§11 first page Markov chains
§12.1 Learning a random process
$\operatorname{Pr}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}_{X_{0}}\left(x_{0}\right) \operatorname{Pr}_{X_{1}}\left(x_{1} \mid x\right) \operatorname{Pr}_{X_{2}}\left(x_{2} \mid x_{0}, x_{1}\right) \times \cdots \times \operatorname{Pr}_{X_{n}}\left(x_{n} \mid x_{0} \cdots x_{n-1}\right) \quad$ by the chain rule for probability
If we have a dataset of sequences, and we have a probability model (e.g. a RNN or a
Transformer neural network) that computes $\operatorname{Pr}_{X_{i}}\left(x_{i} \mid x_{0} \cdots x_{i-1}\right)$, then we can fit it using maximum likelihood estimation.

Markov chain
a random process in which each X_{i} is generated based only on the preceding value X_{i-1}
$X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots$
$\operatorname{Pr}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}_{X_{0}}\left(x_{0}\right) \operatorname{Pr}_{X_{1}}\left(x_{1} \mid x_{0} \operatorname{Pr}_{X_{2}}\left(x_{2} \mid x_{1}\right) * \cdots \operatorname{Pr}_{X_{n}}\left(x_{n} \mid x_{n-1}\right)\right.$

Applications of Markov chains: dynamical systems

Let X_{t} be the full state of the system at time t. We'd like to use historical data to learn the dynamics ($X_{t} \mid X_{t-1}=x_{t-1}$), so that we can simulate it. sulate

,

Given an image, create a sequence with progressively more and more noise, until we get pure noise. Do this for many images, to create a training dataset of sequences.

Reverse the sequences. Train a Markov chain to learn the dynamics $\left(X_{t} \mid X_{t-1}=x\right)$.

If we apply these dynamics to a new pure-noise image, we will generate a novel image.

Applications of Markov chains: stable diffusion

Example 12.1.1: fitting a Markov model Let $\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a time series which we believe is generated by

$$
X_{i+1}=a+b X_{i}+N\left(0, \sigma^{2}\right)
$$

Estimate a, b, and σ using maximum likelihood estimation.

$$
\begin{aligned}
\operatorname{Pr}\left(x_{0} x_{1} \ldots x_{n}\right) & =\operatorname{Pr}\left(x_{0}\right) \prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right) \\
& =\operatorname{Pr}\left(x_{0}\right) \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\left(x_{i}-\left(a+b x_{i-1}\right)\right)^{2} / 2 \sigma^{2}} \quad \text { sink e } x_{i} \sim N\left(a+b x_{i}, \sigma^{2}\right) \text {. } \\
\begin{array}{l}
\text { The question well us } \\
\text { nothing at all about } \\
\text { the dist. of } x_{0}
\end{array} & =? ? ? \prod_{i=1}^{n} \ldots \ldots
\end{aligned}
$$

$$
\operatorname{Pr}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=? 7 ? \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\left(x_{i}-\left(a+b x_{i-1}\right)\right)^{2} / 2 \sigma^{2}}
$$

To fit our model, we need to maximize this expression over a, b, σ.

predictor	response
x_{0}	x_{1}
x_{1}	x_{2}
x_{2}	x_{3}
\vdots	\vdots
x_{n-1}	x_{n}

But this is exactly the same maximization as for the supervised learning task of predicting x_{i} given x_{i-1} using the model $X_{i} \sim a+b x_{i-1}+N\left(0, \sigma^{2}\right)$

It's simple to fit using sklearn.

Autoregressive modelling

This is a regression (i.e. supervised learning with numerical response). It's called 'auto' because we're predicting x using x itself as a predictor.
§11.2
Calculations with Markov chains
(

$$
\begin{aligned}
& \text { There are three ways to specify a Markov chain model. } \\
& \text { STATE SPACE DIAGRAM } \\
& \text { CAUSAL DIAGRAM stake space }=\begin{array}{l}
\text { rain, } \\
\text { drizzle, } \\
\text { grey }\}
\end{array} \\
& \text { Each } X_{i} \text { is generated based only on } \\
& \text { the preceding state } X_{i-1}: \\
& X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots
\end{aligned}
$$

There are three ways to specify a Markov chain model.
.

$$
\left.\begin{array}{l}
\left.P=\underset{\text { grey }}{\text { mizzle }} \begin{array}{ccc}
\text { ald }^{9} \\
.2 & .6 & .2 \\
.3 & 0 & .7 \\
0 & .5 & .5
\end{array}\right] \\
P_{i j}=\mathbb{P}\left(\begin{array}{c}
\text { next state } \\
\text { is } j
\end{array}\right. \\
i
\end{array}\right)
$$

 .

\square $-$
 \square $+$

Example 11.2.1
(Multi-step transition probabilities)
If it's grey today, what's the chance of rain two days from now?

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots
$$

$$
\left.P=\underset{\text { grey }}{\operatorname{drizze}} \underset{.2}{\operatorname{dan}} .2 \begin{array}{cc}
.6 & .2 \\
.3 & 0 \\
0 & .5 \\
.5
\end{array}\right]
$$

$$
\begin{array}{ll}
\mathbb{P}\left(x_{2}=r \mid x_{0}=g\right) & \begin{array}{l}
r=r a i n \\
g \\
=g r e y
\end{array} \\
d=d r i z 2 .
\end{array}
$$

Law of Total Probability with baggage $\left\{x_{0}=g\right\}$

$$
=\sum_{x} \mathbb{P}\left(X_{2}=r \mid X_{1}=x\right) \mathbb{P}\left(X_{1}=x \mid X_{0}=g\right)
$$

since x_{2} is generated baked only an X_{3}, the stapertime 0 is irrelevents once we know the stare at rime 1.
a.k.a. Memorylessuess.

$$
=\sum_{x} P_{x r} P_{g x}=\sum_{x} P_{g x} P_{x r}=\left[P^{2}\right]_{g r}
$$

Law of Total Probability

$$
\begin{aligned}
\mathbb{P}(A & =a) \\
& =\sum_{b} \mathbb{P}(A=a \mid B=b) \mathbb{P}(B=b)
\end{aligned}
$$

Law of Total Probability with baggage $\{C=c\}$

$$
\begin{aligned}
\mathbb{P}(A & =a \mid C=c) \\
& =\sum_{b} \mathbb{P}(A=a \mid B=b, C=c) \mathbb{P}(B=b \mid C=c)
\end{aligned}
$$

Bayes's rule with baggage $\{C=c\}$

$$
\begin{aligned}
\mathbb{P}(A & =a \mid B=b, C=c) \\
& =\frac{\mathbb{P}(A=a \mid C=c) \mathbb{P}(B=b \mid A=a, C=c)}{\mathbb{P}(B=b \mid C=c)}
\end{aligned}
$$

Definition of conditional independence

If A and B are conditionally independent given $\{C=c\}$ then

$$
\mathbb{P}(A=a \mid B=b, C=c)=\mathbb{P}(A=a \mid C=c)
$$

Calculating with Markov Chains

The chain is memoryless

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots
$$

i.e. each item is generated based only on the previous item

Whenever we're doing calculations with Markov chains, we have to wrangle our expression into a form where we can use memorylessness (plus the transition probability matrix).

Often, this will involve conditioning using the Law of Total Probability.

The memorylessness theorem:
conditional on the present, the future is independent of the past.

$$
\begin{aligned}
& \begin{array}{l}
\text { funve present part } \\
\mathbb{P}\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}, X_{0}=x_{0}\right)=\mathbb{P}\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right)
\end{array} \\
& \mathbb{P}\left(X_{3}^{\text {future }}=x_{3} \mid X_{1}^{\text {progent }}=x_{1}, X_{0} \stackrel{\text { past }}{=} x_{0}\right)=\mathbb{P}\left(X_{3}=x_{3} \mid X_{1}=x_{1}\right) \\
& \mathbb{P}\left(X_{3}^{\text {pulvive }} \stackrel{\text { prozut }}{=} x_{3} \mid X_{2}=x_{2}, X_{0}^{\text {part }}=x_{0}\right)=\mathbb{P}\left(x_{3}=x_{3}\left(x_{2}=x_{2}\right)\right.
\end{aligned}
$$

Technicalities (*non-examinable)

Formally, a Markov chain is defined by specifying the form of its likelihood function: $\forall x_{0}, \ldots, x_{n}$

$$
\operatorname{Pr}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}_{X_{0}}\left(x_{0}\right) \operatorname{Pr}_{X_{1}}\left(x_{1} \mid x_{0}\right) \operatorname{Pr}_{X_{2}}\left(x_{2} \mid x_{1}\right) \times \cdots \times \operatorname{Pr}_{X_{n}}\left(x_{n} \mid x_{n-1}\right)
$$

From this, one can prove memorylessness results such as

$$
\operatorname{Pr}_{X_{3}}\left(x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}, X_{0}=x_{0}\right)=\operatorname{Pr}_{X_{3}}\left(x_{3} \mid X_{2}=x_{2}\right)
$$

and indeed the full memorylessness theorem.

If you're ever stuck trying to prove a result about Markov chains, and if you can't see a way to use memorylessness, try going back to basics in the form of the likelihood function.

Exercise
Given that yesterday was rain, and tomorrow is rain, what's the chance that today is drizzle?

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots
$$

$$
\mathbb{P}\left(X_{1}=x_{1} \mid x_{0}=x_{0}, X_{2}=x_{2}\right)
$$

Bayes's rule: $A \rightarrow B$,
figure out A given B.
what were doing: $\quad x_{0} \rightarrow x_{1} \rightarrow x_{2}$
figure out x_{1} given x_{2} and x_{0}.
This is a fir like Bayes's, but fancier.

Why I'm excited about this sort of result (* non-examinable)

In science, we don't just want to learn associations, we want to learn causal mechanisms.

- For example, smoking is associated with getting cancer ... but perhaps smoking is protective against cancer, and the association is because of some hidden causal factor (e.g. genetics) that encourages smoking and also predisposes towards cancer.

In machine learning, we're often presented with a supervised learning task ("learn to predict y given x_{1} and x_{2} "), and we don't even think about the underlying mechanisms.

- If the causal mechanism is $X_{1} \rightarrow Y \rightarrow X_{2}$, we can still train a supervised learning model to predict Y (as per the previous exercise)
- Open research question: how can we train ML systems to learn the causal mechanisms, rather than just associations?

Hidden Markov models

For a hidden Markov model, the likelihood function $\operatorname{Pr}_{\underline{X}}(\underline{x})$ is nasty, and it's pretty much impossible to learn the model from \underline{x} data.

So why are hidden Markov models useful?

- Uber collects precise logs (both \underline{z} and \underline{x}) from a few drivers, so it can learn the full probability model for how \underline{Z} and \underline{X} are generated using straightforward supervised learning
- Then, for regular trips (only \underline{x} data available), they can infer the posterior $(\underline{Z} \mid \underline{X}=\underline{x})$ using Bayes's rule
- (Alternatively, they can simply find the most likely z_{T} using the Viterbi algorithm)

```
(0) Improving Uber's Mapping Accu x +
```

Engineering
https://www.uber.com/en-GB/blog/mapping-accuracy-with-catchme/
ata/ML
Improving Uber's Mapping Accuracy with CatchME

Animals 1--4, GPS tracks

Challenge.

Our friend Data Stoat has gone missing!
The GPS sensor that they normally carry has stopped working. But they still have a low-res camera with mobile uplink, so we know what sort of scenery they're in.

Can you help find Data Stoat?

- Use data from animals 1-4 (for which we know both \underline{Z} and \underline{x}) to learn the probability model.
- Use computational Bayes to find the distribution of \underline{Z} given $\underline{X}=\underline{x}$, and submit your answer as a heatmap.
- Your score will be the probability you assign to Data Stoat's actual location.
- Best answer wins a stylish Data Stoat T-shirt

Animal id=0, camera only

