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Markov chains

§12.1
Learning a

random process
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If we have a dataset of sequences, and we have a probability model (e.g. a RNN or a
Transformer neural network) that computes Pry (x;[x, -+ x;_1), then we can fit it using

maximum likelihood estimation.
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Applications of Markov chains: dynamical systems
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Let X; be the full state of the system at time t.
We'd like to use historical data to learn the
dynamics (X¢|X;—1 = xt—1), so that we can
simulate it.




Applications of Markov chains: stable diffusion

Given an image, create a sequence with progressively more and more noise, until we get pure noise.
Do this for many images, to create a training dataset of sequences.

If we apply these dynamics to a new pure-noise image, we will generate a novel image.
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Example 12.1.1: fitting a Markov model
Let [x, x4, ..., X, | be a time series which we

believe is generated by i
Xis1=a+bX;+N(,c?). 3\

Estimate a, b, and ¢ using maximum likelihood

estimation. 'z
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To fit our model, we need to maximize this expression over a, b, o.

But this is exactly the same maximization as for the

X X1 supervised learning task of predicting x; given x;_4
using the model X; ~ a + bx;_, + N(0,0?)

X1 X2
X2 X3 It’s simple to fit using sklearn.
Xn—-1 Xn

Autoregressive modelling

This is a regression (i.e. supervised learning with numerical response).
It’s called ‘auto’ because we’re predicting x using x itself as a predictor.



§11.2
Calculations with

Markov chains



There are three ways to specify a Markov chain model.

STATE SPACE DIAGRAM TRANSITION PROBABILITY MATRIX
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If the state space is R we can’t write out the full

matrix so we instead specify Pry (x:|X;—1 = x;_1)

CAUSAL DIAGRAM

Each X; is generated based only on
the preceding state X;_:

X1 o X, 2> X3 >




Example 11.2.1

(Multi-step transition probabilities)

If it’s grey today, what’s the chance of rain
two days from now?
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Laws of probability that can help when working with Markov chains 5112

Law of Total Probability Law of Total Probability with baggage {C = ¢}
P(A =a) PA=al|C =r0)

=zIP>(A=a|B=b)IP(B=b) =zIP>(A=a|B=b,C=c)IP>(B=b|C=c)
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Bayes'’s rule Bayes’s rule with baggage {C = ¢}
P(A=a|B =b) P(A=a|B=b_C=c)

_P(A=a)P(B=b|A=a) _PA=a|C=c)P(B=blA=a,C =)

B P(B = b) u P(B = b|C = ¢)
Definition of independence Definition of conditional independence
If A and B are independent then If A and B are conditionally independent given {C = c} then

P(A=a|B=b)=PA=a) PA=a|B=bC=c)=PA=a|C =c)



The chain is memoryless

Xo—o X, > -
i.e. each item is generated based only on
the previous item

Whenever we’re doing calculations with Markov chains, we have
to wrangle our expression into a form where we can use
memorylessness (plus the transition probability matrix).

Often, this will involve conditioning using the Law of Total
Probability.

The memorylessness theorem:
conditional on the present,
the future is independent of the past.

P(X3 = x3 | Xy = x5, X1 = x5, Xo=55> = P(X3 = x3 | X = x3)
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Technicalities (*non-examinable)

Formally, a Markov chain is defined by specifying the form of its likelihood function: Vx, ..., x,,
Pr(xo, X1, .., Xn) = Pry (xo) Pry, (x1[x0) Pry, (x2]x1) X --- X Pry (xp|xp-1)

From this, one can prove memorylessness results such as
Pry, (X3 | Xy = %3, X1 = x1, X9 = %) = Pry, (x3 | X3 = x3)

and indeed the full memorylessness theorem.

If you’re ever stuck trying to prove a result about Markov chains, and if you can’t see a way to
use memorylessness, try going back to basics in the form of the likelihood function.
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Why I'm excited about this sort of result (* non-examinable)

In science, we don’t just want to learn associations, we want
to learn causal mechanismes.

= For example, smoking is associated with getting cancer ... but perhaps
smoking is protective against cancer, and the association is because of

; ; : e ket
some hidden causal factor (e.g. genetics) that encourages smoking and + e i
also predisposes towards cancer.
W‘t“cs =
+\A cone X

In machine learning, we’re often presented with a supervised
learning task (“learn to predict y given x; and x,”), and we
don’t even think about the underlying mechanisms.

* |f the causal mechanismis X; —» Y — X,, we can still train a supervised
learning model to predict Y (as per the previous exercise)

=  (Open research question: how can we train ML systems to learn the
causal mechanisms, rather than just associations?




Hidden Markov models

|

For a hidden Markov model, the likelihood function Pry (x) is nasty, and

|

X2

it’s pretty much impossible to learn the model from x data.

So why are hidden Markov models useful?

=  Uber collects precise logs (both z and x) from a few drivers, so it
can learn the full probability model for how Z and X are generated
using straightforward supervised learning

= Then, for regular trips (only x data available),

they can infer the posterior (Z|X = x) using Bayes’s rule

= (Alternatively, they can simply find the most likely z

using the Viterbi algorithm)

‘true’ state

noisy observed sequence

(im}) B Improving Uber's Mapping Accu. X | =+ -
&« O o www.uber.com . F&, m ¢ G’
Engineering ~

https://www.uber.com/en-GB/blog/mapping-accuracy-with-catchme/

Irﬁproving Uber’s Mapping Accuracy with
CatchME



Data Stoat



Challenge.
Our friend Data Stoat has gone missing!

The GPS sensor that they normally carry has
stopped working. But they still have a low-res
camera with mobile uplink, so we know what
sort of scenery they're in.

Can you help find Data Stoat?

Z4 -7 »73—>--- true location
X1 X5 X3 colour of scenery

Use data from animals 1-4 (for which we know both
Z and x) to learn the probability model.

Use computational Bayes to find the distribution of Z
given X = x, and submit your answer as a heatmap.

Your score will be the probability you assign to Data
Stoat’s actual location.

Best answer wins a stylish Data Stoat T-shirt

Animals 1--4, GPS tracks

Animal id=0, camera only

0 100 200 300 400 500
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