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Example 11.1.2: epidemic model
Let X,, € N be the number of infected people on day n,
and let it evolve according to

Xn+1 = X,, — Recoveries,, + Infections,,

(We'll let the distributions of Recoveries,, and
Infections,, depend only on X,,, making this a Markov
model.)
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Example 11.1.3 (active users)
Let X,, € N be the number of users currently using an
online platform at timestep n, and let it evolve according to

Xn+1 = X, + Newusers,, — Departures,,

(We’ll let the distributions of Newusers,, and Departures,,
depend only on X,,, making this a Markov model.)
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s How likely is it that the epidemic
dies out? §11.3 “Hitting probabilities” (* non-examinable)

«» If it doesn’t die out, what’s the
growth rate? §11.6 “Drift models” (* non-examinable)

¢ What'’s the average number
of active users?
How can we learn this

distribution? §11.4, 11.5 “Stationarity”
Needed for Part Il Machine Learning & Bayesian Inference

** How can we tell which of these two behaviours

we’ll see?  §11.4.2 “Existence and uniqueness” (* non-examinable)
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It looks like this
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J distribution is stable

i.e. unchanging over time

X; ~ T means:

300 400 4600 4700 4800 4900 5000 ]P)(Xl — .X) — T[.X' for a” X in the state Space

Can we find a stable probability distribution m, i.e. a distribution such that Xy ~m = X; ~ w? J

(If so, and if Xy ~ m, then X; ~ m for all i > 0. We then say the chain is stationary.)

A distribution T over the state space is
called a stationary distribution or
equilibrium distribution if

XONT[ = Xl""T[

§11.5. What does stgtionarity have to do with the histogram above, Wh[/ch shows time-averages?
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Example 11.4.1 (Stationary distribution)
Find the stationary distribution of Cambridge

weather.
e
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Example 11.4.1 (Stationary distribution)
Find the stationary distribution of Cambridge

weather.
e

rain
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In matrix notation,
m =mP orequivalently (P — DIr=0

m-1=1
Or, putting these two together, - = [0
Am =Db T
(P'T) T\' =
l d
11— | L
W N\
The A motr Toe b veek”

# let states be rain=0, drizzle=1, grey=2

P = np.array([[.2,.6,.2], [.3,0,.7], [@,.5,.5]1)

A = np.concatenate([(P-numpy.eye(3)).T, [[1,1,1111)
n = np.linalg.lstsq(A, [0,0,0,11)[0]

» np.linalg.lstsq(A,b) seeks min|Ax — b|?. If Ax = b can be solved, it will find a
X

solution. It doesn’t care about redundant equations.

np.linalg.solve(A,b) solves Ax = b. It requires an exact system of equations,
i.e. A square with no redundant equations.



Stationarity equations

If 77 is a stationary distribution, then it

solves
T =T1npP, n-1=1

Conversely, if 77 is a distribution that
solves m = mP then 1 is a stationary
distribution.

But does this help us to find a stationary
distribution? Can these equations even be solved?

** What if there’s no solution?
s What if there are multiple solutions?

§11.4.2 “Existence and uniqueness” (* non-examinable)




Existence and uniqueness
Suppose (1) the state space is fini

and (2) the state space is irreducible i.e.

there’s a path from any state to any other

Then there is a unique stationary
distribution, and it specifies the long-

run time-average distribution, _

If the state space is infinite, the

Markov chain might ‘explode’ \

1.6 1
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If there are ‘absorbing’ states, the
Markov chain might get stuck

This epidemic model does have a unique stationary distribution
(namely the “stuck at zero” distribution), but the epidemic may nonetheless
explode in which case long-run time-averages aren’t equal to stationary.



Suppose (1) the state space is finite

and (2) the state space is irreducible i.e.
there’s a path from any state to any other

Then there is a unique stationary
distribution, and it specifies the long-
run time-average distribution.

Even if the state space is infinite, there
might still be a stationary distribution /W
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In practice, just go ahead and solve m = 7 P. (This can always be solved.)

= |f there’s a unique solution and it can be normalized to sum to 1,
then it’s the unique stationary distribution.

= Otherwise, we have to work harder to classify the Markov chain’s behaviour.



Stationarity equations

If 77 is a stationary distribution, then it
solves
T = 1P, m-1=1

Conversely, if 77 is a distribution that
solves m = mP then 1 is a stationary
distribution.

Detailed balance equations
Lemma. If 77 is a vector that satisfies

Ty Py, = 1, P, forallx,y
then 77 solves m = 7tP.

It doesn’t hurt to try to solve detailed balance!

If we're lucky, it tells us the stationary distribution
If not, we just have to slog through solving m = P




Example 11.4.4
(Stationary distribution via detailed balance)

Find the stationary distribution of the Markov chain let's <2 'T Voo .
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IB Data Science syllabus

Deriving the likelihood
Supervised and generative models
built from standard distributions

Models that depend on linear Parameter interpretation
combinations of features and identifiability

Linear mathematics
Sequence models

Stationarity
Probability calculations

Least squares optimization
Brute force optimization

Bayes’s rule
Bayesianist formulation Monte Carlo

Confidence intervals and hypothesis testing
Empirical distributions
Prediction confidence (example sheets 2&3)




Please give feedback via the Qualtrix link
you should have received in your email.
(Or in person!)

= (Café office hours today 1-2pm
= Café office hours Friday 11am—-12noon

" | recommend the talk by Simon Peyton Jones,
today at 3pm



BIG IDEA 1
Probability modelling is a

great way to approach
machine learning

Why don’t more people adopt it?
Because it’s unnatural!

[f you don’t get this elementary, but mildly
unnatural, mathematics of elementary
probability into your repertoire, then you
oo through a long life like a one-legged

man in an ass kicking contest.
Charles Munger,
business partner of Warren Buffett



AT FE MACHINE LEARNING

Supervised Learning Generative Modelling
Data: {1, y1), (2, ¥2), ooy (6, V) 3 Data: {x1,%5, .0, X}
Labels: V1, V2, «» Yn Task: I tosynitresize ned values
b : .
Task: Pred] 't bxl, Mocled Pfy (‘fb'/' 15) | Ier att t, ..I. Mtoloif,{tﬁx (;j;)
Holdout ?? therg i predictios, so we
Holdout evaluation: : asyire-predicti 55227

evaluation: holdove (Oj Tk
The real strength of probability modelling is for
the generative case, where the algorithmic
approach just doesn't have the tools we need.

edge weights 6



Exercise

| have a labelled dataset of (x, y)
pairs and | want to predict y given
x. Which of these three models is
best?

prediction loss: bad prediction loss: great prediction loss: ok



Exercise

| have a labelled dataset of (x, y)
pairs and | want to model y given
x. Which of these three
probability models is best?

+ training data
holdout data

log lik: bad log lik: great log lik: ok
holdout log lik: bad holdout log lik: terrible holdout log lik: ok
UNDERFIT OVERFIT GOLDILOCKS FIT

Holdout log likelihood is a sensible way to evaluate a
probability model. It’s the natural way to generalize
holdout prediction loss.



Exercise

| have an unlabelled dataset

{x1, %5, ..., X} and | want to fit a
generative model. Which model is

best?

| training data
holdout data

fit to data: bad fit to data: great fit to data: ok
holdout log lik: bad holdout log lik: terrible holdout log lik: ok
UNDERFIT OVERFIT GOLDILOCKS FIT

Holdout log likelihood is a perfect way to evaluate
generative models.



“The job of my code is to
make predictions.

algorithmic
ML

“Evaluate my code by
how close its predictions

are to the ground truth.”
“The job of my code is to

propose a probability model.

probabilistic ML,
generative Al

There are many different
ways to measure
prediction accuracy, for
different types of data:

“Evaluate my code by the
likelihood it assigns to the

= ground truth.”
RZ
mean log Pr (dataset)
square _
for error hinge loss
FEGression | @ ben's x margin though it’s known by different
ranking names in different fields:
mean loss = perplexity in NLP
S absolute _ = KL divergence in ML
error  classification = Jikelihood ratio in statistics
Area accuracy for = jgnorance score in sports betting
VAR ) ~ classification
curve
score
_/

and inside every sane algorithmic ML procedure
there’s a probability model struggling to get out!



BIG IDEA 2
We model because

we want to make
inductive claims

How will my model perform in the wild?

Laws of Nature?

x T
in-the-

Laws of Nature

x T
N hold- IS
training S wild
L Y,

»
full dataset

Every genuine scientific theory must be

falsifiable.

[t is easy to obtain evidence in support of
virtually any theory; the evidence only
counts if it 1s the positive result of a
genuinely risky prediction.

Karl Popper (1902-1994)



Why does Popper not believe in supporting evidence?

HYPOTHESIS
All swans are white, i.e.
Vx IsSwan(x) = IsWhite(x)

escree Boaut

ANALYSIS
The hypothesis is logically equivalent to
Vx —IsWhite(x) = —IsSwan(x)

SUPPORTING EVIDENCE
My pot plant isn’t white, and it isn’t a swan.



It’s hard to make out the inductive claim from
the “results” section of a typical ML paper.

Table 2: Results on HotpotQA distractor (dev). means usage of extra hyperlink data in
Wikipedia. Models beginning with “—" are ablation studies without the corresponding design.

Model AnsEM Ans F7; SupEM Sup £7 Joint EM Joint F;

Baseline [53] 45.60 59.02 20.32 64.49 10.83 40.16
DecompRC [29] 69.63 N/A N/A N/A N/A
QFE [30] 68.06 57.75 84.49 34.63 59.61
DFGN [36] 69.69 51.50 81.62 33.62 59.82
SAE [45] 73.58 56.93 84.63 38.81 64.96
SAE-large 79.62 61.53 86.86 45.36 71.45
79.36 60.33 87.33 43.57 71.03
82.19 62.76 88.47 47.11 74.21
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BERT (sliding window ) variants

BERT Plus
LQR-net + BERT
GRN + BERT
EPS + BERT
LQR-net 2 + BERT

69.76 42 8¢ 80.74 27.13
70.66 ) 82.42 31.18
68.98 12,58 84.00 32.88
73.31 12,58 83.20 3540
73.78 0.2 84.09 36.56

P-BERT 74.16 1.3¢ 82.76 3542
EPS + BERT(large) 76.36 8,28 85.60

CogLTX 65.09 718.72 6.1 85.78

o O O O n L Lh
led = o o h =] Lh
oo o Wik o R

g = ol = = ad

multi-step reasoning 62.00 75.39 .74 83.10
rehearsal & decay 61.44 74.99 - 47.37
train-test matching 63.20 77.21 2. 84.21

Results. Table 2 shows that Cogl.TX outperforms most of previous methods and all 7 BERT variants
solutions on the leaderboard.* These solutions basically follow the framework of aggregating the
results from sliding windows by extra neural networks, leading to bounded performances attributed
to insufficient interaction across paragraphs.




Limitations of current ML: it makes weak inductive claims

_ hold- BRI R
training ST wild
N Y,

v
full dataset

“My classification
algorithm achieves

93.7% accuracy on
the holdout set.”

What your readers think (and want):

For a new in-the-wild datapoint x,
P(classify x correctly) = 93.7%

What you actually meant:

When | take a big bunch of new in-the-wild
datapoints” then, averaged across this bunch,

fraction classified correctly = 93.7%

* assuming that this bunch matches the composition of my holdout set



Limitations of current ML: it has trouble with generalization

Machine learning approach Scientist’s approach

“The job of a model is to generalize “The job of a model is to generalize to
to new data. I'll split my data into novel situations. Any model that’s not
training + holdout, and measure how based on well-grounded scientific
accurate it is on the holdout set.” concepts will not align with the Laws

of Nature, so it will probably make bad
predictions.”



Everything ShOU.ld be made [t can scarcely be denied that the supreme goal of

. ) / all theory is to make the irreducible basic
as simple as possible,

elements as simple and as few as possible without
having to surrender the adequate representation of

but not Simpler. a single datum of experience.

Albert Einstein the Herbert Spencer Lecture,
Oxford, 10 June 1933

“It 1s more important to have
beauty in one’s equations than

to have them fit experiment.”
Paul Dirac



Limitations of current ML: logical learning

You
Bleen is an adjective, meaning "if the year is before 2000 then blue, otherwise
green". | have a bleen car, and the year is 2023. What colour is my car?

*) ChatGPT
Your car, described as "bleen" and given the year 2023, would be green. The
definition of "bleen" you provided changes the color based on the year: blue for
years before 2000 and green for years from 2000 onwards. Since 2023 is after

2000, the color of your car would be green.

@ -
a Human:

Did you know that there is no country in Africa that starts with the letter "k"?

ChatGPT:

Yes, that's correct! While there are 54 recognized countries in Africa, none of them begin

with the letter "K". The closest is Kenya, which starts with a "K" sound, but is actually
spelled with a "K" sound. It's always interesting to learn new trivia facts like this.

Current Al does some amazing things with one-shot learning, but it’s still missing the picture.

When you study IB Artificial Intelligence, think hard about why old-school Al can do things that
modern Al can’t.
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