GPT is a model for sequences.

\/

% It sees text as a sequence of tokens x = xyx1x, =+ Xy

A/

% Its training dataset is a collection of sequences {x(1), x(?), ..., x(™)}

The following is a classic Chinese poem from the Tang dynasty, translated
into English.

The dawn light strikes the head of my bed
I see leaves

[464, 1708, 318, 257, 6833, 3999, 21247, 422, 262, 18816, 30968, 11,
14251, 656, 3594, 13, 198, 198, 464, 17577, 1657, 8956, 262, 1182, 286,
616, 3996, 198, 40, 766, 5667, 220]

TOKEN IDS

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

GPT is a probability model for sequences of tokens

4

L/

L)

* Let X = XX X, - Xy be a random sequence of tokens, of random length N

4

L)

1)

* What's a good probability model for X
and how do we fit it to a training dataset {x(1, x(?), ..., x(W}?

** Once we have a trained probability model, we can use it for completion.
We give it an input prompt x = xgx4 :** X;,, and it generates a sample from

(X |Xo = %0, o) Xon = %)

GPT playground: https://platform.openai.com/playground?mode=complete

https://platform.openai.com/playground?mode=complete

§12. What’s a gooad
orobability model for sequences,
and how can we fit it?

©
€

) Q;" Bag-of-words text generation
Choose each word randomly, independently.

“us the incite o'er a land-damn are peace
incardinate take him worthy quick generals O”

king

end-of-
sentence
token

Probability model: generate X by producing random words until we produce .

Xy, Xy, o, Xy, O

Pry(x1x3 -+ x5,) = Pr(xy) Pr(x;) X --- X Pr(xy) Pr(0)

Let’s let Pr(w) = p,, where p = [py, , Pw,, -, Pw,, Po] is a probability vector
with an entry for each word in the vocabulary.

We can learn the p vector by maximizing the likelihood of the dataset {x("), x(?), ..., x(™)],
The mle is simple: p,, = fraction of occurrences of word w in the dataset

be —

e
T\ Markov model

Based on a graph of word-to-word transitions.

. afeard
SIeep “to foreign princes lie in your blessing god who
_____I shall have the prince of rome O”
end-of-
sentence
token

Probability model: generate X by starting at 0 and jumping from word to word until we hit O again.

O0->X{ 2> X, > >Xy—0O

Pry(x1x5 -+ xn) = Pr(xq|0) X Pr(xz|x;) X -+ X Pr(xy,|x,-1) X Pr(0lx,)

Let’s let Pr(w|v) = P, for some matrix P that denotes the word-to-word transition probabilities.
The maximum likelihood estimate for P is easy to find, by simple counting of word pairs.

Andrei Markov (1856—1922)

be contented to be what they Markov’s trlgram model
who is to be executed this
in him to be truly touched “to be wind-shaken we will be glad to receive at

took occasion to be quickly woo'd once for the example of thousands 0O”

Probability model: Generate X by starting with OO and repeatedly generating the next
word based on the preceding two, until we produce 0O.

Prg(ﬁxz - Xp) = Pr(xg|00) Pr(x;|Oxq) Prxs|xgx;) X - X Prx,|x,_2xn—1) Pr(0)x,_1x,)

P N e S

D D :Xl :Xz :X3 :X4 > cee XN—> D

Let’s let Pr(w|uv) = Py
It’s easy to estimate P, the (word,word)-to-word transition probabilities, by simple counting.
(Before counting, preprocess the dataset by putting OO at the start and O at the end of every sentence.)

Different ways to write the trigram model:

O O X4 X5 X3 X4 Xy O
00 _'DX:[_'X:lXZ _')(2)(3_> _>XN—1XN_>XNI:I
m%;‘:gax—-m

A Markov Chain is a sequence in which
each item is generated based only on
the preceding item.

The trigram model is a Markov chain,
whose items are word-pairs.

___.I:I deterministic bookkeeping
function f((x,y),2) = (v, 2)

(x,y)

\ random generation

Xnew

Can we get a better model by
using more history?

ces deterministic bookkeeping
- DDXl DXlXZ DXZX?’ DXN_lXN ’I:I function f((x,y),2) = (¥,2)
\ \ \ \ \ (x,¥) .
X1 X5 X3 X4 O \ random generation
Trigram character-by-character model trained on Shakespeare: XneW

“on youghtlee for vingiond do my not whow’d no crehout withal
deepher forand a but thave a doses?”

O0O0oa DDDDXl |:||:||:|X1X2 I:IDX1X2X3 °e I:IXN—3XN—2XN—1XN
X4 X, X3 X, O

5-gram character-by-character model trained on Shakespeare:
“once 1s pleasurely. though the the with them with
comes in hand. good. give and she story tongue.”

QUESTION. What are the advantages and disadvantages
of a long history window?

QUESTION. Can we do better than using a fixed history
window?

Recurrent Neural Network (RNN)

Let’s use a neural network to learn an appropriate history digest. This is
more flexible than choosing a fixed history window.

S S S S learnable function
————— > 1 ——--—» B - - - -
O lfel e 2 o322 [fel o [l fo(s,%) = (P, Snew)

e /
’ Vs ’
/’ V2 / ~ /
/7 y Vi 7’ Ve
7 ’ ’ 7 ’
7 ’ 7 7 ’
7’ ’
/ / ,

0] X, X, Xs O

\ random generation
Xnew ~ Cat(p)

Xnew

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:
Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.”

A Recurrent Neural Network (RNN) is a probability model for generating a random
sequence X.

0 S1 o S2 oo 153 s > [EISN ~ .
R R - X; ~ Cat(p;)
/ \ \ \ \ (Si+1 Di+1) = fo(si, Xi)
¢ X, X, X3 O

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint:

Pry(xq, ..., xn) = Pry (x1) Pry (x3]xq) X -« X Pry_(xp|%q - xp_1) Pry__ (Qlxq -+ xp)

by the chain rule for probability

— [pl]x1 [pZ]Xz X X [pn]xn [pn+1]|:1 loglik(XStP):

res = 0

S,X = 0,0

for X,.. in xstr + “O”:
S,p = fg(S,X)
res += 1log(p[Xyext])

P(A wel 8 oud <) = P(A) P(E[R) PE(AB) X = Yoo

return res

where each p; is a function of x; -~ x;_4

The history of random sequence models

Hidden
Markov Markov
chains models RNN LSTM Transformers
Better models of the data
1913 1966 1986 1997 2017 All trained by maximizing the
log likelihood of the data
linguistic non- larger prompt
theories probabilistic scale engineering

metrics

Transformer architecture

This is a probability model for a random sequence X.
Like the RNN, there’s a simple explicit formula for the log likelihood Pry (), so it’s easy to train.

It’s more powerful than an RNN, because f has access to the full sequence;

it doesn’t have to squeeze history into a “history digest” at each step. some_
cunning
function P1| probability
f P2 distribution
P3| over tokens
tokens, -
encoded as
vectors
. hext token
is chosen
5 o - o+ = m - at random

H —
> =1
) (@)

2ISSe|d
asauIy)
waod
wo.j
Y3
due]

m
>

Sl
=
>

Ayseulp

oL ot
=3 o

o
g @
5 =

()
o o

The following is a classic Chinese poem from the Tang dynasty, translated

into English.

What does f look like? How is it built out of differentiable functions?

The following is a classic Split the text into tokens t; € {1, ..., W}
464 1708 318 257 6833 Turn each token into a vector e; € R¢
” ” ” ” ” by looking up an embedding matrix E € RW*4
: : : : : - sini)
For each position i € {1, ..., n} cos(i)
1 2 3 4 > s - d sin(i/2)
create a position-embedding vector t; € R
(R
A / &) ¥
@ @ @ @ @ Letxl-=ei+tl-EIRd

For each position i € {1, ...,n},
let q; = Qx;, letk; = Kx;, letv; = Vx;
€ R € R€ e R4

For each position j € {1, ..., n} we’ll produce
an output vector y; € R, as follows:

aj; is the attention
that we should give

1. lets;; = q; - k; and a;. = softmax(s;./ve) to input x, wher
2. let yj = Eiajivi computing output y;

«— Q

From the final value y,,, compute p = g(y,) € RY
where g is some straightforward neural network

D —

Xn41 Generate the next token by X,,,; ~ Cat(p)

The

following is a

l

I

classic

v

embedding layer

convert text to vectors in Rd

attention layer

process the output

e ———

attention layer

In practice, it’s useful to use

process the output

] several passes of the
attention mechanism.

AA/\

attention layer

process the output

[readout]—> next word X,

	Slide 1: GPT is a model for sequences.
	Slide 2: GPT is a probability model for sequences of tokens
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Different ways to write the trigram model:
	Slide 9: Can we get a better model by using more history?
	Slide 10: Recurrent Neural Network (RNN)
	Slide 11
	Slide 13: The history of random sequence models
	Slide 14: Transformer architecture
	Slide 15: What does f look like? How is it built out of differentiable functions?
	Slide 16: What does f look like? How is it built out of differentiable functions?
	Slide 17

