GPT is a model for sequences.

\& It sees text as a sequence of tokens $\underline{x}=x_{0} x_{1} x_{2} \cdots x_{N}$
\otimes Its training dataset is a collection of sequences $\left\{\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}\right\}$

```
The following is a classic Chinese poem from the Tang dynasty, translated
into English.
The dawn light strikes the head of my bed
I see leaves
TEXT TOKEN IDS
```

```
[464, 1708, 318, 257, 6833, 3999, 21247, 422, 262, 18816, 30968, 11
14251, 656, 3594, 13, 198, 198, 464, 17577, 1657, 8956, 262, 1182, 286,
616, 3996, 198, 40, 766, 5667, 220]
```


GPT is a probability model for sequences of tokens

Let $\underline{X}=X_{0} X_{1} X_{2} \cdots X_{N}$ be a random sequence of tokens, of random length N
What's a good probability model for \underline{X} and how do we fit it to a training dataset $\left\{\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}\right\}$?

Once we have a trained probability model, we can use it for completion. We give it an input prompt $\underline{x}=x_{0} x_{1} \cdots x_{m}$ and it generates a sample from

$$
\left(\underline{X} \mid X_{0}=x_{0}, \ldots, X_{m}=x_{m}\right)
$$

GPT playground: https://platform.openai.com/playground?mode=complete

§12. What's a good

 probability model for sequences, and how can we fit it?Bag-of-words text generation
Choose each word randomly, independently.
"us the incite o'er a land-damn are peace
incardinate take him worthy quick generals $\square^{\prime \prime}$

> end-ofsentence token

Probability model: generate \underline{X} by producing random words until we produce \square.
$X_{1}, X_{2}, \ldots, X_{N}$,
$\operatorname{Pr}_{\underline{\underline{X}}}\left(x_{1} x_{2} \cdots x_{n}\right)=\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(x_{2}\right) \times \cdots \times \operatorname{Pr}\left(x_{n}\right) \operatorname{Pr}(\square)$

Let's let $\operatorname{Pr}(w)=p_{w}$ where $p=\left[p_{w_{1}}, p_{w_{2}}, \ldots, p_{w_{V}}, p_{\square}\right]$ is a probability vector with an entry for each word in the vocabulary.

We can learn the p vector by maximizing the likelihood of the dataset $\left\{\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}\right\}$. The mle is simple: $p_{w}=$ fraction of occurrences of word w in the dataset

Markov model
Based on a graph of word-to-word transitions.
"to foreign princes lie in your blessing god who
shall have the prince of rome $\square^{\prime \prime}$

Probability model: generate \underline{X} by starting at \square and jumping from word to word until we hit \square again.

$$
\square \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{N} \rightarrow \square
$$

$\operatorname{Pr}_{\underline{X}}\left(x_{1} x_{2} \cdots x_{n}\right)=\operatorname{Pr}\left(x_{1} \mid \square\right) \times \operatorname{Pr}\left(x_{2} \mid x_{1}\right) \times \cdots \times \operatorname{Pr}\left(x_{n} \mid x_{n-1}\right) \times \operatorname{Pr}\left(\square \mid x_{n}\right)$

Let's let $\operatorname{Pr}(w \mid v)=P_{v W}$ for some matrix P that denotes the word-to-word transition probabilities. The maximum likelihood estimate for P is easy to find, by simple counting of word pairs.

Andrei Markov (1856-1922)

Markov's trigram model
"to be wind-shaken we will be glad to receive at
once for the example of thousands $\square^{\prime \prime}$

Probability model: Generate \underline{X} by starting with and repeatedly generating the next word based on the preceding two, until we produce \square.
$\operatorname{Pr}_{\underline{X}}\left(x_{1} x_{2} \cdots x_{n}\right)=\operatorname{Pr}\left(x_{1} \mid \square \square\right) \operatorname{Pr}\left(x_{2} \mid \square x_{1}\right) \operatorname{Pr}\left(x_{3} \mid x_{1} x_{2}\right) \times \cdots \times \operatorname{Pr}\left(x_{n} \mid x_{n-2} x_{n-1}\right) \operatorname{Pr}\left(\square \mid x_{n-1} x_{n}\right)$

Let's let $\operatorname{Pr}(w \mid u v)=P_{(u v) w}$
It's easy to estimate P, the (word,word)-to-word transition probabilities, by simple counting.
(Before counting, preprocess the dataset by putting at the start and \square at the end of every sentence.)

A Markov Chain is a sequence in which each item is generated based only on the preceding item.

The trigram model is a Markov chain, whose items are word-pairs.

deterministic bookkeeping function $f((x, y), z)=(y, z)$
(x, y)

Can we get a better model by using more history?

deterministic bookkeeping function $f((x, y), z)=(y, z)$
(x, y)
random generation

Trigram character-by-character model trained on Shakespeare:
"on youghtlee for vingiond do my not whow'd no crehout withal deepher forand a but thave a doses?"

5-gram character-by-character model trained on Shakespeare:
"once is pleasurely. though the the with them with comes in hand. good. give and she story tongue."

QUESTION. What are the advantages and disadvantages of a long history window?

QUESTION. Can we do better than using a fixed history window?

Recurrent Neural Network (RNN)

Let's use a neural network to learn an appropriate history digest. This is more flexible than choosing a fixed history window.

RNN character-by-character model trained on Shakespeare [due to Andrej Karpathy]:

```
"PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep."
```


$$
\begin{aligned}
& X_{i} \sim \operatorname{Cat}\left(p_{i}\right) \\
& \left(s_{i+1}, p_{i+1}\right)=f_{\theta}\left(s_{i}, X_{i}\right)
\end{aligned}
$$

We can train it in the usual way, by maximizing the log likelihood of our dataset. This is easy, because there's a simple explicit formula for the likelihood of a datapoint:

$$
\begin{aligned}
\operatorname{Pr}_{\underline{X}}\left(x_{1}, \ldots, x_{n}\right)= & \operatorname{Pr}_{X_{1}}\left(x_{1}\right) \operatorname{Pr}_{X_{2}}\left(x_{2} \mid x_{1}\right) \times \cdots \times \operatorname{Pr}_{X_{n}}\left(x_{n} \mid x_{1} \cdots x_{n-1}\right) \operatorname{Pr}_{X_{n+1}}\left(\square \mid x_{1} \cdots x_{n}\right) \\
\quad & \text { by the chain rule for probability } \\
= & {\left[p_{1}\right]_{x_{1}}\left[p_{2}\right]_{x_{2}} \times \cdots \times\left[p_{n}\right]_{x_{n}}\left[p_{n+1}\right]_{\square} } \\
& \text { where each } p_{i} \text { is a function of } x_{1} \cdots x_{i-1}
\end{aligned}
$$

```
def loglik(xstr):
    res = 0
    s,x = 0,\square
    for x next in xstr + "口":
        s,p = fols,x)
        res += log(p[x next ])
        X = X Xext
```

 return res

The history of random sequence models

	Hidden Markov models chains	RNN	LSTM	Transformers

Transformer architecture

This is a probability model for a random sequence \underline{X}.
Like the RNN, there's a simple explicit formula for the log likelihood $\operatorname{Pr}_{\underline{\underline{X}}}(x)$, so it's easy to train.
It's more powerful than an RNN, because f has access to the full sequence; it doesn't have to squeeze history into a "history digest" at each step.
some
cunning function
tokens, encoded as vectors

What does f look like? How is it built out of differentiable functions?

Split the text into tokens $t_{i} \in\{1, \ldots, W\}$
Turn each token into a vector $e_{i} \in \mathbb{R}^{d}$
by looking up an embedding matrix $E \in \mathbb{R}^{W \times d}$

For each position $i \in\{1, \ldots, n\}$
create a position-embedding vector $t_{i} \in \mathbb{R}^{d}$
$\left[\begin{array}{c}\sin (i) \\ \cos (i) \\ \sin (i / 2) \\ \cos (i / 2) \\ \vdots\end{array}\right]$

Let $x_{i}=e_{i}+t_{i} \in \mathbb{R}^{d}$

