by S_{n})

- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n \sigma^{2} \rightarrow \infty$

The Sample Average (Sample Mean)

- Let $\bar{X}_{n}:=\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}$
- The variance is $\mathbf{V}\left[\bar{X}_{n}\right]=\sigma^{2} / n \rightarrow 0$

The "Proper" Scaling (Standardising)

- Let $Z_{n}:=\frac{1}{\sqrt{n} \cdot \sigma} \cdot \sum_{i=1}^{n} X_{i}$
- The variance is $\mathbf{V}\left[Z_{n}\right]=1$

Central Limit Theorem

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827)
C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Central Limit Theorem
Let X_{1}, X_{2}, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^{2}. Let

$$
Z_{n}:=\sqrt{n} \cdot \frac{\bar{X}_{n}-\mu}{\sigma}
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^{2}. Let

$$
Z_{n}:=\sqrt{n} \cdot \frac{\bar{X}_{n}-\mu}{\sigma}=\frac{1}{\sqrt{n} \cdot \sigma} \cdot\left(\sum_{i=1}^{n} X_{i}-n \cdot \mu\right)
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^{2}. Let

$$
Z_{n}:=\sqrt{n} \cdot \frac{\bar{X}_{n}-\mu}{\sigma}=\frac{1}{\sqrt{n} \cdot \sigma} \cdot\left(\sum_{i=1}^{n} X_{i}-n \cdot \mu\right)
$$

Then for any number $a \in \mathbb{R}$, it holds that

$$
\lim _{n \rightarrow \infty} F_{Z_{n}}(a)=\Phi(a)
$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

Central Limit Theorem

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^{2}. Let

$$
Z_{n}:=\sqrt{n} \cdot \frac{\bar{X}_{n}-\mu}{\sigma}=\frac{1}{\sqrt{n} \cdot \sigma} \cdot\left(\sum_{i=1}^{n} X_{i}-n \cdot \mu\right)
$$

Then for any number $a \in \mathbb{R}$, it holds that

$$
\lim _{n \rightarrow \infty} F_{Z_{n}}(a)=\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x
$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

Central Limit Theorem

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^{2}. Let

$$
Z_{n}:=\sqrt{n} \cdot \frac{\bar{X}_{n}-\mu}{\sigma}=\frac{1}{\sqrt{n} \cdot \sigma} \cdot\left(\sum_{i=1}^{n} X_{i}-n \cdot \mu\right)
$$

Then for any number $a \in \mathbb{R}$, it holds that

$$
\lim _{n \rightarrow \infty} F_{Z_{n}}(a)=\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x
$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

In words: the distribution of Z_{n} always converges to the distribution function Φ of the standard normal distribution.

Comments on the CLT

- one of the most remarkable results in probability/statistics
- extremely useful tool in data analysis or physical measurements
- we may not know the actual distribution in real-world, and CLT says we don't have to(!)
- adding up independent noises in measurements leads to an error following the Normal distribution
- applies also to sums of random variables which may be unbounded

Comments on the CLT

- one of the most remarkable results in probability/statistics
- extremely useful tool in data analysis or physical measurements
- we may not know the actual distribution in real-world, and CLT says we don't have to(!)
- adding up independent noises in measurements leads to an error following the Normal distribution
- applies also to sums of random variables which may be unbounded
- catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

Comments on the CLT

- one of the most remarkable results in probability/statistics
- extremely useful tool in data analysis or physical measurements
- we may not know the actual distribution in real-world, and CLT says we don't have to(!)
- adding up independent noises in measurements leads to an error following the Normal distribution
- applies also to sums of random variables which may be unbounded
- catch: the CLT only holds approximately, i.e., for large n

> When is the approximation good?

- usually $n \geq 10$ or $n \geq 15$ is sufficient in practice
- approximation tends to be worse when threshold a is far from 0 , distribution of X_{i} 's asymmetric, bimodal or discrete
- (for a result quantifying the approximation error: Berry-Esseen-Theorem)

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{1} x_{j}=x\right]$

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$

1
0.9
0.8
0.7

- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{10} X_{j}=x\right]$

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$

1
0.9
0.8
0.7

- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)

Illustration of CLT (1/4)

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{13} X_{j}=x\right]$

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$

1
0.9
0.8
0.7

- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{15} X_{j}=x\right]$
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$
- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{16} X_{j}=x\right]$
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$
- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{18} X_{j}=x\right]$

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$

1
0.9
0.8
0.7

- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)
$\mathbf{P}\left[\sum_{j=1}^{19} X_{j}=x\right]$

- $\mu=\frac{1}{3} \cdot(-1)+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=0$

1
0.9
0.8
0.7

- $\sigma^{2}=\frac{1}{3} \cdot(-1)^{2}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1^{2}=\frac{2}{3}$

Illustration of CLT (1/4)

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{1} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{2} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{3} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)

Illustration of CLT (2/4)

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{12} X_{j}=X\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{15} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{18} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{19} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

$\mathbf{P}\left[\sum_{j=1}^{21} X_{j}=x\right]$
- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (2/4)
$\mathbf{P}\left[\sum_{j=1}^{30} X_{j}=x\right]$

- $\mu=0.15 \cdot(-3)+0.1 \cdot(-2)+0.05 \cdot(-1)+0.7 \cdot 1=0$
- $\sigma^{2}=0.15 \cdot 9+0.1 \cdot 4+0.05 \cdot 1+0.7 \cdot 1=2.5$

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{1} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{2} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$
0.6
0.5

0
0.3
0.2
0.1
$-50-45-40-35-30-25-20-15-10-5 \quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 3035 \quad 4045 \quad 50$

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{4} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

$-50-45-40-35-30-25-20-15-10-5 \quad 0 \quad 5 \quad 1015 \quad 20 \quad 25 \quad 30354045 \quad 50$

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{5} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$
0.6
0.5
0.4

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{7} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{10} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{11} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{15} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{16} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{17} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)
$\mathbf{P}\left[\sum_{j=1}^{19} X_{j}=x\right]$

- $\mu=\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=0$
- $\sigma^{2}=\frac{1}{2} \cdot(-1)^{2}+\frac{1}{2} \cdot 1^{2}=1$

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (3/4) (Example from Lecture 8)

Illustration of CLT (4/4) (Example from Lecture 8)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Illustration of CLT with Standardising (1/2)

Fig. 14.2. Densities of standardized averages Z_{n}. Left column: from a gamma density; right column: from a bimodal density. Dotted line: $N(0,1)$ probability density

Source: Dekking et al., Modern Introduction to Statistics

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Recall: Standard Normal Table

Section 5.4 Normal Random Variables 201
TABLE 5.1: AREA $\Phi(x)$ UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF X

X	. 00	. 01	. 02	. 03	04	. 05	. 06	. 07	. 08	. 09
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
. 3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
. 4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
. 5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 92222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

Source: Ross, Probability 8th ed.

$$
Z \sim \mathcal{N}(0,1) \quad \mathbf{P}[Z \leq x]=\Phi(x)
$$

Recall: Standard Normal Table

Section 5.4 Normal Random Variables 201

X	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
. 3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
. 5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

Source: Ross, Probability 8th ed.

Question: What if we need $\Phi(x)$ for negative x ?

$$
Z \sim \mathcal{N}(0,1) \quad \mathbf{P}[Z \leq x]=\Phi(x)
$$

Recall: Standard Normal Table

Section 5.4 Normal Random Variables 201

X	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 575
. 1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 614
. 3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 651
. 4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 722
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 838
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 92222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 944
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 954
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 976
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 981
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 985
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 989
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 995
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 996
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 997
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 998
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 998
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	.9990	. 9991	. 9991	. 9991	9992	. 9992	. 9992	. 9992	. 9993	. 999
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 999
3.3	. 9995	. 9995	. 9995	. 9996	.9996	. 9996	. 9996	. 9996	. 9996	. 999
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 999

$$
\begin{array}{cc}
& \text { Source: Ross, Probability 8th ed. } \\
Z \sim \mathcal{N}(0,1) \quad \mathbf{P}[Z \leq x]=\Phi(x)
\end{array}
$$

Question: What if we need $\Phi(x)$ for negative x ?

Due to symmetry of density we have $\Phi(x)=1-\Phi(-x)$.

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$.

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:

$$
\mathbf{P}[x \geq 6]=\mathbf{P}\left[\sum_{i=1}^{n} x_{i} \geq 6\right]
$$

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:

$$
\begin{aligned}
\mathbf{P}[X \geq 6] & =\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \geq 6\right] \\
& =\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \geq \frac{6-n \mu}{\sqrt{n} \sigma}\right]
\end{aligned}
$$

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:

$$
\begin{aligned}
\mathbf{P}[X \geq 6] & =\mathbf{P}\left[\sum_{i=1}^{n} x_{i} \geq 6\right] \\
& =\mathbf{P}\left[\frac{\sum_{i=1}^{n} x_{i}-n \mu}{\sqrt{n} \sigma} \geq \frac{6-n \mu}{\sqrt{n} \sigma}\right] \\
& =\mathbf{P}\left[z_{10} \geq \frac{6-2.5}{\sqrt{10} \cdot \sqrt{3 / 16}}\right]
\end{aligned}
$$

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:

$$
\begin{aligned}
\mathbf{P}[X \geq 6] & =\mathbf{P}\left[\sum_{i=1}^{n} x_{i} \geq 6\right] \\
& =\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \geq \frac{6-n \mu}{\sqrt{n} \sigma}\right] \\
& =\mathbf{P}\left[Z_{10} \geq \frac{6-2.5}{\sqrt{10} \cdot \sqrt{3 / 16}}\right] \approx 1-\Phi(2.56) \approx 0.0052 .
\end{aligned}
$$

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:

$$
\begin{aligned}
\mathbf{P}[X \geq 6] & =\mathbf{P}\left[\sum_{i=1}^{n} x_{i} \geq 6\right] \\
& =\mathbf{P}\left[\frac{\sum_{i=1}^{n} x_{i}-n \mu}{\sqrt{n} \sigma} \geq \frac{6-n \mu}{\sqrt{n} \sigma}\right] \underbrace{}_{\begin{array}{c}
\text { True value is 0.0197. Error } \\
\text { lies in the discretisation! }
\end{array}} \\
& =\mathbf{P}\left[z_{10} \geq \frac{6-2.5}{\sqrt{10} \cdot \sqrt{3 / 16}}\right] \approx 1-\Phi(2.56) \approx 0.0052 .
\end{aligned}
$$

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:
$\mathbf{P}[x \geq 6]=\mathbf{P}\left[\sum_{i=1}^{n} x_{i} \geq 6\right]$
$=\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \geq \frac{6-n \mu}{\sqrt{n} \sigma}\right] \underbrace{=\mathbf{P}\left[Z_{10} \geq \frac{6-2.5}{\sqrt{10} \cdot \sqrt{3 / 16}}\right] \approx 1-\Phi(2.56) \approx 0.0052 .}_{\begin{array}{c}\text { True value is 0.0197. } \\ \text { lies in the discretis }\end{array}}$.

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim \operatorname{Bin}(10,1 / 4)$. We are interested in $\mathbf{P}[X \geq 6]$.
- Note $X:=\sum_{i=1}^{n} X_{i}$, where each $X_{i} \sim \operatorname{Ber}(p)$ and $n=10, p=1 / 4$. $\Rightarrow \mu=1 / 4$ and $\sigma^{2}=p(1-p)=3 / 16$.
- Applying the CLT yields:
$\mathbf{P}[X \geq 6]=\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \geq 6\right]\left\{\begin{array}{l}\text { approximation is obtained by } \\ \mathbf{P}\left[\sum_{i=1}^{n} x_{i} \geq 5.5\right] \rightsquigarrow \approx 0.0143\end{array}\right.$

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.
- Recall that $\mu=\sigma=2$.

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.
- Recall that $\mu=\sigma=2$.
- By the CLT,

$$
\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \leq 100\right]
$$

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.
- Recall that $\mu=\sigma=2$.
- By the CLT,

$$
\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \leq 100\right]=\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-2 n}{2 \sqrt{n}} \leq \frac{100-2 n}{2 \sqrt{n}}\right]
$$

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.
- Recall that $\mu=\sigma=2$.
- By the CLT,

$$
\begin{aligned}
\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \leq 100\right] & =\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-2 n}{2 \sqrt{n}} \leq \frac{100-2 n}{2 \sqrt{n}}\right] \\
& \approx \Phi\left(\frac{100-2 n}{2 \sqrt{n}}\right) \stackrel{!}{=} 0.95
\end{aligned}
$$

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.
- Recall that $\mu=\sigma=2$.
- By the CLT,

$$
\begin{aligned}
\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \leq 100\right] & =\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-2 n}{2 \sqrt{n}} \leq \frac{100-2 n}{2 \sqrt{n}}\right] \\
& \approx \Phi\left(\frac{100-2 n}{2 \sqrt{n}}\right) \stackrel{!}{=} 0.95
\end{aligned}
$$

- Using a normal table (looking for value 0.95) yields: $\frac{100-2 n}{2 \sqrt{n}}=1.645$.

A "Reverse" Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1 / 2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(1 / 2)$, where n is unknown.
- Recall that $\mu=\sigma=2$.
- By the CLT,

$$
\begin{aligned}
\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \leq 100\right] & =\mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i}-2 n}{2 \sqrt{n}} \leq \frac{100-2 n}{2 \sqrt{n}}\right] \\
& \approx \Phi\left(\frac{100-2 n}{2 \sqrt{n}}\right) \stackrel{!}{=} 0.95
\end{aligned}
$$

- Using a normal table (looking for value 0.95) yields: $\frac{100-2 n}{2 \sqrt{n}}=1.645$.
\Rightarrow Solving the quadratic gives $n \leq 39.6$ (so $n \leq 39$)

A Sample of 100 Exponential Random Variables $\operatorname{Exp}(1 / 2)$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04
$$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[x]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02 .
\end{array}\right.
$$

- Central Limit Theorem: First standardise:

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[x \geq 74.5]=\mathbf{P}\left[Z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[x \geq 74.5]=\mathbf{P}\left[Z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

- exact probability is $2.82 \cdot 10^{-7}$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[X \geq 74.5]=\mathbf{P}\left[z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

- exact probability is $2.82 \cdot 10^{-7} \quad$ CLT gives a much better result (but requires i.i.d.)

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[X \geq 74.5]=\mathbf{P}\left[Z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

- exact probability is $2.82 \cdot 10^{-7} \quad$ CLT gives a much better result (but requires i.i.d.)
- Side Note: without continuity correction, we have 75 instead 74.5:

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[X \geq 74.5]=\mathbf{P}\left[Z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

- exact probability is $2.82 \cdot 10^{-7} \quad$ CLT gives a much better result (but requires i.i.d.)
- Side Note: without continuity correction, we have 75 instead 74.5:
- This leads to $1-\Phi(5)=2.86 \cdot 10^{-7}$

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[X \geq 74.5]=\mathbf{P}\left[Z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

- exact probability is $2.82 \cdot 10^{-7} \quad$ CLT gives a much better result (but requires i.i.d.)
- Side Note: without continuity correction, we have 75 instead 74.5:
- This leads to $1-\Phi(5)=2.86 \cdot 10^{-7}$
- Issue: threshold too large $(\mathbf{P}[X \geq a] \approx \mathbf{P}[X=a]) \Rightarrow$ CLT less precise

Comparison between Markov, Chebyshev and CLT

Example 3

Consider $n=100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75 .

- Markov: $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathbf{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[x \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666
$$

- Chebyshev: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq 25] \leq \frac{\mathbf{V}[X]}{25^{2}}=\frac{1}{25}=0.04 .\left\{\begin{array}{l}
\text { As } X \text { is symmetric, we could de- } \\
\text { duce probability is at most } 0.02
\end{array}\right.
$$

- Central Limit Theorem: First standardise: $Z_{n}=\frac{X-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}$

$$
\mathbf{P}[X \geq 74.5]=\mathbf{P}\left[Z_{n} \geq \frac{74.5-n \cdot 1 / 2}{\sqrt{n} \cdot 1 / 2}\right] \approx 1-\Phi(4.9)=4.79 \cdot 10^{-7}
$$

- exact probability is $2.82 \cdot 10^{-7} \quad$ CLT gives a much better result (but requires i.i.d.)
- Side Note: without continuity correction, we have 75 instead 74.5:
- This leads to $1-\Phi(5)=2.86 \cdot 10^{-7}$
- Issue: threshold too large $(\mathbf{P}[X \geq a] \approx \mathbf{P}[X=a]) \Rightarrow$ CLT less precise
- In this region, 75 gives a better approximation than 74.5, but for smaller values (e.g., ≤ 63) the continuity corrections gives significantly better results.

A Distribution whose Average does not converge

$\operatorname{Cau}(2,1)$ distribution, source: Dekking et al., Modern Introduction to Statistics
The Cauchy distribution has "too heavy" tails (no expectation), in particular the average does not converge.

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Towards a Proof of CLT: Moment Generating Functions

Moment-Generating Function
The moment-generating function of a random variable X is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R} .
$$

Towards a Proof of CLT: Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of e and differentiating shows that $M_{X}(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X], \mathbf{E}\left[X^{2}\right], \ldots \ldots$.

Towards a Proof of CLT: Moment Genoratino Eunatione
Moment-Generating Function \quad If $X \sim \mathcal{N}(0,1)$, then $M_{X}(t)=\frac{t}{2}$
The moment-generating function of a random variable X is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of e and differentiating shows that $M_{X}(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X], \mathbf{E}\left[X^{2}\right], \ldots \ldots$.

Towards a Proof of CLT: Moment Geporatinc Eunatione

Moment-Generating Function

 If $X \sim \mathcal{N}(0,1)$, then $M_{X}(t)=\frac{t^{2}}{2}$.The moment-generating function of a random variable X is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of e and differentiating shows that $M_{X}(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X], \mathbf{E}\left[X^{2}\right], \ldots \ldots$.

Lemma

1. If X and Y are two r.v.'s with $M_{X}(t)=M_{Y}(t)$ for all $t \in(-\delta,+\delta)$ for some $\delta>0$, then the distributions X and Y are identical.
2. If X and Y are independent random variables, then

$$
M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

Towards a Proof of CLT: Moment Geporotinc Eunctione

Moment-Generating Function

 If $X \sim \mathcal{N}(0,1)$, then $M_{X}(t)=\frac{t^{2}}{2}$.The moment-generating function of a random variable X is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of e and differentiating shows that $M_{X}(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X], \mathbf{E}\left[X^{2}\right], \ldots \ldots$.

Lemma

1. If X and Y are two r.v.'s with $M_{X}(t)=M_{Y}(t)$ for all $t \in(-\delta,+\delta)$ for some $\delta>0$, then the distributions X and Y are identical.
2. If X and Y are independent random variables, then

$$
M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

Proof of 2: (Proof of 1 is quite non-trivial!)

$$
M_{X+Y}(t)=\mathbf{E}\left[e^{t(X+Y)}\right]=\mathbf{E}\left[e^{t X} \cdot e^{t Y}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{t X}\right] \cdot \mathbf{E}\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)
$$

Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

- Assume w.l.o.g. that $\mu=0$ and $\sigma=1$ (if not, scale variables)

Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

- Assume w.l.o.g. that $\mu=0$ and $\sigma=1$ (if not, scale variables)
- We also assume that the moment generating function of X_{i}, $M(t)=\mathbf{E}\left[e^{t X_{i}}\right]$ exists and is finite.

Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

- Assume w.l.o.g. that $\mu=0$ and $\sigma=1$ (if not, scale variables)
- We also assume that the moment generating function of X_{i}, $M(t)=\mathbf{E}\left[e^{t X_{i}}\right]$ exists and is finite.
- The moment generating function of X_{i} / \sqrt{n} is given by

$$
\mathbf{E}\left[e^{t X_{i} / \sqrt{n}}\right]=M(t / \sqrt{n})
$$

Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

- Assume w.l.o.g. that $\mu=0$ and $\sigma=1$ (if not, scale variables)
- We also assume that the moment generating function of X_{i}, $M(t)=\mathbf{E}\left[e^{t X_{i}}\right]$ exists and is finite.
- The moment generating function of X_{i} / \sqrt{n} is given by

$$
\mathbf{E}\left[e^{t X_{i} / \sqrt{n}}\right]=M(t / \sqrt{n})
$$

- Hence by the Lemma (second statement) from the previous slide,

$$
\mathbf{E}\left[\exp \left(\frac{t \sum_{i=1}^{n} X_{i}}{\sqrt{n}}\right)\right]=\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}
$$

Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

- Assume w.l.o.g. that $\mu=0$ and $\sigma=1$ (if not, scale variables)
- We also assume that the moment generating function of X_{i}, $M(t)=\mathbf{E}\left[e^{t X_{i}}\right]$ exists and is finite.
- The moment generating function of X_{i} / \sqrt{n} is given by

$$
\mathbf{E}\left[e^{t X_{i} / \sqrt{n}}\right]=M(t / \sqrt{n})
$$

- Hence by the Lemma (second statement) from the previous slide,

$$
\mathbf{E}\left[\exp \left(\frac{t \sum_{i=1}^{n} X_{i}}{\sqrt{n}}\right)\right]=\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}
$$

- Now define

$$
L(t):=\log (M(t))
$$

Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

- Assume w.l.o.g. that $\mu=0$ and $\sigma=1$ (if not, scale variables)
- We also assume that the moment generating function of X_{i}, $M(t)=\mathbf{E}\left[e^{t X_{i}}\right]$ exists and is finite.
- The moment generating function of X_{i} / \sqrt{n} is given by

$$
\mathbf{E}\left[e^{t X_{i} / \sqrt{n}}\right]=M(t / \sqrt{n})
$$

- Hence by the Lemma (second statement) from the previous slide,

$$
\mathbf{E}\left[\exp \left(\frac{t \sum_{i=1}^{n} X_{i}}{\sqrt{n}}\right)\right]=\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}
$$

- Now define

$$
L(t):=\log (M(t))
$$

- Differentiating (details ommitted here, see book by Ross) shows $L(0)=0, L^{\prime}(0)=\mu=0$ and $L^{\prime \prime}(0)=\mathbf{E}\left[X^{2}\right]=1$.

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}}
$$

Using L'Hopital's rule.

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}}=\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}}<\text { Using L'Hopital's rule. }
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}} & =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}}<\text { Using L'Hopital's rule. } \\
& =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}}
\end{aligned}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}} & =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}} \text { Using L'Hopital's rule. } \\
& =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}}
\end{aligned}
$$

Using L'Hopital's rule (again)

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\begin{aligned}
& \begin{aligned}
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}} & =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}} \text { Using L'Hopital's rule. } \\
& =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}} \\
\text { Using L'Hopital's rule (again) } & =\lim _{n \rightarrow \infty} \frac{-L^{\prime \prime}(t / \sqrt{n}) n^{-3 / 2} t^{2}}{-2 n^{-3 / 2}}
\end{aligned} .
\end{aligned}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\begin{aligned}
& \qquad \begin{aligned}
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}} & =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}} \text { Using L'Hopital's rule. } \\
& =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}} \\
\text { Using L'Hopital's rule (again) } & =\lim _{n \rightarrow \infty} \frac{-L^{\prime \prime}(t / \sqrt{n}) n^{-3 / 2} t^{2}}{-2 n^{-3 / 2}} \\
& =\lim _{n \rightarrow \infty}\left[-L^{\prime \prime}(t / \sqrt{n}) \cdot \frac{t^{2}}{2}\right]
\end{aligned}
\end{aligned}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\begin{aligned}
& \qquad \begin{aligned}
& \lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}}=\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}} \text { Using L'Hopital's rule. } \\
&=\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}} \\
& \text { Using L'Hopital's rule (again) }=\lim _{n \rightarrow \infty} \frac{-L^{\prime \prime}(t / \sqrt{n}) n^{-3 / 2} t^{2}}{-2 n^{-3 / 2}} \\
&=\lim _{n \rightarrow \infty}\left[-L^{\prime \prime}(t / \sqrt{n}) \cdot \frac{t^{2}}{2}\right] \\
& \text { We have } L^{\prime \prime}(0)=1!
\end{aligned}
\end{aligned}
$$

Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):

- To prove the theorem, we must show that

This is the moment generating function of $\mathcal{N}(0,1)$.

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \rightarrow e^{t^{2} / 2}
$$

- We take logarithms on both sides and obtain

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\lim _{n \rightarrow \infty} \frac{L(t / \sqrt{n})}{n^{-1}} & =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2} t}{-2 n^{-2}}<\text { Using L'Hopital's rule. } \\
& =\lim _{n \rightarrow \infty} \frac{-L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}} \\
\text { Using L'Hopital's rule (again) } & =\lim _{n \rightarrow \infty} \frac{-L^{\prime \prime}(t / \sqrt{n}) n^{-3 / 2} t^{2}}{-2 n^{-3 / 2}} \\
& =\lim _{n \rightarrow \infty}\left[-L^{\prime \prime}(t / \sqrt{n}) \cdot \frac{t^{2}}{2}\right]
\end{array}
\end{aligned}
$$

We proved that the MGF of Z_{n} converges to that one of $\mathcal{N}(0,1)$.

