IB Data Science syllabus

Using a probability model
 to describe data

Models that depend on linear combinations of features

Parameter interpretation and identifiability

Fitting via least squares
(when appropriate)

MATHS SKILLS

This chart shows the distribution of the speeds of 120 galaxies, from a survey of the Corona Borealis region.
Postman, Huchra, Geller (1986)

What's the best distribution we
can find, to model this dataset?

There are four ways to specify a distribution.

random	
variable	
notation	likelihood function (pdf)

code
cdf

Bespoke probability distributions part I:
from code to likelihood (for continuous random variables)

Exercise 5.3.2
Find the pdf of the random variable generated by this code:
$u=n p . r a n d o m . u n i f o r m()$
$x=-n p \cdot \log (u) / \lambda \quad \# \lambda>0$
Step 1: random variable notation

$$
\begin{aligned}
& u \sim u[0,1] \\
& x=-\frac{1}{\lambda} \log u
\end{aligned}
$$

Try to write our probability in terms of simple standard random variable (for which we can look up the cdf)
Break it down so that the random variables are on the left (so we can use the cdf)

Step 2: X is a continuous riv., so find its cdf

$$
\begin{aligned}
& \text { pdf for } X: \mathbb{P}(X \leq x)=\mathbb{P}\left(-\frac{1}{\lambda} \log U \leq x\right) \text { by deft. of } X \\
& =\mathbb{P}\left(u \geqslant e^{-\lambda x}\right) \\
& =1-\mathbb{P}\left(U<e^{-\lambda x}\right) \\
& =\left\{\begin{array}{l}
\text { if } x \geqslant 0, e^{-\lambda x} \leqslant 1, \text { so we get: } 1-\left(\frac{e^{-\lambda x}-0}{1-0}\right)=1-e^{-\lambda x} \\
\text { if } x<0: \ldots
\end{array}\right.
\end{aligned}
$$

Step 3: differentiate pdf to get pdf

$$
\frac{d}{d x} 1-e^{-\lambda x}=\lambda e^{-\lambda x}
$$

Wikipedia: Uniform distribution

Exercise 5.3.3

Find the density of the random variable generated by this code:

```
def ry():
```

$x=n p$. random. uniform() return $\mathrm{x}{ }^{* *} 2$

Exercise 5.3.5 (Gaussian mixture model)

Find the likelihood function for the Gaussian mixture model.

Exercise.

(See lecture notes for solution.)

