
Hoare logic and Model checking
Part II: Model checking

Lecture 10: Implementing model checking

Christopher Pulte cp526
University of Cambridge

CST Part II – 2023/24

In the last two lectures we saw LTL and CTL as examples of
temporal logics that can specify the behaviour of temporal models.
For using temporal logics in the verification of artefacts, we need
model checkers to check a temporal model against a temporal
logic specification.

In this lecture we will implement a naïve model checker for CTL:
the world’s worst model checker for CTL.

1

Model checking

What is model checking?

The model checking problem for CTL is to determine, for a given a
temporal model M over some set of atomic propositions AP and
CTL formula ψ over AP , whether M satisfies ψ:

M � ψ

We need a function that computes this.

2

Definite temporal models

The temporal models we have defined in lecture 7 were not
restricted in any way that guarantees computability. Here we will
assume a definite temporal model, using a finite set of states
and computable functions for the initial state predicate, the
transition relation and the labelling of states.

3

Type of temporal models

type state = int

module States = Set.Make(Int)

type 'ap tmodel = {
s : States.t; (* finite set *)
s0 : state -> bool; (* computable *)
t : state -> state -> bool; (* computable *)
l : state -> 'ap -> bool; (* computable *)

}

4

Specifying a CTL model checker

We will implement a naïve CTL model checker:

val mc : 'ap tmodel -> 'ap state_prop -> bool

which has the following specification:

∀M, ψ. (mc M ψ ⇔ M � ψ)

5

Defining a CTL model checker

To check whether the model satisfies a property ψ, we have to
check whether the initial states satisfy ψ. We check this using an
auxiliary function mca that returns the states satisfying a given
state property.

let mc (m : 'ap tmodel) (psi : 'ap state_prop) : bool =
assert (left_total m);
let v = mca m psi in
States.for_all (fun s ->

not (m.s0 s) || States.mem s v
) m.s

This mca function works by recursion on the formula, calling itself
on the sub-formulas.

6

CTL model checker

(This is often phrased in terms of “labelling” of states.)

Strategy: For a given CTL state-property ψ: compute the states
of the temporal model that satisfies ψ, by

• exploiting CTL formula equivalences to encode ψ as a formula
ψ̂ that uses only existential path quantification (using
negation in the right places)

• (recursively) computing the states satisfying the sub-formulas
of ψ̂, and

• using this information to determine which states should be
returned for ψ̂.

7

CTL model checker: propositional fragment

mca, for a given temporal model and state property returns the set
of states satisfying the state property.
let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)

: States.t =
match psi with
| True ->

m.s
| False ->

States.empty
| AP p ->

States.filter (fun s -> m.l s p) m.s
| Not psi' ->

let v = mca m psi' in
States.diff m.s v

...
8

CTL model checker: propositional fragment (continued)

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =

...
| And (psi1, psi2) ->

let v1 = mca m psi1 in
let v2 = mca m psi2 in
States.inter v1 v2

| Or (psi1, psi2) ->
let v1 = mca m psi1 in
let v2 = mca m psi2 in
States.union v1 v2

| Impl (psi1, psi2) ->
mca m (Or (Not psi1, psi2))

...

9

CTL model checker: A

We use

• A X ψ′ = ¬E X (¬ψ′)

• A G ψ′ = ¬E F (¬ψ′)

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =

...
| A (X psi') ->

mca m (Not (E (X (Not psi'))))
| A (G psi') ->

mca m (Not (E (F (Not psi'))))
| A (F _) ->

failwith "TODO: exercise"
| A (U (psi1, psi2)) ->

failwith "TODO: tricky exercise"
...

10

CTL model checker: EX

If we know in which states ψ′ holds, then we know in which states
X ψ′ holds: their predecessors:

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =

...
| E (X psi') ->

let v = mca m psi' in
States.filter (fun s ->

States.exists (fun s' ->
m.t s s'

) v
) m.s

...

11

CTL model checker: EF

We use E F ψ′ = E (> U ψ′)

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =

...
| E (F psi') ->

mca m (E (U (True, psi')))
...

12

CTL model checker: EG and EU

Left to do are E G ψ′ and E (ψ1 U ψ2), which talk about infinite
paths. We will implement those using fixpoint operations on sets,
where the finite size of the set of states guarantees termination.

13

Fixpoint. New compared to handout.

let rec fixpoint (f : States.t -> States.t)
(s : States.t) : States.t =

let s' = f s in
if States.equal s s' then s else fixpoint f s'

14

CTL model checker: EG

For E G ψ′:
1. compute the set v of states satisfying ψ′

2. define the output set to be v ′ := v
3. until there are no more changes: remove from v ′ elements

that cannot transition into v ′

| E (G psi') ->
let v = mca m psi' in
fixpoint (fun v' ->

States.filter (fun s ->
States.exists (fun s' ->

m.t s s'
) v'

) v'
) v

...
15

CTL model checker: EU

For E (ψ1 U ψ2):
1. compute the sets v1 and v2 of states satisfying ψ1 and ψ2

2. define the output set to be v ′ := v2

3. until there are no more changes: add states from v1 that can
transition into v ′

| E (U (psi1, psi2)) ->
let v1 = mca m psi1 in
let v2 = mca m psi2 in
fixpoint (fun v' ->

States.union v'
(States.filter (fun s ->

States.exists (fun s' ->
m.t s s'

) v'
) v1)

) v2
...

16

Actually implementing model checking

This is not very efficient!

In practice,

• the labelling (the vs) are memoised: in our code the vs are
re-computed each time, in the case of nested CTL formulas

• “symbolic model checking” uses binary decision diagrams (IB
Logic and proof) to represent sets of states, and performs
operations on sets-as-BDDs, instead of explicitly manipulating
the sets;

• the states can be computed lazily;
• “partial order reduction” tries to not enumerate redundant

interleavings;
• …
• 40+ years of tricks!

17

Counterexamples.
Defs simplified and fixed wrt handout

Generating counterexamples

Adapted from “Tree-Like Counterexamples in Model Checking”.

If the specification is not satisfied, and is in ACTL, then we can do
better than just say “no”: we can produce a counterexample.

The idea is that M 2 ψACTL is equivalent to M � ¬ψACTL, where ¬ψACTL

can be expressed in ECTL.

So M 2 ψACTL implies the existence of a witness for the
corresponding ECTL property.

We will now assume formulas in negation normal form: formulas
without implication, and where the only use of negation is
immediately preceding an atomic proposition.

18

Shape of ECTL witnesses

The shape of an ECTL witness for a set of atomic propositions AP
and temporal model M:

WitnessM :=

| WAP ∈ M�S → WitnessM
| WNAP ∈ M�S → WitnessM
| WAnd ∈ WitnessM → WitnessM → WitnessM
| WOrL ∈ WitnessM → WitnessM
| WOrR ∈ WitnessM → WitnessM
| WX ∈ M�S → M�S → WitnessM → WitnessM
| WF ∈ list M�S → WitnessM → WitnessM
| WG ∈ list (M�S × WitnessM) → WitnessM
| WU ∈ list (M�S × WitnessM) → WitnessM

There are (on purpose) no cases for A 19

Being an ECTL witness

We will define when a witness is a “valid witness” for an ECTL
property:

(s �M ψ) wit-by W

should hold whenever W is a valid witness for the fact that ψ
holds in state s of temporal model M.

20

Being an ECTL witness: atomic propositions

A witness for an atomic proposition is just the fact that the atomic
proposition holds according to M�`:

(s �M p) wit-by W def
=

W = WAP s ∧ M�` s p

Similarly for negation of atomic propositions.

21

Being an ECTL witness: next

A witness for ‘next’ is a transition from the current state to a next
state, and a witness that the sub-property holds in the next state:

(s �M (E X ψ)) wit-by W def
=

∃s ′ ∈ M�S,W ′ ∈ WitnessM . W = WX s s ′ W ′ ∧
s M�T s ′ ∧
(s ′ �M ψ) wit-by W ′

22

Being an ECTL witness: future

A witness for the ‘future’ temporal operator is a finite path that
leads to a state for which we have a witness that it satisfies the
sub-property:

(s �M E F ψ) wit-by W def
=

∃s ′ ∈ M�S, π ∈ list M�S,W ′ ∈ WitnessM .
W = WF π W ′ ∧
IsFinitePath M π ∧
nth π 0 = s ∧
last π = s ′ ∧
(s ′ �M ψ) wit-by W ′

23

Being an ECTL witness: generally

A witness for the ‘generally’ temporal operator is a lasso-shaped
path, together with witnesses that each state along the path
satisfies the sub-property:

(s �M E G ψ) wit-by W def
=

∃SWs ∈ list (M�S × WitnessM).

W = WG SWs ∧
let π = firsts SWs in
IsFinitePath M π ∧
nth π 0 = s
(∃i ∈ N. (last π) M�T (nth π i)) ∧∀j ∈ N, s ′ ∈ M�S,W ′ ∈ WitnessM .(

nth SWs j = 〈s ′,W ′〉 ⇒
(s ′ �M ψ) wit-by W ′

)

24

Being an ECTL witness: until

(s �M E (ψ1 U ψ2)) wit-by W def
=

∃SWs ∈ list (M�S × WitnessM), s ′ ∈ M�S,W ′ ∈ WitnessM .

W = WU (SWs ++ [〈s ′,W ′〉]) ∧
let π = firsts SWs ++ [s ′] in
IsFinitePath M π ∧
nth π 0 = s ∧∀i ∈ N, s ′′ ∈ M�S,W ′′ ∈ WitnessM .(

nth SWs i = 〈s ′′,W ′′〉 ⇒
(s ′′ �M ψ1) wit-by W ′′

) ∧

((s ′ �M ψ2) wit-by W ′)

25

Being an ECTL witness: conjunction

(s �M ψ1 ∧ ψ2) wit-by W def
=

∃W1 ∈ WitnessM ,W2 ∈ WitnessM .(
W = WAnd W1 W2 ∧
(s �M ψ1) wit-by W1 ∧ (s �M ψ2) wit-by W2

)

26

Being an ECTL witness: disjunction

(s �M ψ1 ∨ψ2) wit-by W def
=

∃W ′ ∈ WitnessM . (
W = WOrL W ′ ∧ (s �M ψ1) wit-by W ′

)
∨(

W = WOrR W ′ ∧ (s �M ψ2) wit-by W ′
)

27

Satisfiability and existence of witnesses

Here we have required finite temporal models, and so witnesses are
finite. (Otherwise, we would need to deal with infinite witnesses.)

Now, if we have M 2 ψ for some ACTL formula ψ, there exists a
witness W for the fact that the ECTL formula corresponding to
¬ψ holds — and we could effectively find it by tweaking our model
checking algorithm (details elided).

28

Witnesses beyond ECTL

Can we have witnesses for more than just ECTL?

Yes. For example, one of the nice things about LTL is that
counterexamples are just paths.

29

Summary

We saw a model checking algorithm for CTL, and sketched how it
could be modified to generate counterexamples for ACTL formulas.

30

