
GPT is a model for sequences.

❖ It sees text as a sequence of tokens 𝑥 = 𝑥0𝑥1𝑥2 ⋯ 𝑥𝑁

❖ Its training dataset is a collection of sequences {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

GPT is a probability model for sequences of tokens

❖ Let 𝑋 = 𝑋0𝑋1𝑋2 ⋯ 𝑋𝑁 be a random sequence of tokens, of random length 𝑁

❖ What’s a good probability model for 𝑋
and how do we fit it to a training dataset {𝑥(1), 𝑥(2), … , 𝑥(𝑛)} ?

GPT playground: https://platform.openai.com/playground?mode=complete

❖ Once we have a trained probability model, we can use it for completion.
We give it an input prompt 𝑥 = 𝑥0𝑥1 ⋯ 𝑥𝑚 and it generates a sample from

𝑋 𝑋0 = 𝑥0, … , 𝑋𝑚 = 𝑥𝑚)

https://platform.openai.com/playground?mode=complete

§12. What’s a good
probability model for sequences,
and how can we fit it?

Bag-of-words text generation
Choose each word randomly, independently.

“us the incite o'er a land-damn are peace

incardinate take him worthy quick generals □”

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr(𝑥1) Pr(𝑥2) × ⋯ × Pr(𝑥𝑛) Pr(□)

Probability model: generate 𝑋 by producing random words until we produce □.

𝑋1, 𝑋2, … , 𝑋𝑁, □

Let’s let Pr 𝑤 = 𝑝𝑤 where 𝑝 = [𝑝𝑤1
, 𝑝𝑤2

, … , 𝑝𝑤𝑉
, 𝑝□] is a probability vector

with an entry for each word in the vocabulary.

We can learn the 𝑝 vector by maximizing the likelihood of the dataset {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}.
The mle is simple: 𝑝𝑤 = fraction of occurrences of word 𝑤 in the dataset

end-of-
sentence
token

Markov model
Based on a graph of word-to-word transitions.

“to foreign princes lie in your blessing god who

shall have the prince of rome □”

to

be
or

sleep
afeard

Probability model: generate 𝑋 by starting at □ and jumping from word to word until we hit □ again.

□ → 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑁 → □

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr 𝑥1 □ × Pr 𝑥2 𝑥1 × ⋯ × Pr 𝑥𝑛 𝑥𝑛−1 × Pr(□|𝑥𝑛)

Let’s let Pr 𝑤 𝑣 = 𝑃𝑣𝑤 for some matrix 𝑃 that denotes the word-to-word transition probabilities.
The maximum likelihood estimate for 𝑃 is easy to find, by simple counting of word pairs.

end-of-
sentence
token

§12.2

Andrei Markov (1856–1922)

Markov’s trigram model
“to be wind-shaken we will be glad to receive at

once for the example of thousands □”

be contented to be what they

who is to be executed this

in him to be truly touched

took occasion to be quickly woo’d

Probability model: Generate 𝑋 by starting with □□ and repeatedly generating the next
word based on the preceding two, until we produce □.

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr 𝑥1 □□ Pr 𝑥2 □𝑥1 Pr 𝑥3 𝑥1𝑥2 × ⋯ × Pr 𝑥𝑛 𝑥𝑛−2𝑥𝑛−1 Pr(□|𝑥𝑛−1𝑥𝑛)

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

Let’s let Pr 𝑤 𝑢𝑣 = 𝑃(𝑢𝑣)𝑤

It’s easy to estimate 𝑃, the (word,word)-to-word transition probabilities, by simple counting.
(Before counting, preprocess the dataset by putting □□ at the start and □ at the end of every sentence.)

§12.2

Different ways to write the trigram model:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁 𝑋𝑁□⋯

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

A Markov Chain is a sequence in which
each item is generated based only on
the preceding item.

The trigram model is a Markov chain,
whose items are word-pairs.

§12.2

Trigram character-by-character model trained on Shakespeare:
“on youghtlee for vingiond do my not whow’d no crehout withal

deepher forand a but thave a doses?”

5-gram character-by-character model trained on Shakespeare:
“once is pleasurely. though the the with them with

comes in hand. good. give and she story tongue.”

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

QUESTION. What are the advantages and disadvantages
of a long history window?

QUESTION. Can we do better than using a fixed history
window?

□□□□ □□□𝑋1 □□𝑋1𝑋2 □𝑋1𝑋2𝑋3 𝑋𝑁−3𝑋𝑁−2𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

Can we get a better model by
using more history?

§12.2

learnable function
𝑓𝜃 𝑠, 𝑥 = (𝑝, 𝑠new)

𝑝

𝑋new

random generation
𝑋new ∼ Cat(𝑝)

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.”

Recurrent Neural Network (RNN)
Let’s use a neural network to learn an appropriate history digest. This is
more flexible than choosing a fixed history window.

§12.2

def loglik(xstr):
 res = 0
 s,x = 0,□
 for xnext in xstr + “□”:
 s,p = 𝑓𝜃(s,x)
 res += log(p[xnext])
 x = xnext
 return res

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

A Recurrent Neural Network (RNN) is a probability model for generating a random
sequence 𝑋.

𝑋𝑖 ∼ Cat(𝑝𝑖)

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint:

Pr𝑋 𝑥1, … , 𝑥𝑛 = Pr𝑋1
𝑥1 Pr𝑋2

𝑥2 𝑥1 × ⋯ × Pr𝑋𝑛
𝑥𝑛 𝑥1 ⋯ 𝑥𝑛−1 Pr𝑋𝑛+1

(□|𝑥1 ⋯ 𝑥𝑛)

= 𝑝1 𝑥1
𝑝2 𝑥2

× ⋯ × 𝑝𝑛 𝑥𝑛
𝑝𝑛+1 □

where each 𝑝𝑖 is a function of 𝑥1 ⋯ 𝑥𝑖−1

by the chain rule for probability

§12.2

The history of random sequence models

Markov
chains TransformersRNN

1913 1986 2017

LSTM

1997

Better models of the data
All trained by maximizing the
log likelihood of the data

linguistic
theories

non-
probabilistic
metrics

larger
scale

prompt
engineering

Hidden
Markov
models

1966

Transformer architecture
This is a probability model for a random sequence 𝑋.

Like the RNN, there’s a simple explicit formula for the log likelihood Pr𝑋(𝑥), so it’s easy to train.

It’s more powerful than an RNN, because 𝑓 has access to the full sequence;
it doesn’t have to squeeze history into a “history digest” at each step.

Th
e

fo
llo

w
in

g

is a classic

C
h

in
ese

p
o

em

fro
m

th
e

Tan
g

d
yn

asty

, tran
slated

in
to

En
glish

.

some
cunning
function

𝑓

tokens,
encoded as
vectors

𝑝1

𝑝2

𝑝3

⋮

probability
distribution
over tokens

next token
is chosen
at random

What does 𝑓 look like? How is it built out of differentiable functions?

The following is a classic

464 1708 318 257 6833

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

Split the text into tokens 𝑡𝑖 ∈ {1, … , 𝑊}

Turn each token into a vector 𝑒𝑖 ∈ ℝ𝑑

by looking up an embedding matrix 𝐸 ∈ ℝ𝑊×𝑑

1 2 3 4 5
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

For each position 𝑖 ∈ 1, … , 𝑛
create a position-embedding vector 𝑡𝑖 ∈ ℝ𝑑

sin 𝑖
cos 𝑖

sin Τ𝑖 2
cos Τ𝑖 2

⋮

Let 𝑥𝑖 = 𝑒𝑖 + 𝑡𝑖 ∈ ℝ𝑑+ + + + +

𝑥𝑖

Let 𝑖 𝑖 + 𝑖+ + + + +

𝑥𝑖

𝑞𝑖

𝑘𝑖

𝑣𝑖

For each position 𝑖 ∈ {1, … , 𝑛},
let 𝑞𝑖 = 𝑄𝑥𝑖, let 𝑘𝑖 = 𝐾𝑥𝑖, let 𝑣𝑖 = 𝑉𝑥𝑖

∈ ℝ𝑒 ∈ ℝ𝑒 ∈ ℝ𝑑

𝑦1 𝑦2 𝑦𝑗 𝑦4 𝑦5
For each position 𝑗 ∈ {1, … , 𝑛} we’ll produce

an output vector 𝑦𝑗 ∈ ℝ𝑑, as follows:

1. let 𝑠𝑗𝑖 = 𝑞𝑗 ⋅ 𝑘𝑖 and 𝑎𝑗∗ = softmax Τ𝑠𝑗∗ 𝑒

2. let 𝑦𝑗 = Σ𝑖𝑎𝑗𝑖𝑣𝑖𝑔

From the final value 𝑦𝑛, compute 𝑝 = 𝑔 𝑦𝑛 ∈ ℝ𝑊

where 𝑔 is some straightforward neural network
𝑝

𝑋𝑛+1 Generate the next token by 𝑋𝑛+1 ∼ Cat(𝑝)

𝑎𝑗𝑖 is the attention

that we should give
to input 𝑥𝑖 when
computing output 𝑦𝑗

𝑥1 𝑥3 𝑥4 𝑥5

In practice, it’s useful to use
several passes of the
attention mechanism.

The following is a classic

embedding layer
convert text to vectors in ℝ𝑑

attention layer

process the output

attention layer

process the output

attention layer

process the output

readout next word 𝑋𝑛+1

	Slide 1: GPT is a model for sequences.
	Slide 2: GPT is a probability model for sequences of tokens
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Different ways to write the trigram model:
	Slide 9: Can we get a better model by using more history?
	Slide 10: Recurrent Neural Network (RNN)
	Slide 11
	Slide 13: The history of random sequence models
	Slide 14: Transformer architecture
	Slide 15: What does f look like? How is it built out of differentiable functions?
	Slide 16: What does f look like? How is it built out of differentiable functions?
	Slide 17

