EXERCISE

What's the cdf for this random variable?

def $\operatorname{rx}(u, v, w, p)$:
\# preconditions: $u<v<w$, and $0<p<1$
$\mathrm{k}=\mathrm{np}$. random. choice(["left", "right"], [p,1-p])
if $k==$ "left":
return np.random.uniform (u, v)
else:
return np.random.uniform(v, w)

Let $K=\left\{\begin{array}{c}\text { left } \quad \text { with prob. } p \\ \text { right } \quad \text { with prob. } 1-p\end{array}\right.$
Let $X \sim\left\{\begin{array}{lc}U[u, v] & \text { if } K=\text { left } \\ U[v, w] & \text { if } K=\text { right }\end{array}\right.$

$\mathbb{P}(X \leq x)=\mathbb{P}(X \leq x \mid K=$ left $) \times \mathbb{P}(K=$ left $)+\mathbb{P}(X \leq x \mid K=$ right $) \times \mathbb{P}(K=$ right $)$ by the Law of Total Probability

Wikipedia: Uniform distribution

Bespoke probability distributions

Our goal:

to find the best distribution we can to fit this dataset.

IA Probability lecture 10

Empirical cumulative distribution functions

Empirical Distribution Functions (Example 1/2)

Empirical Distribution Functions (Example 2/2)

Example 1

Consider throwing an unbiased dice 8 times, and let the realisation be:

$$
\left(x_{1}, x_{2}, \ldots, x_{8}\right)=(4,1,5,3,1,6,4,1) .
$$

What is the Empirical Distribution Function $F_{8}(a)$?

- Answer

Figure: Empirical Distribution Functions of samples from a Normal Distribution $\mathcal{N}(5,4)$ ($n=20$ left, $n=200$ right)

ECDF

Given a dataset of numerical values
[$x_{1}, x_{2}, \ldots, x_{n}$], the empirical cumulative distribution function or ecdf is
$\hat{F}(x)=\frac{1}{n}\binom{$ how many datapoints }{ there are $\leq x}$


```
x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')
```


What if there are repeated values in the dataset, e.g.

$$
x=[0.8,0.8,1.3]
$$


```
x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')
(This code will plot an extra point at (0.8, 1/3), but who cares?
The plot is still correct.)
```


fitted
Gaussian mixture model

But can I find a better-fitting distribution?

But can I find a better-fitting distribution?


```
def rx(u,v,w,p):
    k = np.random.choice(["left","right"], [p,1-p])
    if k == "left":
        return np.random.uniform(u,v)
    else:
        return np.random.uniform(v,w)
```


def $r x\left(x_{1}, x_{2}, \delta\right)$:
k = np.random.choice(["left","right"])
if k == "left":
return np.random.uniform $\left(x_{1}-\delta, x_{1}+\delta\right)$
else:
return np. random. uniform $\left(x_{2}-\delta, x_{2}+\delta\right)$

def $r x\left(x_{1}, x_{2}\right)$:
k = no. randopm.choice(["left", "right"])
if $==1 / \mathrm{ft":}$
else:

Recall the empirical distribution for a
dataset $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$:

$$
\operatorname{ecdf}(x)=\frac{1}{n}(\# \text { points } \leq x)
$$

To generate a random variable \hat{X} whose cdf matches exactly this step function:
def $\operatorname{rxhat}\left(\left[x_{1}, \ldots, x_{n}\right]\right)$:
return np. random. choice $\left(\left[x_{1}, \ldots, x_{n}\right]\right)$

> This is
perfect fit

The empirical distribution

Given a dataset $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ let \hat{X} be the random variable obtained by picking one of the x_{i} at random. (This is a discrete random variable.)

We say this random variable has the empirical distribution of the dataset.

T- The ecdf only applies to real-valued random variables, whereas this definition makes sense for any type of data (text, images, etc.)

Instead of saying "the cdf of \hat{X} matches the ecdf of the data", we can say

$$
\begin{aligned}
\mathbb{P}(\hat{X} \in A) & =\frac{1}{n} \sum_{i=1}^{n} 1_{x_{i} \in A} \\
\mathbb{E} h(\hat{X}) & =\frac{1}{n} \sum_{i=1}^{n} h\left(x_{i}\right)
\end{aligned}
$$

- Empirical modelling The empirical distribution is a perfect fit for a dataset. Why bother fitting a parametric probability model?

Monte Carlo

Let $\left[x_{1}, \ldots, x_{n}\right]$ be sampled from a random variable X. For any real-valued readout function h,

$$
\mathbb{E} h(X) \approx \frac{1}{n} \sum_{i=1}^{n} h\left(x_{i}\right)=\mathbb{E} h(\hat{X})
$$

- Empirical calculations Don't bother doing maths with a tricky random variable X, just take a sample and use its empirical distribution \widehat{X} !

The challenge of induction

induction = inferring general truths from finite data

I tossed four coins and got one head.
What is it reasonable to infer about the probability of heads (call it θ)?

- "The maximum likelihood estimator is $\hat{\theta}=25 \%$, thus the true probability of heads is 25\%"
(hence if I tossed milions more coins that's the fraction of heads I'd see)
- "Allwe know for certain is that $0<\theta<1$ " logical, but useless!
- Let it be random with prior distribution $\Theta \sim U[0,1]$. justifiable, useful, Then $\mathbb{P}(\Theta \in[3 \%, 72 \%] \mid$ data $)=95 \% \quad$ subjective.
- ???

Frequentism

I'm not so bothered about knowing whether $\hat{\theta} \in[l \mathrm{lo}, \mathrm{hi}]$ in this universe.

I'm interested in the frequency with which $\hat{\theta} \in[l o, h i]$ across the multiverse.

How might I simulate the multiverse?

Climate confidence challenge. Find a 95% confidence interval for γ, for Cambridge from 1985 to the present. (It's your choice how to simulate the multiverse.)

Please submit your answer on Moodle by Monday 6 November

Confidence intervals

via resampling
Given a dataset x,

1. Decide on a readout function $t(x)$
2. "Simulate a multiverse of datasets."

- Fit a model for the dataset
- Let X^{*} be a random synthetic dataset, generated from the fitted model
- Simulate many synthetic datasets

3. Compute t for each dataset, and report the spread of t for example with a histogram or a confidence interval

Two-sided 95\% confidence interval
np.quantile(tsamples, [.025, .975])

One-sided 95\% confidence interval
np.quantile(tsamples, [0, .95])

Example.

$$
x=[4.3,5.1,6.1,6.8,7.4,8.8,9.9]
$$

This problem is over-specified. It might as well just say "Find a 95\% confidence interval for the mean of the dataset."

```
1 # 1. Define a readout statistic
2 def t(x): return np.mean(x) since the MLE }\hat{\mu}\mathrm{ is just the sample mean
3 # 2. To generate a synthetic dataset ...
4 \mp@code { d e f ~ r x _ s t a r ( ) : }
5 return np.random.choice(x, size=len(x))
i.e. to simulate what the dataset might have been, we can
simply sample n values from the empirical distribution
(which is a perfect fit to the data)
6 # 3. Sample the readout statistic, and report its spread
t__ = [t(rx_star()) for _ in range(10000)]
8 lo,hi = np.quantile(t_, [.025, . 975])
```


Example 9.2.1.

We are given a dataset
$x=[4.3,5.1,6.1,6.8,7.4,8.8,9.9]$
which we decide to model as independent samples from $N\left(\mu, \sigma^{2}\right)$. Find a 95% confidence interval for $\hat{\mu}$.

```
1 # 1. Define a readout statistic
2 def t(x): return np.mean(x)
3 # 2. To generate a synthetic dataset ...
4 uhat = np.mean(x)
5 ohat = np.sqrt(np.mean((x-\muhat)**2))
6 def rx_star():
7 return np.random.normal(loc=\muhat, scale=\sigmahat, size=len(x))
8 3 3. Sample the readout statistic, and report its spread
9 t_ = [t(rx_star()) for _ in range(10000)]
10 lo,hi = np.quantile(t_, [.025, . 975])
```


Confidence intervals

via parametric resampling
all the data

Given a dataset x and a parametric probability model $\operatorname{Pr}(x)(\theta)$

1. Decide on a readout function $t(x)$
2. "Simulate a multiverse of datasets."

- Fit this model, i.e. estimate $\hat{\theta}$
- Let X^{*} be a random synthetic dataset, generated from the fitted model
- Simulate many synthetic datasets

3. Compute t for each dataset, and report the spread of t
for example with a histogram
or a confidence interval

Parametric resampling

I see temperatures rising by $\hat{\gamma}=2.58^{\circ} \mathrm{C} /$ centur y, in this reality.

What are the values in other parallel universes?

How might I simulate the multiverse?

The model we fitted:
$\mathrm{Temp}_{i} \sim \alpha \sin \left(2 \pi\left(t_{i}+\phi\right)\right)+c+\gamma t_{i}+N\left(0, \sigma^{2}\right)$

Simple way to simulate a new dataset:
Fit $\hat{\alpha}, \hat{c}, \hat{\gamma}, \hat{\sigma}$ from the observed data, then generate n new datapoints $\mathrm{Temp}_{i}, i=1, \ldots, n$, by
$\operatorname{Temp}_{i} \sim \hat{\alpha} \sin \left(2 \pi\left(t_{i}+\hat{\phi}\right)\right)+\hat{c}+\hat{\gamma} t_{i}+N\left(0, \hat{\sigma}^{2}\right)$

Exercise 9.2.3 (Comparing groups).
We are given data $x=\left[x_{1}, \ldots, x_{m}\right]$ which we believe is $N\left(\mu, \sigma^{2}\right)$

and further data $y=\left[y_{1}, \ldots, y_{n}\right]$ which we believe is $N\left(\mu+\delta, \sigma^{2}\right)$.

Find a 95% confidence interval for $\hat{\delta}$.
The MLEs for μ, δ, σ are what you calculated in Example Sheet I question 5:

```
\mu}=\overline{x
\delta}=\overline{y}-\overline{x
\hat{\sigma}=\cdots
```

```
x = [4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9]
2 y = [8.3, 8.5, 8.9]
3 m,n = len(x), len(y)
# 1. Define the readout statistic
def t(x,y): return np.mean(y) - np.mean(x)
```

\# 2. To generate a synthetic dataset
$\hat{\mu}, \hat{\delta}=n p$. mean $(x), n p$. mean $(y)-n p$. mean (x)
$\hat{\sigma}=n p . \operatorname{sqrt}((n p . \operatorname{sum}((x-\hat{\mu}) * * 2+n p \cdot \operatorname{sum}((y-\hat{\mu}-\hat{\delta}) * * 2)) /(m+n))$
def rxy_star():
return (np.random.normal(loc $=\hat{\mu}$, scale $=\hat{\sigma}$, size=m),
np. $\operatorname{random.normal(loc~}=\hat{\mu}+\hat{\delta}$, scale $=\hat{\sigma}$, size $=n)$)

There is only ever ONE dataset, consisting of ALL the observations.

$$
\operatorname{Pr}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} ; \mu, \delta, \sigma\right)=\cdots
$$

To simulate it, we need to estimate ALL the unknown parameters.

```
3 # 3. Sample the readout statistic, and report its spread
```

$14 \boldsymbol{t}_{-}=\left[t\left(* r x _s t a r()\right)\right.$ for _ in range(10000)]
15 lo,hi $=$ np.quantile $\left(\boldsymbol{t}_{-},[.025, .975]\right)$
16 plt.hist(t)

* This resampling approach requires us to simulate the multiverse.
* Which is better, parametric resampling or resampling from the empirical distribution?
* Simulating the multiverse is modelling, not maths. There is no right answer. We just have to invent something we can argue is plausible.
\& We can't possibly deduce "what might have been" from "what was".

$$
\begin{aligned}
& \text { Why is our mirror image flipped } \\
& \text { left-right, and not up-down? }
\end{aligned}
$$

