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Motivation

Experiments often involve several random variables, and some of them
may influence each other.
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To this end, we will introduce:
= Joint/Marginal distribution of two (or more) variables
= Independence of two (or more) variables
= Covariance of two variables
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Motivation

Experiments often involve several random variables, and some of them
may influence each other.

N

\
To this end, we will introduce:
= Joint/Marginal distribution of two (or more) variables
= Independence of two (or more) variables

= Covariance of two variables
\
[For simplicity, we will mainly focus on discrete random variables. ]
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Warm-Up Exercise

Example

Let X1, X2 € {1,2,...,6} be two independent rolls of an unbiased die.
Let S := Xi + X> and M := max{Xi, Xo}. List the elements of the event
{S =7, M < 5} and deduce the probability.

Answer
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Joint Probability

Joint Probability Mass Function

The joint probability mass function of two discrete random variables X
and Y is the function p : R? — [0, 1], defined by:

px,y(a,b)=P[X=a,Y =D] for —oco < a,b < 0.
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Joint Probability Mass Function

The joint probability mass function of two discrete random variables X
and Y is the function p : R? — [0, 1], defined by:

px,y(a,b)=P[X=a,Y =D] for —oco < a,b < 0.

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random vari-
ables X and Y is the function F : R? — [0, 1], defined by:

Fxy(ab)=P[X<aVY<b] for—co<ab< oo
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Joint Probability

Joint Probability Mass Function

The joint probability mass function of two discrete random variables X
and Y is the function p : R? — [0, 1], defined by:

px,y(a,b)=P[X=a,Y =D] for —oco < a,b < 0.

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random vari-
ables X and Y is the function F : R? — [0, 1], defined by:

Fxy(ab)=P[X<aVY<b] for—co<ab< oo

Marginal Distribution

Given a joint distribution Fx,y of two random variables X, Y, one obtains
the marginal distribution of X for any a as follows:

Fx(a)=P[X < a] = lim Fxy(a,b).
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Joint Probability

Joint Probability Mass Function

The joint probability mass function of two discrete random variables X
and Y is the function p : R? — [0, 1], defined by:

px,y(a,b)=P[X=a,Y =D] for —oo < a,b < 0.

Joint Distribution Function

The joint distribution function of two (discrete or continuous) random vari-
ables X and Y is the function F : R? — [0, 1], defined by:

Fxy(a,b)=P[X <a Y <b] for —oco < a,b < 0.

Marginal Distribution

Given a joint distribution Fx,y of two random variables X, Y, one obtains
the marginal distribution of X for any a as follows:

Fx(a)=P[X < a] = lim Fxy(a,b).

Joint Distribution contains (much) more information than the two marginals!
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Discrete Example 1

Example

Let Xi,X> € {1,2,...,6} be independent rolls of an unbiased die. Let
S = Xi + X2 and M := max{Xi, Xo}. Compute the joint probability mass
function p of S and M and the marginal distributions of S and M.

Answer
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Discrete Example 1

Example

Let Xi,X> € {1,2,...,6} be independent rolls of an unbiased die. Let
S = Xi + X2 and M := max{Xi, Xo}. Compute the joint probability mass
function p of S and M and the marginal distributions of S and M.

Answer

b
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o0 0 0 0 0

2/ 0 0 0 0

1/36 2/36 0 0 0

2/36 2/36 0 0

1/36 2/36 2/36

—
coocoocococoocooRG| -
[=}}
o
o

Do oxNo ok wN| e

0
0 0 2/36 2/36 2/36
0 0 1/36 2/36 2/36
0 0 0 2/36 2/36
0 0 0 1/36 2/36
0 0 0 0 2/36
o 0 0 0 1/36
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Discrete Example 1

Example

Let Xi,X> € {1,2,...,6} be independent rolls of an unbiased die. Let
S = Xi + X2 and M := max{Xi, Xo}. Compute the joint probability mass
function p of S and M and the marginal distributions of S and M.

Answer

b
a 1 2 3 4 5 6 ps(a)
2 1/36 0 0 0 0 0 1/36
3 0 2/36 0 0 0 0 2/36
4 0 1/36 2/36 0 0 0 3/36
5 0 0 2/36 2/36 0 0 4/36
6 0 0 1/36 2/36 2/36 0 5/36
7 0 0 0 2/36 2/36 2/36  6/36
8 0 0 0 1/36 2/36 2/36  5/36
9 0 0 0 0 2/36 2/36  4/36
10 0 0 0 0 1/36 2/36  3/36
11 0 0 0 0 0 2/36  2/36
12 0 0 0 0 0 1/36  1/36

pu(b)  1/36 3/36 5/36 7/36 9/36 11/36 1
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Discrete Example 2

Example

Suppose an urn contains balls numbered 1,2,... N. We draw
1 < n < N balls uniformly and without replacement from the urn.
Let X; € {1,2,...,N} be the number of the ball drawn in the i-th step.
What is the marginal distribution of X;?

Answer




Discrete Example 2

Example

Suppose an urn contains balls numbered 1,2,... N. We draw
1 < n < N balls uniformly and without replacement from the urn.
Let X; € {1,2,...,N} be the number of the ball drawn in the i-th step.
What is the marginal distribution of X;?

Answer

We first compute the joint distribution. For distinct ay, a, . . ., an,

Fix i and consider the marginal distribution of X;:
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Joint Distributions of Continuous Variables

Definition

Random variables X and Y have a joint continuous distribution if for
some function f : R? — R and for all numbers a; < by and a» < by,

by by
PlavsX<basy<bl= [ [fxyody.
a Ja

The function f has to satisfy f(x,y) > 0 for all x and y, and
7o 70 f(x, y)dxdy = 1. We call f the joint probability density.
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Joint Distributions of Continuous Variables

Definition
Random variables X and Y have a joint continuous distribution if for
some function f : R? — R and for all numbers a; < by and a» < by,

by by
PlavsX<basy<bl= [ [fxyody.
a Ja

The function f has to satisfy f(x,y) > 0 for all x and y, and
7o 70 f(x, y)dxdy = 1. We call f the joint probability density.

As in one-dimensional case we switch from F to f by differentiating (or integrating):

2

a b
Flab)= [ [ fxydxdy  and  fxy) = 50 Fxy)
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Example of a Joint Distribution of Continuous Random Variables

= Consider the density:

f(va): —-€

where —oco < X,y < 0.

30 _50x2—50y2+80xy
71_ b
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Example of a Joint Distribution of Continuous Random Variables

= Consider the density:

30 _50x2—50y2180x
f(X7 .y) = 7 - e Y ,V’

where —oco < X,y < 00.
= This is an example of a so-called bivariate normal probability density function.

=l
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—50x% —50y%+80xy
bl

Example of a Joint Distribution of Continuous Random Variables
0

3
f(x,y) = -

= Consider the density:
= This is an example of a so-called bivariate normal probability density function.

where —oco < X,y < 0.
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Source: Modern Introduction to Statistics
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Dealing with Continuous Variables

Example (1/2)

Suppose that the joint probability density of X and Y is given by

26 e™ for0 < x < 00,0 <y < oo,
f(x,y) = .
0 otherwise.

Compute () P[X >1,Y <1]and (i) P[X < Y].

Answer

(i) We first compute:

1 e’}
P[X > 1,Y<1]:/ / 26~ e~ dxdy
0 1
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Dealing with Continuous Variables (cont.)

Example (2/2)
Suppose that the joint probability density of X and Y is given by

0 otherwise.

26 e for0 < x < 00,0 <y < oo,
f(x,y) = { 4

Compute (i) P[X >1,Y <1]and (i)P[X < Y].

Answer

(i) We have:

o [y
PIX<Y]= / / 26" e dxdy
0 0
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