
Here are marks for IA Algorithms questions last year:

 Women: [17, 14, 18, 12, 17, …]
 Men: [18, 18, 11, 17, 17, …]
 Other: [17, 18,  9,  9, 11, …]

The mean marks are
 Women: 13.22  (n=49)
 Men: 12.28  (n=219)
 Other: 13.10  (n=10)

Women do better.

EXERCISE.
How would you critique 
this analysis?

Made-up data

!



Based on the model

Mark ∼ 𝜇gender + 𝑁(0, 𝜎2)

the 95% confidence intervals are

Ƹ𝜇𝐹 ∈ 11.8, 14.6
Ƹ𝜇𝑀 ∈ 11.6, 12.9
Ƹ𝜇𝑂 ∈ [10.0, 16.2]

Women tend to do better than Men. There is too little data 
about Other to be confident in any comparison.

EXERCISE.
How would you critique 
this revised analysis?



Based on a model using one-hot coding of gender,

Mark ∼ 𝜇𝐹 + 𝛿𝑀1gender=𝑀 + 𝛿𝑂1gender=𝑂 + 𝑁(0, 𝜎2)

the 95% confidence intervals are

Ƹ𝜇𝐹 ∈ 11.8, 14.6
መ𝛿𝑀 ∈ −2.5, 0.6
መ𝛿𝑂 ∈ [−3.6, 3.3]

Neither መ𝛿𝑀 nor መ𝛿𝑂 is convincingly non-zero.

EXERCISE.
How would you 
implement this 
analysis?

gender mark

F 17

F 14

M 18

M 11

M 17

⋮ ⋮

# The readout function
def t(marks):
    use sklearn.linear_model to fit the proposed model to marks
    return a triple with the intercept_ (𝜇𝐹) and the coef_ (𝛿𝑀 , 𝛿𝑂)

# To create a random synthetic dataset of marks
Let Ƹ𝜇𝐹 , መ𝛿𝑀, መ𝛿𝑂 , ො𝜎 be the mle estimates from the marks column in the dataset
def rmarks():
    pred = Ƹ𝜇𝐹 + መ𝛿𝑀1gender=𝑀 + መ𝛿𝑂1gender=𝑂

    return np.random.normal(loc=pred, scale= ො𝜎)

# Get lots of samples of the test statistic
t_ = [t(rmarks()) for _ in range(10000)]
np.quantile([θ[0] for θ in t_], [.025, .975])   # confint for 𝜇𝐹



I think everyone gets pretty much the 
same mark, regardless of gender.
Mark ∼ 𝜇 + Normal(0, 𝜎2)

How might we decide whether this 
simpler model is good enough?

I think gender affects marks.
Mark ∼ 𝜇gender + Normal(0, 𝜎2)

To answer this, it can be helpful to 
introduce a richer model.



BAYESIANIST

FREQUENTIST

For just two genders:
Consider the richer model with 𝜇gender 

and find a 95% confidence interval for 
𝜇𝑀 − 𝜇𝐹.

ℙ 𝜇𝑀 − 𝜇𝐹 ∈ −3.1, −0.2 = 95%
so it looks like the simpler model isn’t good enough.

For just two genders:
Consider the richer model with 𝜇gender 

and find a 95% confidence interval for 
Ƹ𝜇𝑀 − Ƹ𝜇𝐹.

ℙ Ƹ𝜇𝑀 − Ƹ𝜇𝐹 ∈ −2.5, 0.6 = 95%
so it looks like the simpler model is OK.

If we have prior weights for two models 
(the simple model, and the richer model 
with 𝜇gender), we can find posterior 

weights using Bayes’s rule.

For prior weights 50%/50%, the posterior weights are 
79%/21% in favour of the simpler model.

Hypothesis Testing

(The answer might 
depend on how we 
resample.)

(The answer depends on 
our priors for the 
unknowns.)

confidence intervals model selection



Bayesianist vs frequentist smackdown



§9.3 HYPOTHESIS TESTING



Can you taste the difference 
between milk-first versus tea-first?

HYPOTHESIS: you can’t.

§9.3



tea firstmilk first

milk first

milk first

milk first milk first

tea first

tea first

tea first

tea first

 

 

 

 
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Fisher’s hypothesis testing

Let 𝑥 be the dataset.

State a null hypothesis 𝐻0, i.e. a probability 
model for the dataset

1. Choose a test statistic 
𝑡 ∶ dataset ↦ ℝ

2. Define a random synthetic dataset 𝑋∗, 
what we might see if 𝐻0 were true.

3. Look at the histogram of 𝑡(𝑋∗), and let 𝑝 be 
the probability of seeing a value as extreme 
or more so than the observed 𝑡(𝑥).

A low 𝑝-value is a sign that 𝐻0 should be 
rejected.
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Example 9.6.2.
I have a dataset with readings from 
two groups, 𝑥 = [𝑥1, … , 𝑥𝑚] and 
𝑦 = [𝑦1, … , 𝑦𝑛]. Test whether the two 
groups are significantly different, 
using the test statistic ത𝑦 − ത𝑥.

1  # 1. Define the test statistic
 2  def t(x,y): return np.mean(y) - np.mean(x)

 3  # 2. To generate a synthetic dataset, assuming H0, ...
 4  xy = np.concatenate([x,y])
 5  def rxy_star(): 
 6      return (np.random.choice(xy, size=len(x)),
 7              np.random.choice(xy, size=len(y)))

 8  # 3. Sample the test statistic under H0; find p-value for observed data
 9  t_ = np.array([t(*rxy_star()) for _ in range(10000)])
10  𝑝 = …



Example 9.3.1.
I have a dataset with readings from 
two groups, 𝑥 = [𝑥1, … , 𝑥𝑚] and 
𝑦 = [𝑦1, … , 𝑦𝑛]. Test whether the two 
groups are significantly different, 
using the test statistic ത𝑦 − ത𝑥.

1  # 1. Define the test statistic
 2  def t(x,y): return np.mean(y) - np.mean(x)

 3  # 2. To generate a synthetic dataset, assuming H0, ...
 4  xy = np.concatenate([x,y])
 5  Ƹ𝜇 = np.mean(xy)
 6  ො𝜎 = np.sqrt(np.mean((xy - Ƹ𝜇)**2))
 7  def rxy_star(): 
 8      return (np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=len(x)),
 9              np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=len(y)))

10  # 3. Sample the test statistic under H0; find p-value for observed data
11  t_ = np.array([t(*rxy_star()) for _ in range(10000)])
12  𝑝 = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))



What counts as ‘more extreme’?
▪ Plot the histogram for 𝑡(𝑋∗), assuming 𝐻0 is true

▪ Also plot the histogram for some scenarios where 𝐻0 is 
false

▪ Do the alternatives push 𝑡(𝑋∗) bigger, or smaller, or 
either? This determines what ‘more extreme’ means — 
either one-tailed or two-tailed.
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How do we compute 𝑝 for a two-tailed test?
The 𝑝-value is

ℙ
𝑡(𝑋∗) at least

as extreme as 𝑡(𝑥)
 𝐻0 is true

𝑝 = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))

“6 of my samples of t(X*,Y*) 
are more extreme than t(x,y).”
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The beauty of hypothesis testing is that it lets us test whether 
𝐻0 is a good enough model for the data, without our having 
to specify an alternative model. Instead, we specify a test.

Where do test statistics come from?

There are two common scenarios, 
exploratory and rhetorical.

EXPLORATORY. 
You, the modeller, are trying to come up with a good model 
for the dataset. Suppose you’ve tried out several models, and 
𝐻0 is the best you’ve come up with. Is it good enough?

▪ If you settle for 𝐻0 and someone else comes up with a 
better model, you lose.

▪ So it’s up to you to creatively think up ways to test if 𝐻0 
might be deficient.

RHETORICAL.
Sometimes, there’s a model 𝐻1 that everyone accepts to be 
the natural alternative to 𝐻0.

▪ Example: 𝐻0 = “my drug makes no difference”, 
𝐻1 = “it makes a difference”. 

▪ If so, craft the test statistic to look for evidence 
pointing in the direction of 𝐻1.
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