
𝑥

cdf(𝑥)

0

1

def rx(𝑢,𝑣,𝑤,𝑝):

   # preconditions: u < v < w, and 0 < p < 1
 k = np.random.choice(["left","right"], [𝑝,1-𝑝])
 if k == "left":
  return np.random.uniform(𝑢,𝑣)
 else:
  return np.random.uniform(𝑣,𝑤)

EXERCISE
What’s the cdf for this random variable?

Let 𝐾 = ቊ
left with prob. 𝑝

right with prob. 1 − 𝑝

Let 𝑋 ∼ ቊ
𝑈[𝑢, 𝑣] if 𝐾 = left
𝑈[𝑣, 𝑤] if 𝐾 = right

ℙ 𝑋 ≤ 𝑥 = ℙ 𝑋 ≤ 𝑥 𝐾 = left × ℙ 𝐾 = left + ℙ 𝑋 ≤ 𝑥 𝐾 = right × ℙ(𝐾 = right)

if 𝑥 < 𝑢:

if 𝑢 < 𝑥 < 𝑣:

if 𝑣 < 𝑥 < 𝑤:

if 𝑤 < 𝑥:

u v w

left right

by the Law of Total Probability

ℙ 𝑋 ≤ 𝑥 = 𝑝 ℙ 𝑈 𝑢, 𝑣 ≤ 𝑥 + 1 − 𝑝  ℙ(𝑈 𝑣, 𝑤 ≤ 𝑥) =



Wikipedia: Uniform distribution



random
variable
notation

code

likelihood
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(pdf)

cdf

Bespoke probability distributions
§7.2



Our goal: 
to find the best distribution we can to fit this dataset.

§7
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Empirical cumulative distribution functions



ECDF

Given a dataset of numerical values 
[𝑥1, 𝑥2, … , 𝑥𝑛], the empirical cumulative 
distribution function or ecdf is

෠𝐹 𝑥 =
1

𝑛

how many datapoints
there are ≤ 𝑥

෠𝐹(𝑥)

𝑥

x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')

§7.1



෠𝐹(𝑥)

𝑥

What if there are repeated values in the dataset, e.g.

x = [0.8, 0.8, 1.3] 

x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')

§7.1

(This code will plot an extra point at (0.8, 1/3), but who cares? 
The plot is still correct.)



fitted 
Gaussian mixture 
model

§7.1

But can I find a better-fitting distribution?



Can I generate a random variable with this pdf?
 Is this even a valid pdf?

Can I generate a random variable with this cdf?

§7.1

It’s certainly a valid cdf: 
it starts at 0, goes to 1, 
and is non-decreasing.

But can I find a better-fitting distribution?



𝑥

cdf(𝑥)

𝑢 𝑣 𝑤0

𝑝

1

𝑥

cdf(𝑥)

𝑢1 𝑢2 𝑣1
0

ൗ1
2

1

𝑣2

def rx(𝑢,𝑣,𝑤,𝑝):
 k = np.random.choice(["left","right"], [𝑝,1-𝑝])
 if k == "left":
  return np.random.uniform(𝑢,𝑣)
 else:
  return np.random.uniform(𝑣,𝑤)

def rx(𝑢1,𝑢2,𝑣1,𝑣2):
   # pick either left or right, with equal probability
 k = np.random.choice(["left","right"])
 if k == "left":
  return np.random.uniform(𝑢1,𝑢2)
 else:
  return np.random.uniform(𝑣1,𝑣2)

§7.2



𝑥

cdf(𝑥)

𝑥1 ± 𝛿
0

ൗ1
2

1

𝑥2 ± 𝛿

def rx(𝑥1,𝑥2,𝛿):
 k = np.random.choice(["left","right"])
 if k == "left":
  return np.random.uniform(𝑥1 − 𝛿,𝑥1 + 𝛿)
 else:
  return np.random.uniform(𝑥2 − 𝛿,𝑥2 + 𝛿)

def rx(𝑥1,𝑥2):
 k = np.random.choice(["left","right"])
 if k == "left":
  return 𝑥1

 else:
  return 𝑥2𝑥

ൗ1
2

1

𝑥1 𝑥2

cdf(𝑥)

§7.2

[𝑥1 − 𝛿, 𝑥1 + 𝛿] [𝑥2 − 𝛿, 𝑥2 + 𝛿]



def rxhat([𝑥1, … , 𝑥𝑛]):
    return np.random.choice([𝑥1, … , 𝑥𝑛])

𝑥

ൗ1
𝑛

ൗ2
𝑛

smallest 2nd
smallest

cdf(𝑥)

𝑥

ecdf 𝑥

ൗ1
𝑛

ൗ2
𝑛

smallest 2nd
smallest

Recall the empirical distribution for a 
dataset Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 :

ecdf 𝑥 =
1

𝑛
#points ≤ 𝑥

To generate a random variable ෠𝑋 whose cdf 
matches exactly this step function:

§7.2



The empirical distribution
Given a dataset [𝑥1, 𝑥2, … , 𝑥𝑛] 
let ෠𝑋 be the random variable obtained 
by picking one of the 𝑥𝑖  at random. 
(This is a discrete random variable.)

We say this random variable has the 
empirical distribution of the dataset.

The ecdf only applies to real-valued random 
variables, whereas this definition makes 
sense for any type of data (text, images, etc.)

Instead of saying “the cdf of ෠𝑋 matches the 
ecdf of the data”, we can say

 ℙ ෠𝑋 ∈ 𝐴 =
1

𝑛
σ𝑖=1

𝑛 1𝑥𝑖∈𝐴 

𝔼 ℎ ෠𝑋 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑥𝑖) 

§7.3



▪ Empirical modelling
The empirical distribution is a 
perfect fit for a dataset. Why 
bother fitting a parametric 
probability model?

§7.3

“God forbid that we should give out 
a dream of our own imagination for 
a pattern of the world.”

Francis Bacon, 1561–1626



Monte Carlo
Let [𝑥1, … , 𝑥𝑛] be sampled from a random variable 𝑋. 
For any real-valued readout function ℎ,

𝔼 ℎ 𝑋 ≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖 = 𝔼 ℎ( ෠𝑋) ▪ Empirical calculations
Don’t bother doing maths with 
a tricky random variable 𝑋, 
just take a sample and use its 
empirical distribution ෠𝑋!

§7.3



▪ “The maximum likelihood estimator is መ𝜃 = 25%, 
thus the true probability of heads is 25%”
(hence if I tossed millions more coins that’s the fraction of heads I’d see)

▪ “All we know for certain is that 0 < 𝜃 < 1”

▪ Let it be random with prior distribution Θ~𝑈[0,1].
Then ℙ Θ ∈ 3%, 72%  | data = 95%

▪ ???

unjustified!

logical, but useless!

justifiable, useful,
subjective.

The challenge of induction
induction = inferring general truths from finite data

I tossed four coins and got one head.
What is it reasonable to infer about the probability of heads (call it 𝜃)?



I saw x=1. Let me 
go figure out how 
likely is each 
possible 
explanation Θ=θ.

I saw x=1, ෠𝜃=1/4, 
IN THIS REALITY. 

What was ෠𝜃 in other 
dimensions of the 
multiverse?

Bayes’s rule:
PrΘ 𝜃 𝑥 = 𝜅 PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)



I’m not so bothered about knowing 

whether ෠𝜃 ∈ [lo, hi] in this 
universe. 

I’m interested in the frequency with 

which ෠𝜃 ∈ [lo, hi] across the 
multiverse.

Frequentism

How might I simulate the multiverse?



I see temperatures rising 
by ො𝛾=2.58oC / century, in 
this reality.

What are the 
values in other 

parallel universes?

Climate confidence challenge.
Find a 95% confidence interval for 𝛾,
for Cambridge from 1985 to the present. 
(It’s your choice how to simulate the 
multiverse.)

Please submit your answer on Moodle 
by Monday 6 November



Confidence intervals 
via resampling

Given a dataset 𝑥,

1. Decide on a readout function 𝑡(𝑥)

2. “Simulate a multiverse of datasets.”
▪ Fit a model for the dataset

▪ Let 𝑋∗ be a random synthetic dataset, 
generated from the fitted model

▪ Simulate many synthetic datasets

3. Compute 𝑡 for each dataset, 
and report the spread of 𝑡
for example with a histogram 
or a confidence interval np.quantile(tsamples, [.025, .975])

np.quantile(tsamples, [0,.95])

Two-sided 95% confidence interval

One-sided 95% confidence interval

§9.1, 9.2



Example.
We are given a dataset

𝑥 = 4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9
which we decide to model as independent samples 
from 𝑁(𝜇, 𝜎2). Find a 95% confidence interval for Ƹ𝜇.

1  # 1. Define a readout statistic
 2  def t(x): return np.mean(x)

This problem is over-specified. It might as well just say 
“Find a 95% confidence interval for the mean of the dataset.”

3  # 2. To generate a synthetic dataset ...

6  # 3. Sample the readout statistic, and report its spread
 7  t_ = [t(rx_star()) for _ in range(10000)]
 8  lo,hi = np.quantile(t_, [.025, .975])

4  def rx_star():
 5      return np.random.choice(x, size=len(x))

§9.6

since the MLE ොμ is just the sample mean

i.e. to simulate what the dataset might have been, we can 
simply sample n values from the empirical distribution 
(which is a perfect fit to the data)



Example 9.2.1.
We are given a dataset

𝑥 = 4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9
which we decide to model as independent samples 
from 𝑁(𝜇, 𝜎2). Find a 95% confidence interval for Ƹ𝜇.

1  # 1. Define a readout statistic
 2  def t(x): return np.mean(x)

3  # 2. To generate a synthetic dataset ...

8  # 3. Sample the readout statistic, and report its spread
 9  t_ = [t(rx_star()) for _ in range(10000)]
10  lo,hi = np.quantile(t_, [.025, .975])

4  μhat = np.mean(x)
 5  σhat = np.sqrt(np.mean((x-μhat)**2))
 6  def rx_star():
 7      return np.random.normal(loc=μhat, scale=σhat, size=len(x))

§9.6

i.e. to simulate what the dataset might have been, we can fit 
the probability model N(μ,σ2), then sample n values from it



Confidence intervals 
via resampling

Given a dataset 𝑥

1. Decide on a readout function 𝑡(𝑥)

2. “Simulate a multiverse of datasets.”
▪ Fit a model for the dataset.

▪ Let 𝑋∗ be a random synthetic dataset, 
generated from the fitted model

▪ Simulate many synthetic datasets

3. Compute 𝑡 for each dataset, 
and report the spread of 𝑡
for example with a histogram 
or a confidence interval

and a parametric probability model Pr(𝑥; 𝜃)

Fit this model, i.e. estimate ෠𝜃

parametric resampling

§9.1, 9.2

all the parameters

all the data



I see temperatures rising 
by ො𝛾=2.58oC / century, in 
this reality.

What are the 
values in other 

parallel universes?

The model we fitted:

Temp𝑖 ∼ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜙 + 𝑐 + 𝛾𝑡𝑖 + 𝑁(0, 𝜎2)

Simple way to simulate a new dataset:

Fit ො𝛼, Ƹ𝑐, ො𝛾, ො𝜎 from the observed data, then generate 𝑛 
new datapoints Temp𝑖, 𝑖 = 1, … , 𝑛, by

Temp𝑖 ∼ ො𝛼 sin 2𝜋 𝑡𝑖 + ෠𝜙 + Ƹ𝑐 + ො𝛾𝑡𝑖 + 𝑁(0, ො𝜎2)

Parametric resampling §9.1

How might I 
simulate the 
multiverse?



Exercise 9.2.3 (Comparing groups).
We are given data 𝑥 = [𝑥1, … , 𝑥𝑚] which we believe is 𝑁(𝜇, 𝜎2) 
and further data 𝑦 = [𝑦1, … , 𝑦𝑛] which we believe is 𝑁(𝜇 + 𝛿, 𝜎2). 

Find a 95% confidence interval for መ𝛿.

1  x = [4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9]
 2  y = [8.3, 8.5, 8.9]
 3  m,n = len(x), len(y)

13  # 3. Sample the readout statistic, and report its spread
14  𝒕_ = [𝑡(*rx_star()) for _ in range(10000)]
15  lo,hi = np.quantile(𝒕_, [.025, .975])
16  plt.hist(𝒕_)

6

 7  # 2. To generate a synthetic dataset ...

4  # 1. Define the readout statistic
 5  def 𝑡(x,y): return np.mean(y) - np.mean(x)

The MLEs for 𝜇, 𝛿, 𝜎 are what you calculated in Example Sheet 1 question 5:

Ƹ𝜇 = ҧ𝑥
መ𝛿 = ത𝑦 − ҧ𝑥
ො𝜎 = ⋯

8  Ƹ𝜇, መ𝛿 = np.mean(x), np.mean(y) – np.mean(x)
 9  ො𝜎 = np.sqrt((np.sum((x- Ƹ𝜇)**2 + np.sum((y- Ƹ𝜇- መ𝛿)**2))/(m+n))

10  def rxy_star():
11      return (np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=m),
12              np.random.normal(loc= Ƹ𝜇 + መ𝛿, scale= ො𝜎, size=n))

There is only ever ONE dataset, 
consisting of ALL the observations.

Pr 𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑛 ;  𝜇, 𝛿, 𝜎 = ⋯

To simulate it, we need to estimate 
ALL the unknown parameters.



Why is our mirror image flipped 
left-right, and not up-down?

❖ This resampling approach requires us to 
simulate the multiverse.

❖ Which is better, parametric resampling 
or resampling from the empirical distribution?

❖ Simulating the multiverse is modelling, not 
maths. There is no right answer. We just 
have to invent something we can argue is 
plausible.

❖ We can’t possibly deduce “what might have 
been” from “what was”.
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